中文版 | English
题名

海上浮式风机非线性水动力-气动力耦合运动响应研究

其他题名
STUDY ON COUPLED NONLINEAR HYDRODYNAMIC-AERODYNAMIC MOTION RESPONSE OF FLOATING OFFSHORE WIND TURBINES
姓名
姓名拼音
YANG Lin
学号
12132183
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
冯兴亚
导师单位
海洋科学与工程系
论文答辩日期
2024-05-10
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

发展海上风电是推进我国能源结构转型的重要举措之一,而浮式风机作为未来海上风电发展的主流趋势近年来已受到人们的广泛关注。浮式风机在运行时受到水动力、气动力、系泊力的耦合作用,运动响应十分复杂。如何准确有效的对浮式风机的运动响应进行预报已成为当前浮式风机研究中的一个重点和难点。本文旨在建立浮式风机时域耦合数值模型,深入研究浮式风机在非线性水动力-气动力耦合下的运动响应,从而为浮式风机的设计和运行提供一定的参考依据。

本文建立的时域耦合数值模型主要包括浮式风机气动力、水动力以及系泊力的耦合分析。在气动力分析中,基于非定常叶素动量理论以及相关修正模型,建立了用于分析浮式风机在运动下所受气动载荷的非定常气动数值模型。针对模型中出现的迭代发散以及迭代次数过多的情况,本研究提出了一种新的数值迭代方法,极大的提高了模型的收敛性。在水动力分析中,基于势流理论建立了能够考虑二阶波浪力的非线性水动数值模型。在系泊力分析中采用集中质量法计算浮式平台所受到的系泊载荷。

本文以OC3-Hywind 5 MW浮式风机系统为研究对象,研究了平台纵摇、纵荡运动的幅值、频率和初始相位差对于纵摇-纵荡耦合运动下浮式风机整体和局部气动特性的影响。在浮式风机耦合运动响应研究方面,研究了粘性阻尼、二阶波浪力和极端海况对于浮式风机在随机波浪下运动响应的影响。此外,本文也对浮式风机在风浪联合作用下的运动响应以及风机推力和功率变化的影响因素进行了研究。

本文的研究结果表明:纵摇和纵荡运动之间的初始相位差可以有效降低浮式风机在纵摇-纵荡耦合运动下气动推力和功率的波动幅度。二阶差频波浪力可以激发浮式风机的共振幅值,特别是在极端海况下,浮式风机将做大幅度的低频共振运动,此时的运动响应由二阶差频力所主导。在风浪联合作用下,浮式风机首先会发生大幅度偏离其初始平衡位置的低频共振运动,此时的运动响应由气动力所主导。在稳定平衡阶段,浮式风机将会做小幅度的周期性波频运动,此时的运动响应由水动力所主导。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15.
[2] SHENG S, CONNOR R. Wind Energy Engineering[M]. Amsterdam: Elsevier, 2023: 195-211.
[3] COUNCIL G W E. GLOBAL WIND REPORT 2023[R]. Bonn: Global wind energy council, 2023.
[4] 张驭驹. 风电在我国新能源构成中的重要性探讨[J]. 智能城市, 2021, 7(15): 71-72.
[5] HENDERSON A, WITCHER D. Floating Offshore Wind Energy: A Review of the Current Status and an Assessment of the Prospects[J]. Wind Engineering, 2010, 34: 1-16.
[6] LEROY V, DELACROIX S, MERRIEN A, et al. Experimental investigation of the hydro-elastic response of a spar-type floating offshore wind turbine[J]. Ocean Engineering, 2022, 255: 111430.
[7] 郭翼泽. 平台运动对漂浮式风电机组叶片气弹特性的影响研究[D]. 华北电力大学(北京), 2023.
[8] OTTER A, MURPHY J, PAKRASHI V, et al. A review of modelling techniques for floating offshore wind turbines[J]. Wind Energy, 2022, 25(5): 831-857.
[9] RODDIER D, CERMELLI C, AUBAULT A, et al. WindFloat: A floating foundation for offshore wind turbines[J]. Journal of Renewable and Sustainable Energy, 2010, 2(3): 033104.
[10] LI L, GAO Y, HU Z Q, et al. Model test research of a semisubmersible floating wind turbine with an improved deficient thrust force correction approach[J]. Renewable Energy, 2018, 119: 95-105.
[11] DUAN F, HU Z Q, LIU G, et al. Experimental comparisons of dynamic properties of floating wind turbine systems based on two different rotor concepts[J]. Applied Ocean Research, 2016, 58: 266-280.
[12] AHN H, SHIN H. Experimental and Numerical Analysis of a 10 MW Floating Offshore Wind Turbine in Regular Waves[J]. Energies, 2020, 13(10): 2608.
[13] CHEN J, LIU Z, SONG Y, et al. Experimental study on dynamic responses of a spar-type floating offshore wind turbine[J]. Renewable Energy, 2022, 196: 560-578.
[14] WANG X, CAI C, ZHOU T, et al. A new similarity criterion and design method for wind tunnel model tests of floating offshore wind turbines[J]. Energy Conversion and Management, 2023, 277: 116560.
[15] CHUANG T, YANG W, YANG R. Experimental and numerical study of a barge-type FOWT platform under wind and wave load[J]. Ocean Engineering, 2021, 230: 109015.
[16] FONTANELLA A, FACCHINETTI A, DAKA E, et al. Modeling the coupled aero-hydro-servo-dynamic response of 15 MW floating wind turbines with wind tunnel hardware in the loop[J]. Renewable Energy, 2023, 219: 119442.
[17] ZHANG H, WEN B, TIAN X, et al. Experimental study on mitigating vibration of floating offshore wind turbine using tuned mass damper[J]. Ocean Engineering, 2023, 288: 115974.
[18] YANG J, HE Y, ZHAO Y, et al. Experimental and numerical studies on the low-frequency responses of a spar-type floating offshore wind turbine[J]. Ocean Engineering, 2021, 222: 108571.
[19] TANAKA K, SATO I, UTSUNOMIYA T, et al. Validation of dynamic response of a 2-MW hybrid-spar floating wind turbine during typhoon using full-scale field data[J]. Ocean Engineering, 2020, 218: 108262.
[20] SIMOS A, RUGGERI F, WATAI R A, et al. Slow-drift of a floating wind turbine: An assessment of frequency-domain methods based on model tests[J]. Renewable Energy, 2018, 116: 133-154.
[21] MENG H, SU H, GUO J, et al. Experimental investigation on the power and thrust characteristics of a wind turbine model subjected to surge and sway motions[J]. Renewable Energy, 2022, 181: 1325-1337.
[22] 陈曦. 海上浮式风机系统在波浪上的运动响应分析[D]. 上海交通大学, 2020.
[23] MICALLEF D, REZAEIHA A. Floating offshore wind turbine aerodynamics: Trends and future challenges[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111696.
[24] GLAUERT H. Airplane propellers[J]. Aerodynamic theory, 1935.
[25] TIETJENS O K, PRANDTL L. Fundamentals of hydro-and aeromechanics[M]. Courier Corporation, 1957.
[26] BUHL M. New empirical relationship between thrust coefficient and induction factor for the turbulent windmill state[R]. Golden, CO (United States): National Renewable Energy Lab, 2005.
[27] ZHONG W, SHEN W Z, WANG T, et al. A tip loss correction model for wind turbine aerodynamic performance prediction[J]. Renewable Energy, 2020, 147: 223-238.
[28] DISOTELL K J, NIKOUEEYAN P, NAUGHTON J W, et al. Global surface pressure measurements of static and dynamic stall on a wind turbine airfoil at low Reynolds number[J]. Experiments in Fluids, 2016, 57: 1-15.
[29] MANIACI D. An investigation of WT_Perf convergence issues, 49th AIAA Aerospace Science Meeting, January 4-7, 2011[C]. Orlando: AIAA, 2011.
[30] NING S. A simple solution method for the blade element momentum equations with guaranteed convergence[J]. Wind Energy, 2014, 17(9): 1327-1345.
[31] SUN Z, SHEN W Z, CHEN J, et al. Improved fixed point iterative method for blade element momentum computations[J]. Wind Energy, 2017, 20(9): 1585-1600.
[32] HANSEN M, MO L. Effect of wind turbine surge motion on rotor thrust and induced velocity[J]. Wind Energy, 2014, 17(1), 105-121.
[33] TRAN T, KIM D H. Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach[J]. Renewable Energy, 2016, 92: 244-261.
[34] TRAN T, KIM D H. The platform pitching motion of floating offshore wind turbine: A preliminary unsteady aerodynamic analysis[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 142: 65-81.
[35] SIVALINGAM K, MARTIN S, SINGAPORE W. Numerical validation of floating offshore wind turbine scaled rotors for surge motion[J]. Energies, 2018, 11(10): 2578.
[36] QIU Y X, WANG X D, KANG S, et al. Predictions of unsteady HAWT aerodynamics in yawing and pitching using the free vortex method[J]. Renewable Energy, 2014, 70: 93-106.
[37] WEN B, DONG X, TIAN X, et al. The power performance of an offshore floating wind turbine in platform pitching motion[J]. Energy, 2018, 154: 508-521.
[38] RODRIGUEZ S N, JAWORSKI J W. Strongly-coupled aeroelastic free-vortex wake framework for floating offshore wind turbine rotors. Part 2: Application[J]. Renewable Energy, 2020, 149: 1018-1031.
[39] CHEN Z, WANG X, KANG S. Effect of the coupled pitch–yaw motion on the unsteady aerodynamic performance and structural response of a floating offshore wind turbine[J]. Processes, 2021, 9(2): 290.
[40] TRAN T, KIM D H. A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion[J]. Renewable Energy, 2016, 90: 204-228.
[41] SHEN X, CHEN J, HU P, et al. Study of the unsteady aerodynamics of floating wind turbines[J]. Energy, 2018, 145: 793-809.
[42] 万德成, 程萍, 黄扬, 等. 海上浮式风机气动力-水动力耦合分析研究进展[J]. 力学季刊, 2017, 38(3): 385-407.
[43] MORISON J R, JOHNSON J W, SCHAAF S A. The force exerted by surface waves on piles[J]. Journal of Petroleum Technology, 1950, 2(05): 149-154.
[44] WARIS M B, ISHIHARA T. Dynamic response analysis of floating offshore wind turbine with different types of heave plates and mooring systems by using a fully nonlinear model[J]. Coupled Systems Mechanics, 2012, 1(3): 247-268.
[45] ROBERTSON A, WENDT F, JONKMAN J, et al. OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine[J]. Energy Procedia, 2017, 137: 38-57.
[46] DONG Y, CHEN Y, LIU H, et al. Review of Study on the Coupled Dynamic Performance of Floating Offshore Wind Turbines[J]. Energies, 2022, 15(11): 3970.
[47] WAYMAN E. Coupled Dynamics and Economic Analysis of Floating Wind Turbine Systems [D]. Massachusetts, USA: Massachusetts Institute of Technology, 2006.
[48] BROMMUNDT M, KRAUSE L, MERZ K, et al. Mooring system optimization for floating wind turbines using frequency domain analysis[J]. Energy Procedia, 2012, 24: 289-296.
[49] LIN Y H, YANG C. Hydrodynamic Simulation of the Semi-Submersible Wind Float by Investigating Mooring Systems in Irregular Waves[J]. Applied Sciences, 2020, 10(12): 4267.
[50] FENG X Y, CHEN X B, DIAS F. A potential flow model with viscous dissipation based on a modified boundary element method[J]. Engineering Analysis with Boundary Elements, 2018, 97: 1-15.
[51] FENG X Y, BAI W, CHEN X B, et al. Numerical investigation of viscous effects on the gap resonance between side-by-side barges[J]. Ocean Engineering, 2017, 145: 44-58.
[52] FENG X Y, BAI W. Wave resonances in a narrow gap between two barges using fully nonlinear numerical simulation[J]. Applied Ocean Research, 2015, 50: 119-129.
[53] FENG X Y. Hydrodynamic Analysis of Wave Interactions with Marine Multibody Systems[D]. National University of Singapore, 2015.
[54] FENG X Y, BAI W. Hydrodynamic analysis of marine multibody systems by a nonlinear coupled model[J]. Journal of Fluids and Structures, 2017, 70: 72-101.
[55] BAI W, EATOCK TAYLOR R. Higher-order boundary element simulation of fully nonlinear wave radiation by oscillating vertical cylinders[J]. Applied Ocean Research, 2006, 28(4): 247-265.
[56] ZHOU Z B, NING D Z, TENG B, et al. Numerical investigation of wave radiation by a vertical cylinder using a fully nonlinear HOBEM[J]. Ocean Engineering, 2013, 70: 1-13.
[57] FENG X Y. Analysis of higher harmonics in a focused water wave group by a nonlinear potential flow model[J]. Ocean Engineering, 2019, 193: 106581.
[58] CHEN D S, FENG X Y, HOU C, et al. A coupled frequency and time domain approach for hydroelastic analysis of very large floating structures under focused wave groups[J]. Ocean Engineering, 2022, 255: 111393.
[59] LIU Y, XIAO Q, INCECIK A, et al. Establishing a fully coupled CFD analysis tool for floating offshore wind turbines[J]. Renewable Energy, 2017, 112: 280-301.
[60] WANG Y, CHEN H C, KOOP A, et al. Hydrodynamic response of a FOWT semi-submersible under regular waves using CFD: Verification and validation[J]. Ocean Engineering, 2022, 258: 111742.
[61] BURMESTER S, VAZ G, GUEYDON S, et al. Investigation of a semi-submersible floating wind turbine in surge decay using CFD[J]. Ship Technology Research, 2020, 67(1): 2-14.
[62] BORG M, COLLU M, KOLIOS A. Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part II: Mooring line and structural dynamics[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 1226-1234.
[63] ZHONG W, ZHAO W, WAN D C, et al. Comparison study on mooring line models for hydrodynamic performances of floating offshore wind turbines[J]. Ocean Engineering, 2024, 296: 117083.
[64] Jonkman J, MATHA D. Dynamics of offshore floating wind turbines—analysis of three concepts[J]. Wind Energy, 2011, 14(4), 557-569.
[65] HALL M, GOUPEE A. Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data[J]. Ocean Engineering, 2015, 104: 590-603.
[66] LI C B, CHOUNG J. Effects of strain and strain rate dependent nonlinear mooring line stiffness on floating platform motion[J]. Ocean Engineering, 2021, 241: 110011.
[67] 程萍. 浮式风机气动-水动耦合复杂流场数值模拟[D]. 上海交通大学, 2020.
[68] JONKMAN J. Dynamics modeling and loads analysis of an offshore floating wind turbine[D]. University of Colorado at Boulder, 2007.
[69] BACHYNSKI E, KVITTEM M, LUAN C, et al. Wind-Wave Misalignment Effects on Floating Wind Turbines: Motions and Tower Load Effects[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(4): 041902
[70] KARIMIRAD M, MOAN T. A simplified method for coupled analysis of floating offshore wind turbines[J]. Marine Structures, 2012, 27(1): 45-63.
[71] WANG K, JI C, XUE H, et al. Frequency domain approach for the coupled analysis of floating wind turbine system[J]. Ships and Offshore Structures, 2016, 12(6): 767-774.
[72] LIU Y, XIAO Q. Development of a fully coupled aero-hydro-mooring-elastic tool for floating offshore wind turbines[J]. Journal of Hydrodynamics, 2019, 31(1): 21-33.
[73] CHENG P, HUANG Y, WAN D C. A numerical model for fully coupled aero-hydrodynamic analysis of floating offshore wind turbine[J]. Ocean Engineering, 2019, 173: 183-196.
[74] YANG Y, BASHIR M, MICHAILIDES C, et al. Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines[J]. Renewable Energy, 2020, 161: 606-625.
[75] CARRION J. Model-based strategies for real-time hybrid testing[D]. University of Illinois at Urbana-Champaign, 2007.
[76] BACHYNSKI E, CHABAUD V, SAUDER T. Real-time Hybrid Model Testing of Floating Wind Turbines: Sensitivity to Limited Actuation[J]. Energy Procedia, 2015, 80: 2-12.
[77] OGUZ E, CLELLAND D, DAY A, et al. Experimental and numerical analysis of a TLP floating offshore wind turbine[J]. Ocean Engineering, 2018, 147: 591-605.
[78] HALL M, GOUPEE A, JONKMAN J. Development of performance specifications for hybrid modeling of floating wind turbines in wave basin tests[J]. Journal of Ocean Engineering and Marine Energy, 2018, 4: 1-23.
[79] 王涵. 浮式风机动力响应模型试验与数值计算对比研究[D]. 上海交通大学, 2020.
[80] MAHMUDDIN F, KLARA S, SITEPU H, et al. Airfoil lift and drag extrapolation with viterna and montgomerie methods[J]. Energy Procedia, 2017, 105: 811-816.
[81] VENNELL R. Exceeding the Betz limit with tidal turbines[J]. Renewable Energy, 2013, 55: 277-285.
[82] PRATUMNOPHARAT P, LEUNG P. Validation of various windmill brake state models used by blade element momentum calculation[J]. Renewable Energy, 2011, 36(11): 3222-3227
[83] LEE H, LEE D. Effects of platform motions on aerodynamic performance and unsteady wake evolution of a floating offshore wind turbine[J]. Renewable Energy, 2019, 143: 9-23.
[84] HUR C, FERREIRA C, SCHEPERS G. Applicability of Dynamic Inflow Models of HAWT in Yawed Flow Conditions[J]. Energies, 2022, 15(24): 9368.
[85] DU Z, SELIG M. The effect of rotation on the boundary layer of a wind turbine blade[J]. Renewable Energy, 2000, 20(2): 167-181.
[86] FLEMING P, NING A, GEBRAAD P, et al. Wind plant system engineering through optimization of layout and yaw control[J]. Wind Energy, 2015, 19: 329–344.
[87] 刘格梁. 海上浮式风机系统动力响应的模拟与分析[D]. 上海交通大学, 2016.
[88] KURNIA R, DUCROZET G. NEMOH: Open-source boundary element solver for computation of first- and second-order hydrodynamic loads in the frequency domain[J]. Computer Physics Communications, 2023, 292: 108885.
[89] CHEN H, MATTHEW H. CFD simulation of floating body motion with mooring dynamics: Coupling MoorDyn with OpenFOAM[J]. Applied Ocean Research, 2022, 124: 103210.
[90] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. Golden, CO (United States): National Renewable Energy Lab, 2009.
[91] GUO Y, WANG X, MEI Y, et al. Effect of coupled platform pitch-surge motions on the aerodynamic characters of a horizontal floating offshore wind turbine[J]. Renewable Energy, 2022, 196: 278-297.
[92] TRAN T, KIM D, HIEU N. Aerodynamic interference effect of huge wind turbine blades with periodic surge motions using overset grid-based computational fluid dynamics approach[J]. Journal of Solar Energy Engineering, 2015, 137(6): 061003.
[93] CHEN Z, WANG X, GUO Y, et al. Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions[J]. Renewable Energy, 2021, 163: 1849-1870.
[94] JONKMAN J. Definition of the Floating System for Phase IV of OC3[R]. Golden, CO (United States): National Renewable Energy Lab, 2010.
[95] WANG L, ROBERTSON A, JONKMAN J, et al. OC6 phase I: Improvements to the OpenFAST predictions of nonlinear, low-frequency responses of a floating offshore wind turbine platform[J]. Renewable Energy, 2022, 187: 282-301.
[96] MOYNIHAN B, MOAVENI B, LIBERATORE S, et al. Estimation of blade forces in wind turbines using blade root strain measurements with OpenFAST verification[J]. Renewable Energy, 2022, 184: 662-676.
[97] ASLMOSTAFA E, HAMIDA M, PLESTAN F. Nonlinear control strategies for a floating wind turbine with PMSG in Region 2: A comparative study based on the OpenFAST platform[J]. Ocean Engineering, 2024, 300: 117507.
[98] AHN H, SHIN H. Model test and numerical simulation of OC3 spar type floating offshore wind turbine[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 1-10.

所在学位评定分委会
力学
国内图书分类号
O352
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765933
专题南方科技大学
工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
杨林. 海上浮式风机非线性水动力-气动力耦合运动响应研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132183-杨林-海洋科学与工程系(10982KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[杨林]的文章
百度学术
百度学术中相似的文章
[杨林]的文章
必应学术
必应学术中相似的文章
[杨林]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。