[1] XU W, HU Q, BAI S, et al. Rational molecular passivation for high-performance perovskite light-emitting diodes[J]. Nature Photonics, 2019, 13(6): 418-424.
[2] HE J, TRITT T M. Advances in thermoelectric materials research: Looking back and moving forward[J]. Science, 2017, 357(6358): eaak9997.
[3] FU W, TURCHENIUK K, NAUMOV O, et al. Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries[J]. Materials Today, 2021, 48: 176-197.
[4] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158.
[5] LEI Z, LIU X, WU Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J]. Nature, 2018, 563(7732): 546-550.
[6] HUNT S T, NIMMANWUDIPONG T, ROMÁN-LESHKOV Y. Engineering Non-sintered, Metal-Terminated Tungsten Carbide Nanoparticles for Catalysis[J]. Angewandte Chemie International Edition, 2014, 53(20): 5131-5136.
[7] LEE E, PARK H, JOO H, et al. Unexpected Correlation Between Boron Chain Condensation and Hydrogen Evolution Reaction (HER) Activity in Highly Active Vanadium Borides: Enabling Predictions[J]. Angewandte Chemie International Edition, 2020, 59(29): 11774-11778.
[8] DRORY M D, AGER I I I, SUSKI T, et al. Hardness and fracture toughness of bulk single crystal gallium nitride[J]. Applied Physics Letters, 1996, 69(26).
[9] YANG X, ZANG J, ZHAO X, et al. Centimeter-sized diamond composites with high electrical conductivity and hardness[J]. Proceedings of the National Academy of Sciences, 2024, 121(9): e2316580121.
[10] ZHANG J, JIAO B, DAI J, et al. Enhance the responsivity and response speed of self-powered ultraviolet photodetector by GaN/CsPbBr3 core-shell nanowire heterojunction and hydrogel[J]. Nano Energy, 2022, 100: 107437.
[11] ZHANG K, SHEN C, YAN L, et al. Long-lifetime phosphorescence in diamond for data storage[J]. Nano Today, 2024, 55: 102176.
[12] ALBERT B, HILLEBRECHT H. Boron: Elementary Challenge for Experimenters and Theoreticians[J]. Angewandte Chemie International Edition, 2009, 48(46): 8640-8668.
[13] IVANOVSKII A L. Mechanical and electronic properties of diborides of transition 3d–5d metals from first principles: Toward search of novel ultra-incompressible and superhard materials[J]. Progress in Materials Science, 2012, 57(1): 184-228.
[14] VAJEESTON P, RAVINDRAN P, RAVI C, et al. Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides[J]. Physical Review B, 2001, 63(4): 045115.
[15] AKOPOV G, YEUNG M T, KANER R B. Rediscovering the Crystal Chemistry of Borides[J]. Advanced Materials, 2017, 29(21): 1604506.
[16] FOKWA B P T. Borides: Solid-State Chemistry[M]//Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons, Ltd, 2014: 1-14.
[17] KANER R B, GILMAN J J, TOLBERT S H. Designing Superhard Materials[J]. Science, 2005, 308(5726): 1268-1269.
[18] CHUNG H Y, WEINBERGER M B, LEVINE J B, et al. Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure[J]. Science, 2007, 316(5823): 436-439.
[19] GOU H, DUBROVINSKAIA N, BYKOVA E, et al. Discovery of a Superhard Iron Tetraboride Superconductor[J]. Physical Review Letters, 2013, 111(15): 157002.
[20] LECH A T, TURNER C L, MOHAMMADI R, et al. Structure of superhard tungsten tetraboride: A missing link between MB2 and MB12 higher borides[J]. Proceedings of the National Academy of Sciences, 2015, 112(11): 3223-3228.
[21] MOHAMMADI R, XIE M, LECH A T, et al. Toward Inexpensive Superhard Materials: Tungsten Tetraboride-Based Solid Solutions[J]. Journal of the American Chemical Society, 2012, 134(51): 20660-20668.
[22] LEVINE J B, BETTS J B, GARRETT J D, et al. Full elastic tensor of a crystal of the superhard compound ReB2[J]. Acta Materialia, 2010, 58(5): 1530-1535.
[23] YEUNG M T, AKOPOV G, LIN C W, et al. Superhard W0.5Ta0.5B nanowires prepared at ambient pressure[J]. Applied Physics Letters, 2016, 109(20): 203107.
[24] VAID A, WEI D, BITZEK E, et al. Pinning of extended dislocations in atomically disordered crystals[J]. Acta Materialia, 2022, 236: 118095.
[25] LABUSCH R. Statistische theorien der mischkristallhärtung[J]. Acta Metallurgica, 1972, 20(7): 917-927.
[26] MIZUTANI U. The hume-rothery rules for structurally complex alloy phases[M]//Surface Properties and Engineering of Complex Intermetallics: Volume 3. WORLD SCIENTIFIC, 2010: 323-399.
[27] DUTTA S, HAN H, JE M, et al. Chemical and structural engineering of transition metal boride towards excellent and sustainable hydrogen evolution reaction[J]. Nano Energy, 2020, 67: 104245.
[28] CHEN D, LIU T, WANG P, et al. Ionothermal Route to Phase-Pure RuB2 Catalysts for Efficient Oxygen Evolution and Water Splitting in Acidic Media[J]. ACS Energy Letters, 2020, 5(9): 2909-2915.
[29] WANG M, WANG B, HUANG F, et al. Enabling PIEZOpotential in PIEZOelectric Semiconductors for Enhanced Catalytic Activities[J]. Angewandte Chemie International Edition, 2019, 58(23): 7526-7536.
[30] CHOKSI T, MAJUMDAR P, GREELEY J P. Electrostatic Origins of Linear Scaling Relationships at Bifunctional Metal/Oxide Interfaces: A Case Study of Au Nanoparticles on Doped MgO Substrates[J]. Angewandte Chemie International Edition, 2018, 57(47): 15410-15414.
[31] LI R, ANTUNES E F, KALFON-COHEN E, et al. Low-Temperature Growth of Carbon Nanotubes Catalyzed by Sodium-Based Ingredients[J]. Angewandte Chemie International Edition, 2019, 58(27): 9204-9209.
[32] LUO M, ZHAO Z, ZHANG Y, et al. PdMo bimetallene for oxygen reduction catalysis[J]. Nature, 2019, 574(7776): 81-85.
[33] HAMMER B, NØRSKOV J K. Electronic factors determining the reactivity of metal surfaces[J]. Surface Science, 1995, 343(3): 211-220.
[34] ZHENG Y, JIAO Y, JARONIEC M, et al. Advancing the Electrochemistry of the Hydrogen-Evolution Reaction through Combining Experiment and Theory[J]. Angewandte Chemie International Edition, 2015, 54(1): 52-65.
[35] MEDFORD A J, VOJVODIC A, HUMMELSHØJ J S, et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis[J]. Journal of Catalysis, 2015, 328: 36-42.
[36] AI X, ZOU X, CHEN H, et al. Transition-Metal–Boron Intermetallics with Strong Interatomic d–sp Orbital Hybridization for High-Performance Electrocatalysis[J]. Angewandte Chemie International Edition, 2020, 59(10): 3961-3965.
[37] BARDEEN J, COOPER L N, SCHRIEFFER J R. Theory of Superconductivity[J]. Physical Review, 1957, 108(5): 1175-1204.
[38] ASHCROFT N W. Hydrogen Dominant Metallic Alloys: High Temperature Superconductors?[J]. Physical Review Letters, 2004, 92(18): 187002.
[39] NAGAMATSU J, NAKAGAWA N, MURANAKA T, et al. Superconductivity at 39 K in magnesium diboride[J]. Nature, 2001, 410(6824): 63-64.
[40] PICKETT W. Mind the double gap[J]. Nature, 2002, 418(6899): 733-734.
[41] KORTUS J, MAZIN I I, BELASHCHENKO K D, et al. Superconductivity of metallic boron in MgB2[J]. Physical Review Letters, 2001, 86(20): 4656-4659.
[42] MAZIN I I, ANDERSEN O K, JEPSEN O, et al. Superconductivity in MgB2: clean or dirty?[J]. Physical Review Letters, 2002, 89(10): 107002.
[43] CHOI H J, ROUNDY D, SUN H, et al. The origin of the anomalous superconducting properties of MgB2[J]. Nature, 2002, 418(6899): 758-760.
[44] PEI C, ZHANG J, WANG Q, et al. Pressure-induced superconductivity at 32 K in MoB2[J]. National Science Review, 2023, 10(5): nwad034.
[45] XI X X. Two-band superconductor magnesium diboride[J]. Reports on Progress in Physics, 2008, 71(11): 116501.
[46] TAKEDA H, KUNO H, ADACHI K. Solar Control Dispersions and Coatings With Rare-Earth Hexaboride Nanoparticles[J]. Journal of the American Ceramic Society, 2008, 91(9): 2897-2902.
[47] SCHELM S, SMITH G B, GARRETT P D, et al. Tuning the surface-plasmon resonance in nanoparticles for glazing applications[J]. Journal of Applied Physics, 2005, 97(12): 124314.
[48] WONG J, SHIMKAVEG G, GOLDSTEIN W, et al. YB66: A new soft-X-ray monochromator for synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1990, 291(1): 243-249.
[49] KITAMURA M, YOSHIKAWA H, MOCHIZUKI T, et al. Performance of YB66 double-crystal monochromator for dispersing synchrotron radiation at SPring-8[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 497(2): 550-562.
[50] WANG P, KUMAR R, SANKARAN E M, et al. Vanadium Diboride (VB2) Synthesized at High Pressure: Elastic, Mechanical, Electronic, and Magnetic Properties and Thermal Stability[J]. Inorganic Chemistry, 2018, 57(3): 1096-1105.
[51] PEI C, JIN S, HUANG P, et al. Pressure-induced superconductivity and structure phase transition in Pt2HgSe3[J]. npj Quantum Materials, 2021, 6(1): 1-8.
[52] DAI G, JIA Y, GAO B, et al. Pressure-induced superconductivity in the nonsymmorphic topological insulator KHgAs[J]. NPG Asia Materials, 2023, 15(1): 1-8.
[53] QI Y, NAUMOV P G, ALI M N, et al. Superconductivity in Weyl semimetal candidate MoTe2[J]. Nature Communications, 2016, 7(1): 11038.
[54] TAKANO M, NASU S, ABE T, et al. Pressure-induced high-spin to low-spin transition in CaFeO3[J]. Physical Review Letters, 1991, 67(23): 3267-3270.
[55] OKA K, AZUMA M, CHEN W tin, et al. Pressure-Induced Spin-State Transition in BiCoO3[J]. Journal of the American Chemical Society, 2010, 132(27): 9438-9443.
[56] PARDO V, PICKETT W E. Pressure-induced metal-insulator and spin-state transition in low-valence layered nickelates[J]. Physical Review B, 2012, 85(4): 045111.
[57] ABELSON P H. Experimental Technology[J]. Science, 1999, 283(5406): 1263-1263.
[58] YU-CHEN SHANG F R S. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chinese Physics Letters, 2020, 37(8): 80701.
[59] ZHANG L, WANG Y, LV J, et al. Materials discovery at high pressures[J]. Nature Reviews Materials, 2017, 2(4): 1-16.
[60] DUBROVINSKAIA N, DUBROVINSKY L, SOLOPOVA N A, et al. Terapascal static pressure generation with ultrahigh yield strength nanodiamond[J]. Science Advances, 2016, 2(7): e1600341.
[61] BRIDGMAN P W. Freezings and Compressions to 50,000 kg/cm2[J]. The Journal of Chemical Physics, 1941, 9(11): 794-797.
[62] LIEBERMANN R C. Multi-anvil, high pressure apparatus: a half-century of development and progress[J]. High Pressure Research, 2011, 31(4): 493-532.
[63] HALL H T. Ultra-High-Pressure, High-Temperature Apparatus: the ``Belt’’[J]. Review of Scientific Instruments, 1960, 31(2): 125-131.
[64] KAWAI N, ENDO S. The Generation of Ultrahigh Hydrostatic Pressures by a Split Sphere Apparatus[J]. Review of Scientific Instruments, 1970, 41(8): 1178-1181.
[65] HALL H T. Some High-Pressure, High-Temperature Apparatus Design Considerations: Equipment for Use at 100 000 Atmospheres and 3000°C[J]. Review of Scientific Instruments, 1958, 29: 267-275.
[66] LI R, XU B, ZHANG Q, et al. Finite-element analysis on pressure transfer mechanism in large-volume cubic press[J]. High Pressure Research, 2016, 36(4): 575-584.
[67] YANBIN W, DURHAM W B, GETTING I C, et al. The deformation-DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa[J]. Review of Scientific Instruments, 2003, 74.
[68] LIU X, CHEN J, TANG J, et al. A large volume cubic press with a pressure-generating capability up to about 10 GPa[J]. High Pressure Research, 2012, 32(2): 239-254.
[69] WARREN B E. X-ray Diffraction[M]. Courier Corporation, 1990.
[70] GOLDSTEIN J I, NEWBURY D E, MICHAEL J R, et al. Scanning Electron Microscopy and X-Ray Microanalysis[M]. Springer, 2017.
[71] SIMŮNEK A, VACKÁR J. Hardness of covalent and ionic crystals: first-principle calculations[J]. Physical Review Letters, 2006, 96(8): 085501.
[72] MOULDER J F, CHASTAIN J, KING R C. Handbook of x-ray photoelectron spectroscopy : a reference book of standard spectra for identification and interpretation of XPS data[J]. Chemical Physics Letters, 1992, 220(1): 7-10.
[73] YU J, ZHANG Y, ZHAO Y, et al. Anisotropies in Elasticity, Sound Velocity, and Minimum Thermal Conductivity of Low Borides VxBy Compounds[J]. Metals, 2021, 11(4): 577.
[74] BEAN V E, AKIMOTO S, BELL P M, et al. Another step toward an international practical pressure scale: 2nd AIRAPT IPPS task group report[J]. Physica B+C, 1986, 139-140: 52-54.
[75] TAKAHASHI E. Melting of a dry peridotite KLB-1 up to 14 GPa: Implications on the Origin of peridotitic upper mantle[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B9): 9367-9382.
[76] PIERMARINI G J, BLOCK S. Ultrahigh pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to the fixed point pressure scale[J]. Review of Scientific Instruments, 1975, 46: 973-979.
[77] OHTANI A, ONODERA A, KAWAI N. Pressure apparatus of split-octahedron type for x-ray diffraction studies[J]. The Review of Scientific Instruments, 1979, 50(3): 308.
[78] HOMAN C G. Phase diagram of Bi up to 140 kbars[J]. Journal of Physics and Chemistry of Solids, 1975, 36(11): 1249-1254.
[79] 杨斌, 陆凤国, 赵旭东, 等. 1000t Walker型高温高压装置的使用与压力标定[J]. 高压物理学报, 2011, 25(4): 303-309.
[80] TOBY B H. EXPGUI, a graphical user interface for GSAS[J]. Journal of Applied Crystallography, 2001, 34(2): 210-213.
[81] MOHAMMADI R, TURNER C, XIE M, et al. Enhancing the Hardness of Superhard Transition Metal Borides: Molybdenum-Doped Tungsten Tetraboride[J]. Chemistry of Materials, 2015, 28.
[82] YEUNG M T, LEI J, MOHAMMADI R, et al. Superhard Monoborides: Hardness Enhancement through Alloying in W1−xTaxB[J]. Advanced Materials, 2016, 28(32): 6993-6998.
[83] SILVERSMIT G, DEPLA D, POELMAN H, et al. An XPS study on the surface reduction of V2O5(0 0 1) induced by Ar+ ion bombardment[J]. Surface Science, 2006, 600(17): 3512-3517.
[84] GUPTA R P, SEN S K. Calculation of multiplet structure of core p-vacancy levels[J]. Physical Review B, 1974, 10(1): 71-77.
[85] SILVERSMIT G, DEPLA D, POELMAN H, et al. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+)[J]. Journal of Electron Spectroscopy and Related Phenomena, 2004, 135(2): 167-175.
[86] BIESINGER M C, LAU L W M, GERSON A R, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn[J]. Applied Surface Science, 2010, 257(3): 887-898.
[87] GU Q, KRAUSS G, STEURER W. Transition Metal Borides: Superhard versus Ultra-incompressible[J]. Advanced Materials, 2008, 20(19): 3620-3626.
[88] QIN M, YAN Q, WANG H, et al. High-entropy monoborides: Towards superhard materials[J]. Scripta Materialia, 2020, 189: 101-105.
[89] ZHAO X, LI L, BAO K, et al. Insight the effect of rigid boron chain substructure on mechanical, magnetic and electrical properties of β-FeB[J]. Journal of Alloys and Compounds, 2022, 896: 162767.
[90] MA S, BAO K, TAO Q, et al. Manganese mono-boride, an inexpensive room temperature ferromagnetic hard material[J]. Scientific Reports, 2017, 7(1): 43759.
[91] MA S, FARLA R, BAO K, et al. An electrically conductive and ferromagnetic nano-structure manganese mono-boride with high Vickers hardness[J]. Nanoscale, 2021, 13(44): 18570-18577.
[92] MA S, BAO K, TAO Q, et al. Investigating Robust Honeycomb Borophenes Sandwiching Manganese Layers in Manganese Diboride[J]. Inorganic Chemistry, 2016, 55(21): 11140-11146.
[93] PAUW I J V D. A Method of Measuring the Resistivity and Hall Coefficient of Lamallae of Arbitrary Shape[J]. Review of Scientific Instruments, 1958.
[94] HAN L, WANG S, ZHU J, et al. Hardness, elastic, and electronic properties of chromium monoboride[J]. Applied Physics Letters, 2015, 106(22).
[95] LI X, WEI Y, LU L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals[J]. Nature, 2010, 464(7290): 877-880.
[96] LU L, CHEN X, HUANG X, et al. Revealing the Maximum Strength in Nanotwinned Copper[J]. Science, 2009, 323(5914): 607-610.
[97] LU K, LU L, SURESH S. Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale[J]. Science, 2009, 324(5925): 349-352.
[98] MA S, BAO K, TAO Q, et al. Revealing the Unusual Rigid Boron Chain Substructure in Hard and Superconductive Tantalum Monoboride[J]. Chemistry – A European Journal, 2019, 25(19): 5051-5057.
[99] TAO Q, CHEN Y, LIAN M, et al. Modulating Hardness in Molybdenum Monoborides by Adjusting an Array of Boron Zigzag Chains[J]. Chemistry of Materials, 2019, 31(1): 200-206.
[100] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas[J]. Physical Review, 1964, 136(3B): B864-B871.
[101] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895.
[102] POKROY B, FIERAMOSCA J S, VON DREELE R B, et al. Atomic Structure of Biogenic Aragonite[J]. Chemistry of Materials, 2007, 19(13): 3244-3251.
[103] OGANOV A R, CHEN J, GATTI C, et al. Ionic high-pressure form of elemental boron[J]. Nature, 2009, 457(7231): 863-867.
[104] CHEN Y, HE D, QIN J, et al. Ultrasonic and hardness measurements for ultrahigh pressure prepared WB ceramics[J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(2): 329-331.
[105] LI P, ZHOU R, ZENG X C. Computational Analysis of Stable Hard Structures in the Ti–B System[J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15607-15617.
[106] NIELSEN O H, MARTIN R M. First-Principles Calculation of Stress[J]. Physical Review Letters, 1983, 50(9): 697-700.
修改评论