[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249.
[2] ALLEMANI C, MATSUDA T, DI CARLO V, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. The Lancet, 2018, 391(10125): 1023-1075.
[3] BADU-PEPRAH A, ADU-SARKODIE Y. Accuracy of clinical diagnosis, mammography and ultrasonography in preoperative assessment of breast cancer[J]. Ghana Medical Journal, 2018, 52(3): 133-139.
[4] GREEN L A, KAROW J A, TOMAN J E, et al. Review of breast augmentation and reconstruction for the radiologist with emphasis on MRI[J]. Clinical Imaging, 2018, 47: 101-117.
[5] HEENA H, DURRANI S, RIAZ M, et al. Knowledge, attitudes, and practices related to breast cancer screening among female health care professionals: a cross sectional study[J]. BMC Women's Health, 2019, 19: 1-11.
[6] SHIOGA T, KONDO R, OGASAWARA S, et al. Usefulness of tumor tissue biopsy for predicting the biological behavior of hepatocellular carcinoma[J]. Anticancer Research, 2020, 40(7): 4105-4113.
[7] ZHANG D, LI W, MA Z, et al. Improved ELISA for tumor marker detection using electro-readout-mode based on label triggered degradation of methylene blue[J]. Biosensors and Bioelectronics, 2019, 126: 800-805.
[8] 陈可, 林楚莹, 冯梓晴. 循环肿瘤细胞和血清CEA、CA19-9、CA125检测对结直肠癌淋巴结转移的预测价值[J]. 黑龙江医药, 2023, 36(06): 1411-1413.
[9] 朱秀梅, 魏锋. 血清肿瘤标志物CA-199、CA-125、CA-153检测在卵巢癌诊断中的应用价值[J]. 中国实验诊断学, 2024, 28(02): 178-182.
[10] ZHENG X-H, HILDESHEIM A, JIA W-H. Advances of biomarkers in nasopharyngeal carcinoma's early detection[J]. Science Bulletin, 2024, 69(2): 141-145.
[11] YALOW R S, BERSON S A. Assay of plasma insulin in human subjects by immunological methods[J]. Nature, 1959, 184(4699): 1648-1649.
[12] WU J, FU Z, YAN F, et al. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers[J]. TrAC Trends in Analytical Chemistry, 2007, 26(7): 679-688.
[13] FARKA Z, JURIK T, KOVAR D, et al. Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges[J]. Chemical Reviews, 2017, 117(15): 9973-10042.
[14] CHEN H, JIANG C, YU C, et al. Protein chips and nanomaterials for application in tumor marker immunoassays[J]. Biosensors and Bioelectronics, 2009, 24(12): 3399-3411.
[15] ALTINTAS Z, GITTENS M, GUERREIRO A, et al. Detection of waterborne viruses using high affinity molecularly imprinted polymers[J]. Analytical Chemistry, 2015, 87(13): 6801-6807.
[16] YOLA M L, ATAR N. Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer[J]. Biosensors and Bioelectronics, 2019, 126: 418-424.
[17] KHOSLA A, SHAH S, SHIBLEE M N I, et al. Carbon fiber doped thermosetting elastomer for flexible sensors: physical properties and microfabrication[J]. Scientific Reports, 2018, 8(1): 12313.
[18] AHMAD R, KHAN M, MISHRA P, et al. Engineered hierarchical CuO nanoleaves based electrochemical nonenzymatic biosensor for glucose detection[J]. Journal of the Electrochemical Society, 2021, 168(1): 017501.
[19] CLARK L C, LYONS C. Electrode systems for continuous monitoring in cardiovascular surgery[J]. Annals of the New York Academy of sciences, 1962, 102(1): 29-45.
[20] SCOGNAMIGLIO V, ARDUINI F, PALLESCHI G, et al. Biosensing technology for sustainable food safety[J]. TrAC Trends in Analytical Chemistry, 2014, 62: 1-10.
[21] SCOGNAMIGLIO V, PEZZOTTI G, PEZZOTTI I, et al. Biosensors for effective environmental and agrifood protection and commercialization: from research to market[J]. Microchimica Acta, 2010, 170: 215-225.
[22] MADURAIVEERAN G, SASIDHARAN M, GANESAN V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications[J]. Biosensors and Bioelectronics, 2018, 103: 113-129.
[23] MOHAMMADPOUR-HARATBAR A, BORAEI S B A, ZARE Y, et al. Graphene-based electrochemical biosensors for breast cancer detection[J]. Biosensors, 2023, 13(1): 80.
[24] ORIJ R, URBANUS M L, VIZEACOUMAR F J, et al. Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pHc in Saccharomyces cerevisiae[J]. Genome Biology, 2012, 13(9): R80.
[25] C X Z A, C P L B, C T X, et al. A novel graphene-like titanium carbide MXene/Au–Ag nanoshuttles bifunctional nanosensor for electrochemical and SERS intelligent analysis of ultra-trace carbendazim coupled with machine learning - ScienceDirect[J]. Ceramics International, 2021, 47(1): 173-184.
[26] CALI K, TUCCORI E, PERSAUD K C. Gravimetric biosensors[M]. Methods in Enzymology. Elsevier. 2020: 435-468.
[27] SKLáDAL P. Piezoelectric biosensors[J]. TrAC Trends in Analytical Chemistry, 2016, 79: 127-133.
[28] FOGEL R, LIMSON J, SESHIA A A. Acoustic biosensors[J]. Essays in Biochemistry, 2016, 60(1): 101-110.
[29] SU L, ZOU L, FONG C-C, et al. Detection of cancer biomarkers by piezoelectric biosensor using PZT ceramic resonator as the transducer[J]. Biosensors and Bioelectronics, 2013, 46: 155-161.
[30] DAMBORSKý P, ŠVITEL J, KATRLíK J. Optical biosensors[J]. Essays in Biochemistry, 2016, 60(1): 91-100.
[31] WANG J, AKI M, ONOSHIMA D, et al. Microfluidic biosensor for the detection of DNA by fluorescence enhancement and the following streptavidin detection by fluorescence quenching[J]. Biosensors and Bioelectronics, 2014, 51: 280-285.
[32] ZHAO L, WANG J, SU D, et al. The DNA controllable peroxidase mimetic activity of MoS 2 nanosheets for constructing a robust colorimetric biosensor[J]. Nanoscale, 2020, 12(37): 19420-19428.
[33] LI P, LI W, XIE Z, et al. A label‐free and signal‐amplifiable assay method for colorimetric detection of carcinoembryonic antigen[J]. Biotechnology and Bioengineering, 2022, 119(2): 504-512.
[34] PIMKOVá K, BOCKOVá M, HEGNEROVá K, et al. Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes[J]. Analytical and Bioanalytical Chemistry, 2012, 402: 381-387.
[35] SZYMAŃSKA B, LUKASZEWSKI Z, HERMANOWICZ-SZAMATOWICZ K, et al. A biosensor for determination of the circulating biomarker CA125/MUC16 by Surface Plasmon Resonance Imaging[J]. Talanta, 2020, 206: 120187.
[36] JIANG L, ZENG S, XU Z, et al. Multifunctional hyperbolic nanogroove metasurface for submolecular detection[J]. Small, 2017, 13(30): 1700600.
[37] LOYEZ M, LOBRY M, HASSAN E M, et al. HER2 breast cancer biomarker detection using a sandwich optical fiber assay[J]. Talanta, 2021, 221: 121452.
[38] BROCKMAN J M, NELSON B P, CORN R M. Surface plasmon resonance imaging measurements of ultrathin organic films[J]. Annual Review of Physical Chemistry, 2000, 51(1): 41-63.
[39] XU X, YING Y, LI Y. Gold nanorods based LSPR biosensor for label-free detection of alpha-fetoprotein[J]. Procedia Engineering, 2011, 25: 67-70.
[40] MAHANI M, ALIMOHAMADI F, TORKZADEH-MAHANI M, et al. LSPR biosensing for the early-stage prostate cancer detection using hydrogen bonds between PSA and antibody: Molecular dynamic and experimental study[J]. Journal of Molecular Liquids, 2021, 324: 114736.
[41] HAMMOND J L, BHALLA N, RAFIEE S D, et al. Localized surface plasmon resonance as a biosensing platform for developing countries[J]. Biosensors, 2014, 4(2): 172-188.
[42] RALBOVSKY N M, LEDNEV I K. Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning[J]. Chemical Society Reviews, 2020, 49(20): 7428-7453.
[43] ZHAO J, DIERINGER J A, ZHANG X, et al. Wavelength-scanned surface-enhanced resonance Raman excitation spectroscopy[J]. The Journal of Physical Chemistry C, 2008, 112(49): 19302-19310.
[44] DING S-Y, YOU E-M, TIAN Z-Q, et al. Electromagnetic theories of surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 2017, 46(13): 4042-4076.
[45] HAROON M, TAHIR M, NAWAZ H, et al. Surface-enhanced Raman scattering (SERS) spectroscopy for prostate cancer diagnosis: A review[J]. Photodiagnosis and Photodynamic Therapy, 2022, 37: 102690.
[46] VENDRELL M, MAITI K K, DHALIWAL K, et al. Surface-enhanced Raman scattering in cancer detection and imaging[J]. Trends in Biotechnology, 2013, 31(4): 249-257.
[47] WANG T, ZHU Y, WENG S, et al. Optical biosensor based on SERS with signal calibration function for quantitative detection of carcinoembryonic antigen[J]. Biomedical Optics Express, 2022, 13(11): 5962-5970.
[48] CAUCHETEUR C, GUO T, ALBERT J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection[J]. Analytical and Bioanalytical Chemistry, 2015, 407: 3883-3897.
[49] LUO Z, LI M, KONG X, et al. Advance on fiber optic‐based biosensors for precision medicine: From diagnosis to therapy[J]. Interdisciplinary Medicine, 2023, 1(4): e20230022.
[50] WU Q, QU Y, LIU J, et al. Singlemode-multimode-singlemode fiber structures for sensing applications—A review[J]. IEEE Sensors Journal, 2020, 21(11): 12734-12751.
[51] NAN T, LIU B, WU Y, et al. Ultrasensitive strain sensor based on Vernier-effect improved parallel structured fiber-optic Fabry-Perot interferometer[J]. Optics Express, 2019, 27(12): 17239-17250.
[52] YU F, XUE P, ZHENG J. Enhancement of refractive index sensitivity by bending a core-offset in-line fiber Mach–Zehnder interferometer[J]. IEEE Sensors Journal, 2019, 19(9): 3328-3334.
[53] ZHANG X, PENG W. Bent fiber interferometer[J]. Journal of Lightwave Technology, 2015, 33(15): 3351-3356.
[54] YANG B, NIU Y, YANG B, et al. High sensitivity balloon-like refractometric sensor based on singlemode-tapered multimode-singlemode fiber[J]. Sensors and Actuators A: Physical, 2018, 281: 42-47.
[55] TIAN K, FARRELL G, LEWIS E, et al. A high sensitivity temperature sensor based on balloon-shaped bent SMF structure with its original polymer coating[J]. Measurement Science and Technology, 2018, 29(8): 085104.
[56] LIU T, LIANG L-L, XIAO P, et al. A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating[J]. Biosensors and Bioelectronics, 2018, 100: 155-160.
[57] RAN Y, LONG J, XU Z, et al. Harmonic optical microfiber Bragg grating immunosensor for the accelerative test of cardiac biomarker (cTn-I)[J]. Biosensors and Bioelectronics, 2021, 179: 113081.
[58] AN G, LI S, CHENG T, et al. Ultra-stable D-shaped optical fiber refractive index sensor with graphene-gold deposited platform[J]. Plasmonics, 2019, 14: 155-163.
[59] AKOUIBAA A, MASROUR R, AKOUIBAA A, et al. Study of the sensitivity of D-shaped optical fiber sensor based on surface plasmon resonance to detect the refractive index changes in the human blood[J]. Plasmonics, 2023, 18(1): 137-154.
[60] GUO Y, AN N, GUO K, et al. Gas detection in a graphene based dual-mode fiber laser microcavity[J]. Sensors and Actuators B: Chemical, 2021, 348: 130694.
[61] SUN L-P, HUANG T, YUAN Z, et al. Ultra-high sensitivity of dual dispersion turning point taper-based Mach-Zehnder interferometer[J]. Optics Express, 2019, 27(16): 23103-23111.
[62] SUN D, SUN L-P, GUO T, et al. Label-free thrombin detection using a tapered fiber-optic interferometric aptasensor[J]. Journal of Lightwave Technology, 2018, 37(11): 2756-2761.
[63] LIYANAGE T, LAI M, SLAUGHTER G. Label-free tapered optical fiber plasmonic biosensor[J]. Analytica Chimica Acta, 2021, 1169: 338629.
[64] SHAO L-Y, LIANG J, ZHANG X, et al. High-resolution refractive index sensing with dual-wavelength fiber laser[J]. IEEE Sensors Journal, 2016, 16(23): 8463-8467.
[65] ASCORBE J, CORRES J, MATIAS I, et al. High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances[J]. Sensors and Actuators B: Chemical, 2016, 233: 7-16.
[66] AL-QAZWINI Y, NOOR A, AL-QAZWINI Z, et al. Refractive index sensor based on SPR in symmetrically etched plastic optical fibers[J]. Sensors and Actuators A: Physical, 2016, 246: 163-169.
[67] GUO T, LIU F, GUAN B-O, et al. Tilted fiber grating mechanical and biochemical sensors[J]. Optics & Laser Technology, 2016, 78: 19-33.
[68] ZHAO X-W, WANG Q. Mini review: Recent advances in long period fiber grating biological and chemical sensors[J]. Instrumentation Science & Technology, 2019, 47(2): 140-169.
[69] ZHUO L, TANG J, ZHU W, et al. Side polished fiber: a versatile platform for compact fiber devices and sensors[J]. Photonic Sensors, 2023, 13(1): 230120.
[70] KUMAR R, LENG Y, LIU B, et al. Ultrasensitive biosensor based on magnetic microspheres enhanced microfiber interferometer[J]. Biosensors and Bioelectronics, 2019, 145: 111563.
[71] SHAO L, LIU Z, HU J, et al. Optofluidics in microstructured optical fibers[J]. Micromachines, 2018, 9(4): 145.
[72] KNIGHT J, BIRKS T, RUSSELL P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters, 1996, 21(19): 1547-1549.
[73] LI Z, LIAO C, CHEN D, et al. Label-free detection of bovine serum albumin based on an in-fiber Mach-Zehnder interferometric biosensor[J]. Optics Express, 2017, 25(15): 17105-17113.
[74] YAO C, GAO S, WANG Y, et al. Heterodyne interferometric photothermal spectroscopy for gas detection in a hollow-core fiber[J]. Sensors and Actuators B: Chemical, 2021, 346: 130528.
[75] TAN Y, JIN W, YANG F, et al. Cavity-enhanced photothermal gas detection with a hollow fiber Fabry-Perot absorption cell[J]. Journal of Lightwave Technology, 2019, 37(17): 4222-4228.
[76] ZHAO Y, JIN W, LIN Y, et al. All-fiber gas sensor with intracavity photothermal spectroscopy[J]. Optics Letters, 2018, 43(7): 1566-1569.
[77] BEKMURZAYEVA A, ASHIKBAYEVA Z, ASSYLBEKOVA N, et al. Ultra-wide, attomolar-level limit detection of CD44 biomarker with a silanized optical fiber biosensor[J]. Biosensors and Bioelectronics, 2022, 208: 114217.
[78] LIANG Z, ZHOU J, PETTI L, et al. SERS-based cascade amplification bioassay protocol of miRNA-21 by using sandwich structure with biotin–streptavidin system[J]. Analyst, 2019, 144(5): 1741-1750.
[79] CHEN L, LENG Y-K, LIU B, et al. Ultrahigh-sensitivity label-free optical fiber biosensor based on a tapered singlemode-no core-singlemode coupler for Staphylococcus aureus detection[J]. Sensors and Actuators B: Chemical, 2020, 320: 128283.
[80] SMIETANA M, BOCK W J, MIKULIC P, et al. Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings[J]. Optics Express, 2011, 19(9): 7971-7978.
[81] PILLA P, MALACHOVSKá V, BORRIELLO A, et al. Transition mode long period grating biosensor with functional multilayer coatings[J]. Optics Express, 2011, 19(2): 512-526.
[82] FU G, YUE X, DAI Z. Glucose biosensor based on covalent immobilization of enzyme in sol–gel composite film combined with Prussian blue/carbon nanotubes hybrid[J]. Biosensors and Bioelectronics, 2011, 26(9): 3973-3976.
[83] SINGH S, JAIN D, SINGLA M. Sol–gel based composite of gold nanoparticles as matix for tyrosinase for amperometric catechol biosensor[J]. Sensors and Actuators B: Chemical, 2013, 182: 161-169.
[84] NOMAN A A, DASH J N, MARUF M A A, et al. Label-Free DNA Detection Using Etched Tilted Bragg Fiber Grating-Based Biosensor[J]. Sensors, 2023, 23(16): 7019.
[85] SOCORRO A B, SANTAMARIA E, FERNANDEZ-IRIGOYEN J, et al. Fiber-optic immunosensor based on an etched SMS structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(2): 314-321.
[86] PATIñO-JURADO B, CARDONA-MAYA Y, JARAMILLO-GRAJALES M, et al. A label-free biosensor based on E-SMS optical fiber structure for anti BSA detection[J]. Optical Fiber Technology, 2022, 74: 103116.
[87] GUO T. Fiber grating-assisted surface plasmon resonance for biochemical and electrochemical sensing[J]. Journal of Lightwave Technology, 2017, 35(16): 3323-3333.
[88] ALBERT J, LEPINAY S, CAUCHETEUR C, et al. High resolution grating-assisted surface plasmon resonance fiber optic aptasensor[J]. Methods, 2013, 63(3): 239-254.
[89] ALAM M Z, ALBERT J. Selective excitation of radially and azimuthally polarized optical fiber cladding modes[J]. Journal of Lightwave Technology, 2013, 31(19): 3167-3175.
[90] LAO J, HAN L, WU Z, et al. Gold nanoparticle-functionalized surface plasmon resonance optical fiber biosensor: In situ detection of thrombin with 1 n· M detection limit[J]. Journal of Lightwave Technology, 2019, 37(11): 2748-2755.
[91] CHEN X, XU P, LIN W, et al. Label-free detection of breast cancer cells using a functionalized tilted fiber grating[J]. Biomedical Optics Express, 2022, 13(4): 2117-2129.
[92] CHIAVAIOLI F, ZUBIATE P, DEL VILLAR I, et al. Femtomolar detection by nanocoated fiber label-free biosensors[J]. ACS Sensors, 2018, 3(5): 936-943.
[93] LI C, GAO J, SHAFI M, et al. Optical fiber SPR biosensor complying with a 3D composite hyperbolic metamaterial and a graphene film[J]. Photonics Research, 2021, 9(3): 379-388.
[94] CHEN S, ZHANG C, WANG J, et al. A fiber Bragg grating sensor based on cladding mode resonance for label-free biosensing[J]. Biosensors, 2023, 13(1): 97.
[95] ZHANG N M Y, QI M, WANG Z, et al. One-step synthesis of cyclodextrin-capped gold nanoparticles for ultra-sensitive and highly-integrated plasmonic biosensors[J]. Sensors and Actuators B: Chemical, 2019, 286: 429-436.
[96] XIAO A, HUANG Y, ZHENG J, et al. An optical microfiber biosensor for CEACAM5 detection in serum: Sensitization by a nanosphere interface[J]. ACS Applied Materials & Interfaces, 2019, 12(1): 1799-1805.
[97] ZHANG Y, WU H, WANG H, et al. Ultraminiature optical fiber-tip directly-printed plasmonic biosensors for label-free biodetection[J]. Biosensors and Bioelectronics, 2022, 218: 114761.
[98] SPAZIANI S, QUERO G, MANAGò S, et al. SERS assisted sandwich immunoassay platforms for ultrasensitive and selective detection of human Thyroglobulin[J]. Biosensors and Bioelectronics, 2023, 233: 115322.
[99] CAPMANY J, NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319.
[100] YAO J. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335.
[101] DONG X, SHAO L-Y, FU H, et al. Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement[J]. Optics Letters, 2008, 33(5): 482-484.
[102] XIAO D, WANG G, YU F, et al. Optical curvature sensor with high resolution based on in-line fiber Mach-Zehnder interferometer and microwave photonic filter[J]. Optics Express, 2022, 30(4): 5402-5413.
[103] CAO Y, WANG X, GUO T, et al. High-resolution and temperature-compensational HER2 antigen detection based on microwave photonic interrogation[J]. Sensors and Actuators B: Chemical, 2017, 245: 583-589.
[104] NIU P, JIANG J, LIU K, et al. Fiber-integrated WGM optofluidic chip enhanced by microwave photonic analyzer for cardiac biomarker detection with ultra-high resolution[J]. Biosensors and Bioelectronics, 2022, 208: 114238.
[105] SHAIMERDENOVA M, AYUPOVA T, SYPABEKOVA M, et al. Fiber Optic Refractive Index Sensors Based on a Ball Resonator and Optical Backscatter Interrogation[J]. Sensors, 2020, 20(21): 6199.
[106] GILES C R, DESURVIRE E. Modeling erbium-doped fiber amplifiers[J]. Journal of Lightwave Technology, 1991, 9(2): 271-283.
[107] ALYAHYAEI K, ZHU X, LI L, et al. Ultralow-quantum-defect single-frequency fiber laser[J]. Optics Letters, 2023, 48(14): 3817-3820.
[108] RAN Y, FENG F-R, LIANG Y-Z, et al. Type IIa Bragg grating based ultra-short DBR fiber laser with high temperature resistance[J]. Optics Letters, 2015, 40(24): 5706-5709.
[109] YU X, CHEN X, ZHANG J, et al. Fiber birefringence measurement of single-mode fiber by a polarimetric fiber ring laser[J]. Journal of Lightwave Technology, 2018, 36(11): 2204-2210.
[110] HAN M, LIU T, HU L, et al. Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection[J]. Optics Express, 2013, 21(24): 29269-29276.
[111] YANG X, BANDYOPADHYAY S, SHAO L-Y, et al. Side-polished DBR fiber laser with enhanced sensitivity for axial force and refractive index measurement[J]. IEEE Photonics Journal, 2019, 11(3): 1-10.
[112] LIU Y, LIN W, ZHAO F, et al. Dual-Parameter Fiber Sensors for Salinity and Temperature Measurement Based on a Tapered PMF Incorporated With an FBG in Sagnac Loop[J]. IEEE Photonics Journal, 2024, 16(1): 1-7.
[113] CONTRERAS-TERAN M, JAUREGUI-VAZQUEZ D, GALLEGOS-ARELLANO E, et al. High-resolution strain fiber laser-sensor based on core-offset mach-zehnder interferometer[J]. Measurement Science and Technology, 2023, 34(5): 055202.
[114] JIA X, ZHOU X, BI M, et al. High-sensitivity optical fiber temperature sensor of cascaded FSI and MZI based on Vernier effect[J]. Optical Fiber Technology, 2021, 65: 102625.
[115] DENG H, JIANG X, HUANG X, et al. A temperature sensor based on composite optical waveguide[J]. Journal of Lightwave Technology, 2022, 40(8): 2663-2669.
[116] HARRIS J, LU P, LAROCQUE H, et al. In-fiber Mach–Zehnder interferometric refractive index sensors with guided and leaky modes[J]. Sensors and Actuators B: Chemical, 2015, 206: 246-251.
[117] ZHAO Y, LI L, HAN B, et al. Ultra-Sensitive Optical Fiber Glucose Sensor Based on In-Fiber MZI With Vernier Effect[J]. Journal of Lightwave Technology, 2024, 42(1): 414-421.
[118] WANG Z, ZHANG L, MA Z, et al. High-sensitivity bending sensor based on supermode interference in coupled four-core sapphire-derived fiber[J]. Journal of Lightwave Technology, 2021, 39(12): 3932-3940.
[119] ZHOU Y, WANG Y, LIU H, et al. High-sensitive bending sensor based on a seven-core fiber[J]. Optics Communications, 2021, 483: 126617.
[120] ZHAO R, SHU X, WANG P. High-performance bending sensor based on femtosecond laser-inscribed in-fiber Mach–Zehnder interferometer[J]. Journal of Lightwave Technology, 2020, 38(22): 6371-6378.
[121] WANG X, LI C, LI J, et al. An Optical Fiber Magnetic Field Sensor Based on Mach-Zehnder Interferometer Composed of Two Peanut-Shaped Structures and Tapered No-core Fiber[J]. IEEE Sensors Journal, 2023, 23(20): 24617-24625.
[122] LI X, ZHANG H, CHEN N, et al. Simultaneous detection of magnetic field and temperature using micro-nanofiber cascaded fiber Bragg grating structure[J]. IEEE Sensors Journal, 2022, 22(20): 19267-19272.
[123] LI H-C, LENG Y-K, LIAO Y-C, et al. Tapered microfiber MZI biosensor for highly sensitive detection of Staphylococcus aureus[J]. IEEE Sensors Journal, 2022, 22(6): 5531-5539.
[124] LI X, CHEN N, ZHOU X, et al. In-situ DNA detection with an interferometric-type optical sensor based on tapered exposed core microstructured optical fiber[J]. Sensors and Actuators B: Chemical, 2022, 351: 130942.
[125] SHEN C, CHEN X, HUANG Z, et al. High sensitivity and fast response optical fiber nucleic acid sensor[J]. Optics & Laser Technology, 2022, 154: 108271.
[126] BAI X, FAN D, WANG S, et al. Strain sensor based on fiber ring cavity laser with photonic crystal fiber in-line Mach–Zehnder interferometer[J]. IEEE Photonics Journal, 2014, 6(4): 1-8.
[127] ZHAO F, LIN W, HU J, et al. Highly sensitive salinity and temperature measurement based on tapered-SHF MZI fiber laser structure[J]. Measurement Science and Technology, 2023, 34(6): 064002.
[128] BO W, LIU B, LIU J, et al. Fiber ring laser based on side-polished fiber MZI for enhancing refractive index and torsion measurement[J]. IEEE Sensors Journal, 2022, 22(8): 7779-7784.
[129] RAO Y-J. Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors[J]. Optical Fiber Technology, 2006, 12(3): 227-237.
[130] ISLAM M R, ALI M M, LAI M-H, et al. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review[J]. Sensors, 2014, 14(4): 7451-7488.
[131] ZHU C, ZHENG H, MA L, et al. Advances in Fiber-Optic Extrinsic Fabry–Perot Interferometric Physical and Mechanical Sensors: A Review[J]. IEEE Sensors Journal, 2023, 23(7): 6406-6426.
[132] MA J, ZHAO M, HUANG X, et al. Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point[J]. Optics Express, 2016, 24(17): 19008-19019.
[133] MAO X, YUAN S, ZHENG P, et al. Stabilized fiber-optic Fabry–Perot acoustic sensor based on improved wavelength tuning technique[J]. Journal of Lightwave Technology, 2017, 35(11): 2311-2314.
[134] YU Z, WANG A. Fast white light interferometry demodulation algorithm for low-finesse Fabry–Pérot sensors[J]. IEEE Photonics Technology Letters, 2015, 27(8): 817-820.
[135] LI C, CHEN S, ZHU Y. Maximum likelihood estimation of optical path length in spectral interferometry[J]. Journal of Lightwave Technology, 2017, 35(22): 4880-4887.
[136] WU Y, XIA L, CAI N, et al. A highly precise demodulation method for fiber fabry-perot cavity through spectrum reconstruction[J]. IEEE Photonics Technology Letters, 2017, 30(5): 435-438.
[137] WEIMIN C, XIAOHUA L, WEI Z, et al. Recent progress of optical fiber Fabry-Perot sensors[J]. Acta Optica Sinica, 2018, 38(3): 0328010.
[138] LIU Q, PENG W. Fast interrogation of dynamic low‐finesse Fabry‐Perot interferometers: A review[J]. Microwave and Optical Technology Letters, 2021, 63(9): 2279-2291.
[139] WANG Z, XU Z, CHEN L, et al. Highly precise in-plane displacement sensor based on an asymmetric fiber Fabry–Perot interferometer[J]. Optics Letters, 2021, 46(16): 3945-3948.
[140] ALONSO-MURIAS M C, MONZóN-HERNáNDEZ D, RODRíGUEZ-QUIROZ O, et al. Long-range multicore optical fiber displacement sensor[J]. Optics Letters, 2021, 46(9): 2224-2227.
[141] XU Z, WANG Z, CHEN L, et al. Two-dimensional displacement sensor based on a dual-cavity Fabry-Perot interferometer[J]. Journal of Lightwave Technology, 2021, 40(4): 1195-1201.
[142] PAIXãO T, ARAúJO F, ANTUNES P. Highly sensitive fiber optic temperature and strain sensor based on an intrinsic Fabry–Perot interferometer fabricated by a femtosecond laser[J]. Optics Letters, 2019, 44(19): 4833-4836.
[143] ZHOU K, AI M-Z, QIAN Z-H, et al. High-sensitivity strain sensor with an in-fiber air-bubble Fabry-Perot interferometer[J]. Applied Physics Letters, 2018, 113(18)
[144] CHENG X, DASH J N, GUNAWARDENA D S, et al. Silicone rubber based highly sensitive fiber-optic Fabry–Perot interferometric gas pressure sensor[J]. Sensors, 2020, 20(17): 4927.
[145] LI S, YU B, WU X, et al. Low-cost fiber optic extrinsic Fabry–Perot interferometer based on a polyethylene diaphragm for vibration detection[J]. Optics Communications, 2020, 457: 124332.
[146] CHEN K, GUO M, YANG B, et al. Highly sensitive optical fiber photoacoustic sensor for in situ detection of dissolved gas in oil[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-8.
[147] ZHAO X, CHEN K, CUI D, et al. Ultra-high sensitive photoacoustic gas detector based on differential multi-pass cell[J]. Sensors and Actuators B: Chemical, 2022, 368: 132124.
[148] LI F, LI X, ZHOU X, et al. Plug-in label-free optical fiber DNA hybridization sensor based on C-type fiber Vernier effect[J]. Sensors and Actuators B: Chemical, 2022, 354: 131212.
[149] ZHOU J, HUANG J, HUANG H, et al. Fiber-integrated cantilever-based nanomechanical biosensors as a tool for rapid antibiotic susceptibility testing[J]. Biomedical Optics Express, 2023, 14(5): 1862-1873.
[150] ZHANG Y-N, PENG H, QIAN X, et al. Recent advancements in optical fiber hydrogen sensors[J]. Sensors and Actuators B: Chemical, 2017, 244: 393-416.
[151] CHENG T, LI B, ZHANG F, et al. A Sagnac interferometer-based twist angle sensor drawing on an eccentric dual-core fiber[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-8.
[152] SHAO L, HU J, LU H, et al. High-sensitivity temperature sensor based on polarization maintaining fiber Sagnac loop[J]. Photonic Sensors, 2019, 9: 25-32.
[153] GE Q, ZHU J, CUI Y, et al. Fiber optic temperature sensor utilizing thin PMF based Sagnac loop[J]. Optics Communications, 2022, 502: 127417.
[154] SHI J, WANG Y, XU D, et al. Temperature sensor based on fiber ring laser with Sagnac loop[J]. IEEE Photonics Technology Letters, 2016, 28(7): 794-797.
[155] LIN W, SHAO L, LIU Y, et al. Temperature sensor based on fiber ring laser with cascaded fiber optic Sagnac interferometers[J]. IEEE Photonics Journal, 2021, 13(2): 1-12.
[156] LIU Y, LIN W, HU J, et al. Integrated fiber ring laser temperature sensor based on vernier effect with lyot–sagnac interferometer[J]. Sensors, 2023, 23(14): 6632.
[157] XIE W-G, ZHANG Y-N, WANG P-Z, et al. Optical fiber sensors based on fiber ring laser demodulation technology[J]. Sensors, 2018, 18(2): 505.
[158] ZHANG H, ZHANG Y-N, LI L, et al. Optofluidic lasers and their applications in biochemical sensing[J]. Lab on a Chip, 2023, 23(13): 2959-2989.
[159] LIU J, WANG M, LIANG X, et al. Erbium-doped fiber ring laser based on few-mode-singlemode-few-mode fiber structure for refractive index measurement[J]. Optics & Laser Technology, 2017, 93: 74-78.
[160] YANG X, LU Y, LIU B, et al. Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber[J]. IEEE Sensors Journal, 2017, 17(21): 6948-6952.
[161] LIN W, ZHAO F, SHAO L-Y, et al. Temperature sensor based on Er-doped cascaded-peanut taper structure in-line interferometer in fiber ring laser[J]. IEEE Sensors Journal, 2021, 21(19): 21594-21599.
[162] MAO J, YANG X, LIU Y, et al. Nanomaterial-enhanced fiber optofluidic laser biosensor for sensitive enzyme detection[J]. Journal of Lightwave Technology, 2020, 38(18): 5205-5211.
[163] MANSOR M, BAKAR M A, OMAR M, et al. Taper biosensor in fiber ring laser cavity for protein detection[J]. Optics & Laser Technology, 2020, 125: 106033.
[164] HU X-G, ZHAO Y, PENG Y, et al. In-fiber optofluidic michelson interferometer for detecting small volume and low concentration chemicals with a fiber ring cavity laser[J]. Sensors and Actuators B: Chemical, 2022, 370: 132467.
[165] ZHANG H, HAN B, LI X, et al. An Optical Fiber Optofluidic Laser Biosensor for Rapid Hemoglobin Detection Using Organic Dye[J]. Journal of Lightwave Technology, 2024, 42(1): 399-405.
[166] SHALABNEY A, ABDULHALIM I. Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation[J]. Optics Letters, 2012, 37(7): 1175-1177.
[167] XU Y, ZHANG X, ZHU X-S, et al. Optical fiber surface plasmon resonance sensor based on the gold-coated hollow fiber structure for the detection of liquid with high refractive index[J]. IEEE Sensors Journal, 2022, 22(10): 9447-9453.
[168] TIAN Z, YAO Y, YUAN J, et al. Post chemical etching of tapered seven-core fiber sensor for enhanced figure of merit[J]. Optics Letters, 2022, 47(18): 4672-4675.
[169] LI L, ZHANG Y-N, ZHENG W, et al. Optical fiber SPR biosensor based on gold nanoparticle amplification for DNA hybridization detection[J]. Talanta, 2022, 247: 123599.
[170] NAZARI M, RUBIO-MARTINEZ M, BABARAO R, et al. Aqueous contaminant detection via UiO-66 thin film optical fiber sensor platform with fast Fourier transform based spectrum analysis[J]. Journal of Physics D: Applied Physics, 2017, 51(2): 025601.
[171] ALDABA A L, LOPEZ-TORRES D, ELOSUA C, et al. SnO2-MOF-Fabry-Perot optical sensor for relative humidity measurements[J]. Sensors and Actuators B: Chemical, 2018, 257: 189-199.
[172] CHEN Z, LIANG R, GUO X, et al. Simultaneous quantitation of cytokeratin-19 fragment and carcinoembryonic antigen in human serum via quantum dot-doped nanoparticles[J]. Biosensors and Bioelectronics, 2017, 91: 60-65.
[173] LI C, MA X, GUAN Y, et al. Microcantilever array biosensor for simultaneous detection of carcinoembryonic antigens and α-fetoprotein based on real-time monitoring of the profile of cantilever[J]. ACS Sensors, 2019, 4(11): 3034-3041.
[174] CHEN Y, CHU W, LIU W, et al. Distance-based carcinoembryonic antigen assay on microfluidic paper immunodevice[J]. Sensors and Actuators B: Chemical, 2018, 260: 452-459.
[175] WANG R, HUANG Y, CHI Y. Gold nanoparticles-oxidized multi-walled carbon nanotubes as electrochemiluminescence immunosensors[J]. Analyst, 2022, 147(13): 3096-3100.
[176] TRUTA L A, SALES M G F. Carcinoembryonic antigen imprinting by electropolymerization on a common conductive glass support and its determination in serum samples[J]. Sensors and Actuators B: Chemical, 2019, 287: 53-63.
[177] JEZERŠEK B, ČERVEK J, RUDOLF Z, et al. Clinical evaluation of potential usefulness of CEA, CA 15-3, and MCA in follow-up of breast cancer patients[J]. Cancer Letters, 1996, 110(1-2): 137-144.
[178] KUDOH K, KIKUCHI Y, KITA T, et al. Preoperative determination of several serum tumor markers in patients with primary epithelial ovarian carcinoma[J]. Gynecologic and Obstetric Investigation, 1999, 47(1): 52-57.
[179] JAIN S, CHOUDHARY K, KUMAR S. Photonic crystal fiber-based SPR sensor for broad range of refractive index sensing applications[J]. Optical Fiber Technology, 2022, 73: 103030.
[180] CHEN L, CHAN C, NI K, et al. Label-free fiber-optic interferometric immunosensors based on waist-enlarged fusion taper[J]. Sensors and Actuators B: Chemical, 2013, 178: 176-184.
[181] LIU L, SHAN D, ZHOU X, et al. TriPleX™ waveguide-based fluorescence biosensor for multichannel environmental contaminants detection[J]. Biosensors and Bioelectronics, 2018, 106: 117-121.
[182] PAKARZADEH H, SHARIF V, VIGNESWARAN D, et al. Graphene-assisted tunable D-shaped photonic crystal fiber sensor in the visible and IR regions[J]. Journal of the Optical Society of America B, 2022, 39(6): 1490-1496.
[183] DIVYA J, SELVENDRAN S. Surface Plasmon Resonance-Based Gold-Coated Hollow-Core Negative Curvature Optical Fiber Sensor[J]. Biosensors, 2023, 13(2): 148.
[184] HAN B, MA Y, WU H, et al. Random Raman Fiber Laser as a Liquid Refractive Index Sensor[J]. Photonic Sensors, 2023, 14(1): 240121.
[185] WANG S, SHEN T, FENG Y, et al. D-type photonic crystal fiber refractive index sensor with ultra-high fabrication stability and ultra-wide detection range[J]. Optical and Quantum Electronics, 2024, 56(4): 515.
[186] TUAIMAH A M, TAHHAN S R, TAHER H J, et al. Multi analyte detection based on D-shaped PCF sensor for glucose concentrations sensing[J]. Optical and Quantum Electronics, 2023, 56(3): 319.
[187] WANG F, WEI Y, HAN Y. High Sensitivity and Wide Range Refractive Index Sensor Based on Surface Plasmon Resonance Photonic Crystal Fiber[J]. Sensors, 2023, 23(14): 6617.
[188] GUO P, LIU H, ZHOU Z, et al. Spatially modulated fiber speckle for high-sensitivity refractive index sensing[J]. Sensors, 2023, 23(15): 6814.
[189] WANG G, LIAO B, CAO Y, et al. Microwave Photonic Interrogation of a High-Speed and High-Resolution Multipoint Refractive Index Sensor[J]. Journal of Lightwave Technology, 2022, 40(4): 1245-1251.
[190] ZHANG Y, ZHANG A, WANG J, et al. High-Sensitivity and High-Resolution RI Sensor With Ultrawide Measurement Range Based on NCF With Large Offset Splicing and MPF Interrogation[J]. IEEE Sensors Journal, 2022, 22(23): 22707-22713.
修改评论