中文版 | English
题名

光纤激光生物传感技术及其肿瘤标志物检测应用研究

其他题名
RESEARCH ON FIBER LASER BIOSENSING TECHNOLOGY AND ITS APPLICATION ON TUMOR MARKER DETECTION
姓名
姓名拼音
HU Jie
学号
12031313
学位类型
博士
学位专业
070207 光学
学科门类/专业学位类别
07 理学
导师
邵理阳
导师单位
电子与电气工程系
论文答辩日期
2024-04-30
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

肿瘤标志物的有效检测对于肿瘤早期筛查与诊断、治疗方案指导以及治疗效果与预后评估都具有不可或缺的作用。在光学传感器领域,光纤生物传感器在肿瘤标志物检测方面的应用已成为重要的研究方向。鉴于肿瘤标志物在样本中的稀缺性及其所处环境的复杂性,对于传感器的灵敏度、解调分辨率及特异性都提出了更高的要求。而光纤激光,以其独特的窄线宽和高信噪比特性,为光纤检测技术光谱分辨能力的提升开辟了新路径。本论文深入挖掘了光纤激光的优势与潜能,提出了光纤激光生物传感器的一系列设计构想,旨在实现对肿瘤标志物的精准特异性检测。主要研究内容如下:

1)提升光谱分辨能力方面:提出一种基于光纤套索结构的光纤激光生物传感方案,利用激光信号解调干涉光谱信息,结合高分辨率光谱分析,将传感器的光谱分辨能力(相比于传统干涉光谱分析)提升了4个数量级,实现对人血清中肿瘤标志物CEACAM5的高精度检测。通过理论分析套索结构的模式干涉、谐振腔中的模式传输特性,结合公式推导、RSOFT光波导模式传输仿真和实验验证,实现了激光波长与套索结构干涉光谱信息的精确对应。在对肿瘤标志物CEACAM5的特异性检测中,传感器的检测下限为9.6 ng/mL,与文献中灵敏度高出10倍的生物传感器性能相当,证明了激光检测技术在高精度生物检测方面的优势。

2)增强传感器响应灵敏度方面:提出一种磁珠增强的微纳套索结构光纤激光传感方案,通过结构设计增敏与磁珠信号放大的共同作用,实现对人血清中肿瘤标志物CEACAM5的超高灵敏检测。通过利用多物理场软件COMSOL仿真、理论分析和实验验证,证实了所引入的花生级联结构、微纳拉锥和弯曲套索结构设计对增强灵敏度的有效性。同时,采用“抗体-抗原-抗体-磁珠”夹心结构,进一步放大了信号响应,实现了对肿瘤标志物CEACAM5的超灵敏检测,检测下限低至0.11 ng/mL,远低于医学筛查阈值(5 ng/mL)。与医学临床数据对比,对人血清样本中标志物含量的检测结果偏差在1.9%~9.8%之间,展现出良好的临床应用潜力。

3)提升检测分辨率方面:借鉴交叉学科思路,提出一种基于微波光子解调的双波长激光生物检测方案,将光谱波长变化转换为频谱频率变化,将检测分辨率提升了2个数量级。通过理论研究和公式推导,分析了双波长激光的波长差值与频域信号的对应关系,并优化了系统的频谱解调灵敏度响应。实验结果表明:该方案的折射率检测分辨率达到5.2610-8 RIU,对肿瘤标志物CEACAM5的特异性检测下限低至0.076 ng/mL,显著优于传统的光谱波长分析方法。

4)低成本化的高分辨率检测:设计并构建了微纳拉锥D型光纤激光器,深入研究激光腔内的多纵模拍频与偏振模拍频信号,用低成本的电域解调方案实现高分辨率频域检测。结合多物理场软件COMSOL仿真,对其双折射特性、灵敏度响应机制进行了理论分析与实验验证。实验结果显示,该系统的折射率检测分辨率为7.40×10-6 RIU,优于已报道的基于光谱波长分析或散斑分析的众多光纤传感器。该方法在生化分析、肿瘤标志物检测等领域具有巨大的应用潜力。用3D打印模具和PDMS制作了微流控芯片,对光纤传感器做集成封装,进一步增强了传感器性能的稳定性。

综上所述,本论文针对肿瘤标志物检测的难点,结合光纤激光技术的优势,对光纤生物传感器的检测性能进行了系统的提升研究。具体而言,实验验证了基于激光信号分析比传统干涉光谱分析的光谱分辨能力(FOM参量)4 个数量级的提升,传感器响应灵敏度的增强,以及检测分辨率2个数量级的提高。还探索了低成本、高分辨率的频域解调方法,使光纤激光生物传感技术在肿瘤标志物检测方面更具实用性和可行性。

其他摘要

The detection of tumor markers plays a significant role in improving the early screening and diagnosis rate of tumors, guiding the selection of treatment options, and assessing treatment effectiveness and prognosis. The research on optical fiber biosensors and their applications in tumor marker detection represents a major branch in the field of optical biosensors. The low abundance of tumor markers in test samples and the complexity of the sample environment pose higher demands on the sensitivity, demodulation resolution, and specificity of sensors. The narrow linewidth and high signal-to-noise ratio of fiber lasers provide a potential pathway to enhance the spectral resolution of fiber-optic detection techniques. This dissertation leverages the advantages and characteristics of fiber lasers to propose a fiber laser biosensor for the specific detection of tumor markers. The main research contents are as follows:

(1) Enhancing spectral resolution: A lasso shaped fiber laser biosensor is proposed. By demodulating interference spectral information using laser signals, the spectral resolution of the sensor is improved by four orders of magnitude (compared to traditional interference spectrum analysis), enabling high-precision detection of the tumor marker CEACAM5 in human serum. Through theoretical analysis of mode interference in the lasso structure and mode transmission characteristics in the resonant cavity, combined with formula derivation, RSOFT optical waveguide mode transmission simulation, and experimental validation, precise correspondence between laser wavelength and interference spectral information of the lasso structure is achieved. In specific detection of CEACAM5, the detection limit of the sensor is 9.6 ng/mL, which is comparable to the performance of biosensors with 10 times higher sensitivity reported in the literature, demonstrating the advantage of laser detection technology in high-precision biological detection.

(2) Enhancing sensor response sensitivity: A magnetic-beads-enhanced peanut structure cascaded lasso shaped fiber laser biosensing scheme is proposed. Through the combined effect of structural design sensitization and signal amplification of magnetic bead, achieving ultra-sensitive detection of human serum tumor marker CEACAM5. By utilizing physics simulation of software COMSOL, theoretical analysis, and experimental validation, the effectiveness of structural innovation design to enhance sensitivity (introduced peanut cascade structure, tapered microfiber, and bent lasso design) is confirmed. Meanwhile, an "antibody-antigen-antibody-magnetic bead" sandwich structure is employed, further amplifying the signal response, and enabling ultrasensitive detection of the tumor marker CEACAM5 with a detection limit as low as 0.11 ng/mL, which is significantly lower than the medical screening threshold (5 ng/mL). Compared with clinical data, the deviation of the detection results for marker content in human serum samples is between 1.9% and 9.8%, demonstrating good clinical application potential.

(3) Improving detection resolution: A dual-wavelength laser biosensing scheme based on microwave photonic demodulation technology is proposed, which converts spectral wavelength changes into radio frequency spectrum variations and representing a two-order-of-magnitude improvement compared to spectral wavelength demodulation resolution. Through theoretical research and formula derivation, the correspondence between the wavelength difference of the dual-wavelength laser and the frequency domain signal is analyzed, and the sensitivity response is optimized. Experimental results demonstrate that the refractive index detection resolution of this scheme is as high as 5.26×10-8 RIU. When specifically detecting the tumor marker CEACAM5, the detection limit of this scheme is as low as 0.076 ng/mL, significantly superior to traditional spectral wavelength analysis methods.

(4) Low-cost high-resolution detection: A tapered micro-D-shaped fiber laser was designed and constructed, and an in-depth study of multi-longitudinal mode beating and polarization mode beating signals within the laser cavity was conducted. High-resolution frequency domain detection was achieved using low-cost electrical methods. Combined with physics simulation of software COMSOL, theoretical analysis and experimental validation were performed on its birefringence characteristics and sensitivity response mechanisms. Experimental results showed that the refractive index detection resolution of the system is 7.40×10-6 RIU, which is superior to many reported optical fiber sensors based on spectral wavelength analysis or speckle analysis. This method has significant application potential in fields such as biochemical analysis and tumor marker detection. A microfluidic chip was fabricated using 3D printed molds and PDMS to integrate and encapsulate the fiber optic sensor, further enhancing the stability of sensor performance.

In summary, this paper systematically enhances the sensing performance of fiber optic biosensors by addressing the challenges of tumor marker detection and leveraging the advantages of fiber laser technology. Specifically, the experimental results verify that the spectral resolution (FOM parameter) of laser-based signal analysis is improved by 4 orders of magnitude, the sensor response sensitivity is enhanced, and a two-order-of-magnitude increase in detection resolution. Additionally, low-cost, high-resolution frequency domain demodulation method has been explored, making fiber laser biosensing technology more practical and feasible for tumor marker detection.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249.
[2] ALLEMANI C, MATSUDA T, DI CARLO V, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. The Lancet, 2018, 391(10125): 1023-1075.
[3] BADU-PEPRAH A, ADU-SARKODIE Y. Accuracy of clinical diagnosis, mammography and ultrasonography in preoperative assessment of breast cancer[J]. Ghana Medical Journal, 2018, 52(3): 133-139.
[4] GREEN L A, KAROW J A, TOMAN J E, et al. Review of breast augmentation and reconstruction for the radiologist with emphasis on MRI[J]. Clinical Imaging, 2018, 47: 101-117.
[5] HEENA H, DURRANI S, RIAZ M, et al. Knowledge, attitudes, and practices related to breast cancer screening among female health care professionals: a cross sectional study[J]. BMC Women's Health, 2019, 19: 1-11.
[6] SHIOGA T, KONDO R, OGASAWARA S, et al. Usefulness of tumor tissue biopsy for predicting the biological behavior of hepatocellular carcinoma[J]. Anticancer Research, 2020, 40(7): 4105-4113.
[7] ZHANG D, LI W, MA Z, et al. Improved ELISA for tumor marker detection using electro-readout-mode based on label triggered degradation of methylene blue[J]. Biosensors and Bioelectronics, 2019, 126: 800-805.
[8] 陈可, 林楚莹, 冯梓晴. 循环肿瘤细胞和血清CEA、CA19-9、CA125检测对结直肠癌淋巴结转移的预测价值[J]. 黑龙江医药, 2023, 36(06): 1411-1413.
[9] 朱秀梅, 魏锋. 血清肿瘤标志物CA-199、CA-125、CA-153检测在卵巢癌诊断中的应用价值[J]. 中国实验诊断学, 2024, 28(02): 178-182.
[10] ZHENG X-H, HILDESHEIM A, JIA W-H. Advances of biomarkers in nasopharyngeal carcinoma's early detection[J]. Science Bulletin, 2024, 69(2): 141-145.
[11] YALOW R S, BERSON S A. Assay of plasma insulin in human subjects by immunological methods[J]. Nature, 1959, 184(4699): 1648-1649.
[12] WU J, FU Z, YAN F, et al. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers[J]. TrAC Trends in Analytical Chemistry, 2007, 26(7): 679-688.
[13] FARKA Z, JURIK T, KOVAR D, et al. Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges[J]. Chemical Reviews, 2017, 117(15): 9973-10042.
[14] CHEN H, JIANG C, YU C, et al. Protein chips and nanomaterials for application in tumor marker immunoassays[J]. Biosensors and Bioelectronics, 2009, 24(12): 3399-3411.
[15] ALTINTAS Z, GITTENS M, GUERREIRO A, et al. Detection of waterborne viruses using high affinity molecularly imprinted polymers[J]. Analytical Chemistry, 2015, 87(13): 6801-6807.
[16] YOLA M L, ATAR N. Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer[J]. Biosensors and Bioelectronics, 2019, 126: 418-424.
[17] KHOSLA A, SHAH S, SHIBLEE M N I, et al. Carbon fiber doped thermosetting elastomer for flexible sensors: physical properties and microfabrication[J]. Scientific Reports, 2018, 8(1): 12313.
[18] AHMAD R, KHAN M, MISHRA P, et al. Engineered hierarchical CuO nanoleaves based electrochemical nonenzymatic biosensor for glucose detection[J]. Journal of the Electrochemical Society, 2021, 168(1): 017501.
[19] CLARK L C, LYONS C. Electrode systems for continuous monitoring in cardiovascular surgery[J]. Annals of the New York Academy of sciences, 1962, 102(1): 29-45.
[20] SCOGNAMIGLIO V, ARDUINI F, PALLESCHI G, et al. Biosensing technology for sustainable food safety[J]. TrAC Trends in Analytical Chemistry, 2014, 62: 1-10.
[21] SCOGNAMIGLIO V, PEZZOTTI G, PEZZOTTI I, et al. Biosensors for effective environmental and agrifood protection and commercialization: from research to market[J]. Microchimica Acta, 2010, 170: 215-225.
[22] MADURAIVEERAN G, SASIDHARAN M, GANESAN V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications[J]. Biosensors and Bioelectronics, 2018, 103: 113-129.
[23] MOHAMMADPOUR-HARATBAR A, BORAEI S B A, ZARE Y, et al. Graphene-based electrochemical biosensors for breast cancer detection[J]. Biosensors, 2023, 13(1): 80.
[24] ORIJ R, URBANUS M L, VIZEACOUMAR F J, et al. Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pHc in Saccharomyces cerevisiae[J]. Genome Biology, 2012, 13(9): R80.
[25] C X Z A, C P L B, C T X, et al. A novel graphene-like titanium carbide MXene/Au–Ag nanoshuttles bifunctional nanosensor for electrochemical and SERS intelligent analysis of ultra-trace carbendazim coupled with machine learning - ScienceDirect[J]. Ceramics International, 2021, 47(1): 173-184.
[26] CALI K, TUCCORI E, PERSAUD K C. Gravimetric biosensors[M]. Methods in Enzymology. Elsevier. 2020: 435-468.
[27] SKLáDAL P. Piezoelectric biosensors[J]. TrAC Trends in Analytical Chemistry, 2016, 79: 127-133.
[28] FOGEL R, LIMSON J, SESHIA A A. Acoustic biosensors[J]. Essays in Biochemistry, 2016, 60(1): 101-110.
[29] SU L, ZOU L, FONG C-C, et al. Detection of cancer biomarkers by piezoelectric biosensor using PZT ceramic resonator as the transducer[J]. Biosensors and Bioelectronics, 2013, 46: 155-161.
[30] DAMBORSKý P, ŠVITEL J, KATRLíK J. Optical biosensors[J]. Essays in Biochemistry, 2016, 60(1): 91-100.
[31] WANG J, AKI M, ONOSHIMA D, et al. Microfluidic biosensor for the detection of DNA by fluorescence enhancement and the following streptavidin detection by fluorescence quenching[J]. Biosensors and Bioelectronics, 2014, 51: 280-285.
[32] ZHAO L, WANG J, SU D, et al. The DNA controllable peroxidase mimetic activity of MoS 2 nanosheets for constructing a robust colorimetric biosensor[J]. Nanoscale, 2020, 12(37): 19420-19428.
[33] LI P, LI W, XIE Z, et al. A label‐free and signal‐amplifiable assay method for colorimetric detection of carcinoembryonic antigen[J]. Biotechnology and Bioengineering, 2022, 119(2): 504-512.
[34] PIMKOVá K, BOCKOVá M, HEGNEROVá K, et al. Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes[J]. Analytical and Bioanalytical Chemistry, 2012, 402: 381-387.
[35] SZYMAŃSKA B, LUKASZEWSKI Z, HERMANOWICZ-SZAMATOWICZ K, et al. A biosensor for determination of the circulating biomarker CA125/MUC16 by Surface Plasmon Resonance Imaging[J]. Talanta, 2020, 206: 120187.
[36] JIANG L, ZENG S, XU Z, et al. Multifunctional hyperbolic nanogroove metasurface for submolecular detection[J]. Small, 2017, 13(30): 1700600.
[37] LOYEZ M, LOBRY M, HASSAN E M, et al. HER2 breast cancer biomarker detection using a sandwich optical fiber assay[J]. Talanta, 2021, 221: 121452.
[38] BROCKMAN J M, NELSON B P, CORN R M. Surface plasmon resonance imaging measurements of ultrathin organic films[J]. Annual Review of Physical Chemistry, 2000, 51(1): 41-63.
[39] XU X, YING Y, LI Y. Gold nanorods based LSPR biosensor for label-free detection of alpha-fetoprotein[J]. Procedia Engineering, 2011, 25: 67-70.
[40] MAHANI M, ALIMOHAMADI F, TORKZADEH-MAHANI M, et al. LSPR biosensing for the early-stage prostate cancer detection using hydrogen bonds between PSA and antibody: Molecular dynamic and experimental study[J]. Journal of Molecular Liquids, 2021, 324: 114736.
[41] HAMMOND J L, BHALLA N, RAFIEE S D, et al. Localized surface plasmon resonance as a biosensing platform for developing countries[J]. Biosensors, 2014, 4(2): 172-188.
[42] RALBOVSKY N M, LEDNEV I K. Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning[J]. Chemical Society Reviews, 2020, 49(20): 7428-7453.
[43] ZHAO J, DIERINGER J A, ZHANG X, et al. Wavelength-scanned surface-enhanced resonance Raman excitation spectroscopy[J]. The Journal of Physical Chemistry C, 2008, 112(49): 19302-19310.
[44] DING S-Y, YOU E-M, TIAN Z-Q, et al. Electromagnetic theories of surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 2017, 46(13): 4042-4076.
[45] HAROON M, TAHIR M, NAWAZ H, et al. Surface-enhanced Raman scattering (SERS) spectroscopy for prostate cancer diagnosis: A review[J]. Photodiagnosis and Photodynamic Therapy, 2022, 37: 102690.
[46] VENDRELL M, MAITI K K, DHALIWAL K, et al. Surface-enhanced Raman scattering in cancer detection and imaging[J]. Trends in Biotechnology, 2013, 31(4): 249-257.
[47] WANG T, ZHU Y, WENG S, et al. Optical biosensor based on SERS with signal calibration function for quantitative detection of carcinoembryonic antigen[J]. Biomedical Optics Express, 2022, 13(11): 5962-5970.
[48] CAUCHETEUR C, GUO T, ALBERT J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection[J]. Analytical and Bioanalytical Chemistry, 2015, 407: 3883-3897.
[49] LUO Z, LI M, KONG X, et al. Advance on fiber optic‐based biosensors for precision medicine: From diagnosis to therapy[J]. Interdisciplinary Medicine, 2023, 1(4): e20230022.
[50] WU Q, QU Y, LIU J, et al. Singlemode-multimode-singlemode fiber structures for sensing applications—A review[J]. IEEE Sensors Journal, 2020, 21(11): 12734-12751.
[51] NAN T, LIU B, WU Y, et al. Ultrasensitive strain sensor based on Vernier-effect improved parallel structured fiber-optic Fabry-Perot interferometer[J]. Optics Express, 2019, 27(12): 17239-17250.
[52] YU F, XUE P, ZHENG J. Enhancement of refractive index sensitivity by bending a core-offset in-line fiber Mach–Zehnder interferometer[J]. IEEE Sensors Journal, 2019, 19(9): 3328-3334.
[53] ZHANG X, PENG W. Bent fiber interferometer[J]. Journal of Lightwave Technology, 2015, 33(15): 3351-3356.
[54] YANG B, NIU Y, YANG B, et al. High sensitivity balloon-like refractometric sensor based on singlemode-tapered multimode-singlemode fiber[J]. Sensors and Actuators A: Physical, 2018, 281: 42-47.
[55] TIAN K, FARRELL G, LEWIS E, et al. A high sensitivity temperature sensor based on balloon-shaped bent SMF structure with its original polymer coating[J]. Measurement Science and Technology, 2018, 29(8): 085104.
[56] LIU T, LIANG L-L, XIAO P, et al. A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating[J]. Biosensors and Bioelectronics, 2018, 100: 155-160.
[57] RAN Y, LONG J, XU Z, et al. Harmonic optical microfiber Bragg grating immunosensor for the accelerative test of cardiac biomarker (cTn-I)[J]. Biosensors and Bioelectronics, 2021, 179: 113081.
[58] AN G, LI S, CHENG T, et al. Ultra-stable D-shaped optical fiber refractive index sensor with graphene-gold deposited platform[J]. Plasmonics, 2019, 14: 155-163.
[59] AKOUIBAA A, MASROUR R, AKOUIBAA A, et al. Study of the sensitivity of D-shaped optical fiber sensor based on surface plasmon resonance to detect the refractive index changes in the human blood[J]. Plasmonics, 2023, 18(1): 137-154.
[60] GUO Y, AN N, GUO K, et al. Gas detection in a graphene based dual-mode fiber laser microcavity[J]. Sensors and Actuators B: Chemical, 2021, 348: 130694.
[61] SUN L-P, HUANG T, YUAN Z, et al. Ultra-high sensitivity of dual dispersion turning point taper-based Mach-Zehnder interferometer[J]. Optics Express, 2019, 27(16): 23103-23111.
[62] SUN D, SUN L-P, GUO T, et al. Label-free thrombin detection using a tapered fiber-optic interferometric aptasensor[J]. Journal of Lightwave Technology, 2018, 37(11): 2756-2761.
[63] LIYANAGE T, LAI M, SLAUGHTER G. Label-free tapered optical fiber plasmonic biosensor[J]. Analytica Chimica Acta, 2021, 1169: 338629.
[64] SHAO L-Y, LIANG J, ZHANG X, et al. High-resolution refractive index sensing with dual-wavelength fiber laser[J]. IEEE Sensors Journal, 2016, 16(23): 8463-8467.
[65] ASCORBE J, CORRES J, MATIAS I, et al. High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances[J]. Sensors and Actuators B: Chemical, 2016, 233: 7-16.
[66] AL-QAZWINI Y, NOOR A, AL-QAZWINI Z, et al. Refractive index sensor based on SPR in symmetrically etched plastic optical fibers[J]. Sensors and Actuators A: Physical, 2016, 246: 163-169.
[67] GUO T, LIU F, GUAN B-O, et al. Tilted fiber grating mechanical and biochemical sensors[J]. Optics & Laser Technology, 2016, 78: 19-33.
[68] ZHAO X-W, WANG Q. Mini review: Recent advances in long period fiber grating biological and chemical sensors[J]. Instrumentation Science & Technology, 2019, 47(2): 140-169.
[69] ZHUO L, TANG J, ZHU W, et al. Side polished fiber: a versatile platform for compact fiber devices and sensors[J]. Photonic Sensors, 2023, 13(1): 230120.
[70] KUMAR R, LENG Y, LIU B, et al. Ultrasensitive biosensor based on magnetic microspheres enhanced microfiber interferometer[J]. Biosensors and Bioelectronics, 2019, 145: 111563.
[71] SHAO L, LIU Z, HU J, et al. Optofluidics in microstructured optical fibers[J]. Micromachines, 2018, 9(4): 145.
[72] KNIGHT J, BIRKS T, RUSSELL P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters, 1996, 21(19): 1547-1549.
[73] LI Z, LIAO C, CHEN D, et al. Label-free detection of bovine serum albumin based on an in-fiber Mach-Zehnder interferometric biosensor[J]. Optics Express, 2017, 25(15): 17105-17113.
[74] YAO C, GAO S, WANG Y, et al. Heterodyne interferometric photothermal spectroscopy for gas detection in a hollow-core fiber[J]. Sensors and Actuators B: Chemical, 2021, 346: 130528.
[75] TAN Y, JIN W, YANG F, et al. Cavity-enhanced photothermal gas detection with a hollow fiber Fabry-Perot absorption cell[J]. Journal of Lightwave Technology, 2019, 37(17): 4222-4228.
[76] ZHAO Y, JIN W, LIN Y, et al. All-fiber gas sensor with intracavity photothermal spectroscopy[J]. Optics Letters, 2018, 43(7): 1566-1569.
[77] BEKMURZAYEVA A, ASHIKBAYEVA Z, ASSYLBEKOVA N, et al. Ultra-wide, attomolar-level limit detection of CD44 biomarker with a silanized optical fiber biosensor[J]. Biosensors and Bioelectronics, 2022, 208: 114217.
[78] LIANG Z, ZHOU J, PETTI L, et al. SERS-based cascade amplification bioassay protocol of miRNA-21 by using sandwich structure with biotin–streptavidin system[J]. Analyst, 2019, 144(5): 1741-1750.
[79] CHEN L, LENG Y-K, LIU B, et al. Ultrahigh-sensitivity label-free optical fiber biosensor based on a tapered singlemode-no core-singlemode coupler for Staphylococcus aureus detection[J]. Sensors and Actuators B: Chemical, 2020, 320: 128283.
[80] SMIETANA M, BOCK W J, MIKULIC P, et al. Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings[J]. Optics Express, 2011, 19(9): 7971-7978.
[81] PILLA P, MALACHOVSKá V, BORRIELLO A, et al. Transition mode long period grating biosensor with functional multilayer coatings[J]. Optics Express, 2011, 19(2): 512-526.
[82] FU G, YUE X, DAI Z. Glucose biosensor based on covalent immobilization of enzyme in sol–gel composite film combined with Prussian blue/carbon nanotubes hybrid[J]. Biosensors and Bioelectronics, 2011, 26(9): 3973-3976.
[83] SINGH S, JAIN D, SINGLA M. Sol–gel based composite of gold nanoparticles as matix for tyrosinase for amperometric catechol biosensor[J]. Sensors and Actuators B: Chemical, 2013, 182: 161-169.
[84] NOMAN A A, DASH J N, MARUF M A A, et al. Label-Free DNA Detection Using Etched Tilted Bragg Fiber Grating-Based Biosensor[J]. Sensors, 2023, 23(16): 7019.
[85] SOCORRO A B, SANTAMARIA E, FERNANDEZ-IRIGOYEN J, et al. Fiber-optic immunosensor based on an etched SMS structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(2): 314-321.
[86] PATIñO-JURADO B, CARDONA-MAYA Y, JARAMILLO-GRAJALES M, et al. A label-free biosensor based on E-SMS optical fiber structure for anti BSA detection[J]. Optical Fiber Technology, 2022, 74: 103116.
[87] GUO T. Fiber grating-assisted surface plasmon resonance for biochemical and electrochemical sensing[J]. Journal of Lightwave Technology, 2017, 35(16): 3323-3333.
[88] ALBERT J, LEPINAY S, CAUCHETEUR C, et al. High resolution grating-assisted surface plasmon resonance fiber optic aptasensor[J]. Methods, 2013, 63(3): 239-254.
[89] ALAM M Z, ALBERT J. Selective excitation of radially and azimuthally polarized optical fiber cladding modes[J]. Journal of Lightwave Technology, 2013, 31(19): 3167-3175.
[90] LAO J, HAN L, WU Z, et al. Gold nanoparticle-functionalized surface plasmon resonance optical fiber biosensor: In situ detection of thrombin with 1 n· M detection limit[J]. Journal of Lightwave Technology, 2019, 37(11): 2748-2755.
[91] CHEN X, XU P, LIN W, et al. Label-free detection of breast cancer cells using a functionalized tilted fiber grating[J]. Biomedical Optics Express, 2022, 13(4): 2117-2129.
[92] CHIAVAIOLI F, ZUBIATE P, DEL VILLAR I, et al. Femtomolar detection by nanocoated fiber label-free biosensors[J]. ACS Sensors, 2018, 3(5): 936-943.
[93] LI C, GAO J, SHAFI M, et al. Optical fiber SPR biosensor complying with a 3D composite hyperbolic metamaterial and a graphene film[J]. Photonics Research, 2021, 9(3): 379-388.
[94] CHEN S, ZHANG C, WANG J, et al. A fiber Bragg grating sensor based on cladding mode resonance for label-free biosensing[J]. Biosensors, 2023, 13(1): 97.
[95] ZHANG N M Y, QI M, WANG Z, et al. One-step synthesis of cyclodextrin-capped gold nanoparticles for ultra-sensitive and highly-integrated plasmonic biosensors[J]. Sensors and Actuators B: Chemical, 2019, 286: 429-436.
[96] XIAO A, HUANG Y, ZHENG J, et al. An optical microfiber biosensor for CEACAM5 detection in serum: Sensitization by a nanosphere interface[J]. ACS Applied Materials & Interfaces, 2019, 12(1): 1799-1805.
[97] ZHANG Y, WU H, WANG H, et al. Ultraminiature optical fiber-tip directly-printed plasmonic biosensors for label-free biodetection[J]. Biosensors and Bioelectronics, 2022, 218: 114761.
[98] SPAZIANI S, QUERO G, MANAGò S, et al. SERS assisted sandwich immunoassay platforms for ultrasensitive and selective detection of human Thyroglobulin[J]. Biosensors and Bioelectronics, 2023, 233: 115322.
[99] CAPMANY J, NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319.
[100] YAO J. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335.
[101] DONG X, SHAO L-Y, FU H, et al. Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement[J]. Optics Letters, 2008, 33(5): 482-484.
[102] XIAO D, WANG G, YU F, et al. Optical curvature sensor with high resolution based on in-line fiber Mach-Zehnder interferometer and microwave photonic filter[J]. Optics Express, 2022, 30(4): 5402-5413.
[103] CAO Y, WANG X, GUO T, et al. High-resolution and temperature-compensational HER2 antigen detection based on microwave photonic interrogation[J]. Sensors and Actuators B: Chemical, 2017, 245: 583-589.
[104] NIU P, JIANG J, LIU K, et al. Fiber-integrated WGM optofluidic chip enhanced by microwave photonic analyzer for cardiac biomarker detection with ultra-high resolution[J]. Biosensors and Bioelectronics, 2022, 208: 114238.
[105] SHAIMERDENOVA M, AYUPOVA T, SYPABEKOVA M, et al. Fiber Optic Refractive Index Sensors Based on a Ball Resonator and Optical Backscatter Interrogation[J]. Sensors, 2020, 20(21): 6199.
[106] GILES C R, DESURVIRE E. Modeling erbium-doped fiber amplifiers[J]. Journal of Lightwave Technology, 1991, 9(2): 271-283.
[107] ALYAHYAEI K, ZHU X, LI L, et al. Ultralow-quantum-defect single-frequency fiber laser[J]. Optics Letters, 2023, 48(14): 3817-3820.
[108] RAN Y, FENG F-R, LIANG Y-Z, et al. Type IIa Bragg grating based ultra-short DBR fiber laser with high temperature resistance[J]. Optics Letters, 2015, 40(24): 5706-5709.
[109] YU X, CHEN X, ZHANG J, et al. Fiber birefringence measurement of single-mode fiber by a polarimetric fiber ring laser[J]. Journal of Lightwave Technology, 2018, 36(11): 2204-2210.
[110] HAN M, LIU T, HU L, et al. Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection[J]. Optics Express, 2013, 21(24): 29269-29276.
[111] YANG X, BANDYOPADHYAY S, SHAO L-Y, et al. Side-polished DBR fiber laser with enhanced sensitivity for axial force and refractive index measurement[J]. IEEE Photonics Journal, 2019, 11(3): 1-10.
[112] LIU Y, LIN W, ZHAO F, et al. Dual-Parameter Fiber Sensors for Salinity and Temperature Measurement Based on a Tapered PMF Incorporated With an FBG in Sagnac Loop[J]. IEEE Photonics Journal, 2024, 16(1): 1-7.
[113] CONTRERAS-TERAN M, JAUREGUI-VAZQUEZ D, GALLEGOS-ARELLANO E, et al. High-resolution strain fiber laser-sensor based on core-offset mach-zehnder interferometer[J]. Measurement Science and Technology, 2023, 34(5): 055202.
[114] JIA X, ZHOU X, BI M, et al. High-sensitivity optical fiber temperature sensor of cascaded FSI and MZI based on Vernier effect[J]. Optical Fiber Technology, 2021, 65: 102625.
[115] DENG H, JIANG X, HUANG X, et al. A temperature sensor based on composite optical waveguide[J]. Journal of Lightwave Technology, 2022, 40(8): 2663-2669.
[116] HARRIS J, LU P, LAROCQUE H, et al. In-fiber Mach–Zehnder interferometric refractive index sensors with guided and leaky modes[J]. Sensors and Actuators B: Chemical, 2015, 206: 246-251.
[117] ZHAO Y, LI L, HAN B, et al. Ultra-Sensitive Optical Fiber Glucose Sensor Based on In-Fiber MZI With Vernier Effect[J]. Journal of Lightwave Technology, 2024, 42(1): 414-421.
[118] WANG Z, ZHANG L, MA Z, et al. High-sensitivity bending sensor based on supermode interference in coupled four-core sapphire-derived fiber[J]. Journal of Lightwave Technology, 2021, 39(12): 3932-3940.
[119] ZHOU Y, WANG Y, LIU H, et al. High-sensitive bending sensor based on a seven-core fiber[J]. Optics Communications, 2021, 483: 126617.
[120] ZHAO R, SHU X, WANG P. High-performance bending sensor based on femtosecond laser-inscribed in-fiber Mach–Zehnder interferometer[J]. Journal of Lightwave Technology, 2020, 38(22): 6371-6378.
[121] WANG X, LI C, LI J, et al. An Optical Fiber Magnetic Field Sensor Based on Mach-Zehnder Interferometer Composed of Two Peanut-Shaped Structures and Tapered No-core Fiber[J]. IEEE Sensors Journal, 2023, 23(20): 24617-24625.
[122] LI X, ZHANG H, CHEN N, et al. Simultaneous detection of magnetic field and temperature using micro-nanofiber cascaded fiber Bragg grating structure[J]. IEEE Sensors Journal, 2022, 22(20): 19267-19272.
[123] LI H-C, LENG Y-K, LIAO Y-C, et al. Tapered microfiber MZI biosensor for highly sensitive detection of Staphylococcus aureus[J]. IEEE Sensors Journal, 2022, 22(6): 5531-5539.
[124] LI X, CHEN N, ZHOU X, et al. In-situ DNA detection with an interferometric-type optical sensor based on tapered exposed core microstructured optical fiber[J]. Sensors and Actuators B: Chemical, 2022, 351: 130942.
[125] SHEN C, CHEN X, HUANG Z, et al. High sensitivity and fast response optical fiber nucleic acid sensor[J]. Optics & Laser Technology, 2022, 154: 108271.
[126] BAI X, FAN D, WANG S, et al. Strain sensor based on fiber ring cavity laser with photonic crystal fiber in-line Mach–Zehnder interferometer[J]. IEEE Photonics Journal, 2014, 6(4): 1-8.
[127] ZHAO F, LIN W, HU J, et al. Highly sensitive salinity and temperature measurement based on tapered-SHF MZI fiber laser structure[J]. Measurement Science and Technology, 2023, 34(6): 064002.
[128] BO W, LIU B, LIU J, et al. Fiber ring laser based on side-polished fiber MZI for enhancing refractive index and torsion measurement[J]. IEEE Sensors Journal, 2022, 22(8): 7779-7784.
[129] RAO Y-J. Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors[J]. Optical Fiber Technology, 2006, 12(3): 227-237.
[130] ISLAM M R, ALI M M, LAI M-H, et al. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review[J]. Sensors, 2014, 14(4): 7451-7488.
[131] ZHU C, ZHENG H, MA L, et al. Advances in Fiber-Optic Extrinsic Fabry–Perot Interferometric Physical and Mechanical Sensors: A Review[J]. IEEE Sensors Journal, 2023, 23(7): 6406-6426.
[132] MA J, ZHAO M, HUANG X, et al. Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point[J]. Optics Express, 2016, 24(17): 19008-19019.
[133] MAO X, YUAN S, ZHENG P, et al. Stabilized fiber-optic Fabry–Perot acoustic sensor based on improved wavelength tuning technique[J]. Journal of Lightwave Technology, 2017, 35(11): 2311-2314.
[134] YU Z, WANG A. Fast white light interferometry demodulation algorithm for low-finesse Fabry–Pérot sensors[J]. IEEE Photonics Technology Letters, 2015, 27(8): 817-820.
[135] LI C, CHEN S, ZHU Y. Maximum likelihood estimation of optical path length in spectral interferometry[J]. Journal of Lightwave Technology, 2017, 35(22): 4880-4887.
[136] WU Y, XIA L, CAI N, et al. A highly precise demodulation method for fiber fabry-perot cavity through spectrum reconstruction[J]. IEEE Photonics Technology Letters, 2017, 30(5): 435-438.
[137] WEIMIN C, XIAOHUA L, WEI Z, et al. Recent progress of optical fiber Fabry-Perot sensors[J]. Acta Optica Sinica, 2018, 38(3): 0328010.
[138] LIU Q, PENG W. Fast interrogation of dynamic low‐finesse Fabry‐Perot interferometers: A review[J]. Microwave and Optical Technology Letters, 2021, 63(9): 2279-2291.
[139] WANG Z, XU Z, CHEN L, et al. Highly precise in-plane displacement sensor based on an asymmetric fiber Fabry–Perot interferometer[J]. Optics Letters, 2021, 46(16): 3945-3948.
[140] ALONSO-MURIAS M C, MONZóN-HERNáNDEZ D, RODRíGUEZ-QUIROZ O, et al. Long-range multicore optical fiber displacement sensor[J]. Optics Letters, 2021, 46(9): 2224-2227.
[141] XU Z, WANG Z, CHEN L, et al. Two-dimensional displacement sensor based on a dual-cavity Fabry-Perot interferometer[J]. Journal of Lightwave Technology, 2021, 40(4): 1195-1201.
[142] PAIXãO T, ARAúJO F, ANTUNES P. Highly sensitive fiber optic temperature and strain sensor based on an intrinsic Fabry–Perot interferometer fabricated by a femtosecond laser[J]. Optics Letters, 2019, 44(19): 4833-4836.
[143] ZHOU K, AI M-Z, QIAN Z-H, et al. High-sensitivity strain sensor with an in-fiber air-bubble Fabry-Perot interferometer[J]. Applied Physics Letters, 2018, 113(18)
[144] CHENG X, DASH J N, GUNAWARDENA D S, et al. Silicone rubber based highly sensitive fiber-optic Fabry–Perot interferometric gas pressure sensor[J]. Sensors, 2020, 20(17): 4927.
[145] LI S, YU B, WU X, et al. Low-cost fiber optic extrinsic Fabry–Perot interferometer based on a polyethylene diaphragm for vibration detection[J]. Optics Communications, 2020, 457: 124332.
[146] CHEN K, GUO M, YANG B, et al. Highly sensitive optical fiber photoacoustic sensor for in situ detection of dissolved gas in oil[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-8.
[147] ZHAO X, CHEN K, CUI D, et al. Ultra-high sensitive photoacoustic gas detector based on differential multi-pass cell[J]. Sensors and Actuators B: Chemical, 2022, 368: 132124.
[148] LI F, LI X, ZHOU X, et al. Plug-in label-free optical fiber DNA hybridization sensor based on C-type fiber Vernier effect[J]. Sensors and Actuators B: Chemical, 2022, 354: 131212.
[149] ZHOU J, HUANG J, HUANG H, et al. Fiber-integrated cantilever-based nanomechanical biosensors as a tool for rapid antibiotic susceptibility testing[J]. Biomedical Optics Express, 2023, 14(5): 1862-1873.
[150] ZHANG Y-N, PENG H, QIAN X, et al. Recent advancements in optical fiber hydrogen sensors[J]. Sensors and Actuators B: Chemical, 2017, 244: 393-416.
[151] CHENG T, LI B, ZHANG F, et al. A Sagnac interferometer-based twist angle sensor drawing on an eccentric dual-core fiber[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-8.
[152] SHAO L, HU J, LU H, et al. High-sensitivity temperature sensor based on polarization maintaining fiber Sagnac loop[J]. Photonic Sensors, 2019, 9: 25-32.
[153] GE Q, ZHU J, CUI Y, et al. Fiber optic temperature sensor utilizing thin PMF based Sagnac loop[J]. Optics Communications, 2022, 502: 127417.
[154] SHI J, WANG Y, XU D, et al. Temperature sensor based on fiber ring laser with Sagnac loop[J]. IEEE Photonics Technology Letters, 2016, 28(7): 794-797.
[155] LIN W, SHAO L, LIU Y, et al. Temperature sensor based on fiber ring laser with cascaded fiber optic Sagnac interferometers[J]. IEEE Photonics Journal, 2021, 13(2): 1-12.
[156] LIU Y, LIN W, HU J, et al. Integrated fiber ring laser temperature sensor based on vernier effect with lyot–sagnac interferometer[J]. Sensors, 2023, 23(14): 6632.
[157] XIE W-G, ZHANG Y-N, WANG P-Z, et al. Optical fiber sensors based on fiber ring laser demodulation technology[J]. Sensors, 2018, 18(2): 505.
[158] ZHANG H, ZHANG Y-N, LI L, et al. Optofluidic lasers and their applications in biochemical sensing[J]. Lab on a Chip, 2023, 23(13): 2959-2989.
[159] LIU J, WANG M, LIANG X, et al. Erbium-doped fiber ring laser based on few-mode-singlemode-few-mode fiber structure for refractive index measurement[J]. Optics & Laser Technology, 2017, 93: 74-78.
[160] YANG X, LU Y, LIU B, et al. Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber[J]. IEEE Sensors Journal, 2017, 17(21): 6948-6952.
[161] LIN W, ZHAO F, SHAO L-Y, et al. Temperature sensor based on Er-doped cascaded-peanut taper structure in-line interferometer in fiber ring laser[J]. IEEE Sensors Journal, 2021, 21(19): 21594-21599.
[162] MAO J, YANG X, LIU Y, et al. Nanomaterial-enhanced fiber optofluidic laser biosensor for sensitive enzyme detection[J]. Journal of Lightwave Technology, 2020, 38(18): 5205-5211.
[163] MANSOR M, BAKAR M A, OMAR M, et al. Taper biosensor in fiber ring laser cavity for protein detection[J]. Optics & Laser Technology, 2020, 125: 106033.
[164] HU X-G, ZHAO Y, PENG Y, et al. In-fiber optofluidic michelson interferometer for detecting small volume and low concentration chemicals with a fiber ring cavity laser[J]. Sensors and Actuators B: Chemical, 2022, 370: 132467.
[165] ZHANG H, HAN B, LI X, et al. An Optical Fiber Optofluidic Laser Biosensor for Rapid Hemoglobin Detection Using Organic Dye[J]. Journal of Lightwave Technology, 2024, 42(1): 399-405.
[166] SHALABNEY A, ABDULHALIM I. Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation[J]. Optics Letters, 2012, 37(7): 1175-1177.
[167] XU Y, ZHANG X, ZHU X-S, et al. Optical fiber surface plasmon resonance sensor based on the gold-coated hollow fiber structure for the detection of liquid with high refractive index[J]. IEEE Sensors Journal, 2022, 22(10): 9447-9453.
[168] TIAN Z, YAO Y, YUAN J, et al. Post chemical etching of tapered seven-core fiber sensor for enhanced figure of merit[J]. Optics Letters, 2022, 47(18): 4672-4675.
[169] LI L, ZHANG Y-N, ZHENG W, et al. Optical fiber SPR biosensor based on gold nanoparticle amplification for DNA hybridization detection[J]. Talanta, 2022, 247: 123599.
[170] NAZARI M, RUBIO-MARTINEZ M, BABARAO R, et al. Aqueous contaminant detection via UiO-66 thin film optical fiber sensor platform with fast Fourier transform based spectrum analysis[J]. Journal of Physics D: Applied Physics, 2017, 51(2): 025601.
[171] ALDABA A L, LOPEZ-TORRES D, ELOSUA C, et al. SnO2-MOF-Fabry-Perot optical sensor for relative humidity measurements[J]. Sensors and Actuators B: Chemical, 2018, 257: 189-199.
[172] CHEN Z, LIANG R, GUO X, et al. Simultaneous quantitation of cytokeratin-19 fragment and carcinoembryonic antigen in human serum via quantum dot-doped nanoparticles[J]. Biosensors and Bioelectronics, 2017, 91: 60-65.
[173] LI C, MA X, GUAN Y, et al. Microcantilever array biosensor for simultaneous detection of carcinoembryonic antigens and α-fetoprotein based on real-time monitoring of the profile of cantilever[J]. ACS Sensors, 2019, 4(11): 3034-3041.
[174] CHEN Y, CHU W, LIU W, et al. Distance-based carcinoembryonic antigen assay on microfluidic paper immunodevice[J]. Sensors and Actuators B: Chemical, 2018, 260: 452-459.
[175] WANG R, HUANG Y, CHI Y. Gold nanoparticles-oxidized multi-walled carbon nanotubes as electrochemiluminescence immunosensors[J]. Analyst, 2022, 147(13): 3096-3100.
[176] TRUTA L A, SALES M G F. Carcinoembryonic antigen imprinting by electropolymerization on a common conductive glass support and its determination in serum samples[J]. Sensors and Actuators B: Chemical, 2019, 287: 53-63.
[177] JEZERŠEK B, ČERVEK J, RUDOLF Z, et al. Clinical evaluation of potential usefulness of CEA, CA 15-3, and MCA in follow-up of breast cancer patients[J]. Cancer Letters, 1996, 110(1-2): 137-144.
[178] KUDOH K, KIKUCHI Y, KITA T, et al. Preoperative determination of several serum tumor markers in patients with primary epithelial ovarian carcinoma[J]. Gynecologic and Obstetric Investigation, 1999, 47(1): 52-57.
[179] JAIN S, CHOUDHARY K, KUMAR S. Photonic crystal fiber-based SPR sensor for broad range of refractive index sensing applications[J]. Optical Fiber Technology, 2022, 73: 103030.
[180] CHEN L, CHAN C, NI K, et al. Label-free fiber-optic interferometric immunosensors based on waist-enlarged fusion taper[J]. Sensors and Actuators B: Chemical, 2013, 178: 176-184.
[181] LIU L, SHAN D, ZHOU X, et al. TriPleX™ waveguide-based fluorescence biosensor for multichannel environmental contaminants detection[J]. Biosensors and Bioelectronics, 2018, 106: 117-121.
[182] PAKARZADEH H, SHARIF V, VIGNESWARAN D, et al. Graphene-assisted tunable D-shaped photonic crystal fiber sensor in the visible and IR regions[J]. Journal of the Optical Society of America B, 2022, 39(6): 1490-1496.
[183] DIVYA J, SELVENDRAN S. Surface Plasmon Resonance-Based Gold-Coated Hollow-Core Negative Curvature Optical Fiber Sensor[J]. Biosensors, 2023, 13(2): 148.
[184] HAN B, MA Y, WU H, et al. Random Raman Fiber Laser as a Liquid Refractive Index Sensor[J]. Photonic Sensors, 2023, 14(1): 240121.
[185] WANG S, SHEN T, FENG Y, et al. D-type photonic crystal fiber refractive index sensor with ultra-high fabrication stability and ultra-wide detection range[J]. Optical and Quantum Electronics, 2024, 56(4): 515.
[186] TUAIMAH A M, TAHHAN S R, TAHER H J, et al. Multi analyte detection based on D-shaped PCF sensor for glucose concentrations sensing[J]. Optical and Quantum Electronics, 2023, 56(3): 319.
[187] WANG F, WEI Y, HAN Y. High Sensitivity and Wide Range Refractive Index Sensor Based on Surface Plasmon Resonance Photonic Crystal Fiber[J]. Sensors, 2023, 23(14): 6617.
[188] GUO P, LIU H, ZHOU Z, et al. Spatially modulated fiber speckle for high-sensitivity refractive index sensing[J]. Sensors, 2023, 23(15): 6814.
[189] WANG G, LIAO B, CAO Y, et al. Microwave Photonic Interrogation of a High-Speed and High-Resolution Multipoint Refractive Index Sensor[J]. Journal of Lightwave Technology, 2022, 40(4): 1245-1251.
[190] ZHANG Y, ZHANG A, WANG J, et al. High-Sensitivity and High-Resolution RI Sensor With Ultrawide Measurement Range Based on NCF With Large Offset Splicing and MPF Interrogation[J]. IEEE Sensors Journal, 2022, 22(23): 22707-22713.

所在学位评定分委会
物理学
国内图书分类号
TP212
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765934
专题南方科技大学
工学院_电子与电气工程系
推荐引用方式
GB/T 7714
胡杰. 光纤激光生物传感技术及其肿瘤标志物检测应用研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031313-胡杰-电子与电气工程系(16976KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[胡杰]的文章
百度学术
百度学术中相似的文章
[胡杰]的文章
必应学术
必应学术中相似的文章
[胡杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。