[1] 杨雨惠. 残障人士的产品设计在“触感”中的形式语言研究[J]. 鞋类工艺与设计, 2024, 4:146-148.
[2] 五部门联合发布《虚拟现实与行业应用融合发展行动计划(2022—2026 年)》[J]. 信息技术与标准化, 2022: 5.
[3] CHOI C, MA Y, LI X, et al. Surface haptic rendering of virtual shapes through change in surfacetemperature[J]. Science Robotics, 2022, 7(63): eabl4543.
[4] TAN Z Y, CHOO C M, LIN Y, et al. The Effect of Temperature on Tactile Softness Perception[J]. IEEE Transactions on Haptics, 2022, 15(3): 638-645.
[5] JONES L A, BERRIS M. Material discrimination and thermal perception[C]//11th Symposiumon Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003.Proceedings. IEEE, 2003: 171-178.
[6] HO H N, JONES L A. Contribution of thermal cues to material discrimination and localization[J]. Perception & Psychophysics, 2006, 68(1): 118-128.
[7] LEFEUVRE K, TOTZAUER S, BISCHOF A, et al. Loaded dice: exploring the design space ofconnected devices with blind and visually impaired people[C]//Proceedings of the 9th Nordicconference on human-computer interaction. 2016: 1-10.
[8] MATVIIENKO A, HORWEGE S, FRICK L, et al. CubeLendar: Design of a tangible interac-tive event awareness cube[C]//Proceedings of the 2016 CHI Conference Extended Abstracts onHuman Factors in Computing Systems. 2016: 2601-2608.
[9] ARORA J, SAINI A, MEHRA N, et al. Virtualbricks: Exploring a scalable, modular toolkit forenabling physical manipulation in vr[C]//Proceedings of the 2019 CHI Conference on HumanFactors in Computing Systems. 2019: 1-12.
[10] BOZGEYIKLI E, BOZGEYIKLI L L. Evaluating object manipulation interaction techniquesin mixed reality: Tangible user interfaces and gesture[C]//2021 IEEE Virtual Reality and 3DUser Interfaces (VR). IEEE, 2021: 778-787.
[11] POTTS D, DABRAVALSKIS M, HOUBEN S. TangibleTouch: A Toolkit for DesigningSurface-based Gestures for Tangible Interfaces[C]//Sixteenth International Conference on Tan-gible, Embedded, and Embodied Interaction. 2022: 1-14.
[12] 魏旭一. 虚拟现实情境下的振动感认知研究与触觉反馈设计[D]. 湖南大学, 2018.
[13] 王党校, 张玉茹. 触力觉人机交互导论[M]. 人民邮电出版社, 2022.
[14] OKAMOTO S, NAGANO H, YAMADA Y. Psychophysical dimensions of tactile perceptionof textures[J]. IEEE Transactions on Haptics, 2012, 6(1): 81-93.
[15] LEDERMAN S J, KLATZKY R L. Haptic perception: A tutorial[J]. Attention, Perception, &Psychophysics, 2009, 71(7): 1439-1459.
[16] HIRAI S, MIKI N. Thermal Sensation Display with Controllable Thermal Conductivity[C]//2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems &Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). IEEE, 2019: 1659-1661.
[17] BENSMAÏA S, HOLLINS M. Pacinian representations of fine surface texture[J]. Perception& psychophysics, 2005, 67: 842-854.
[18] HOLLINS M, RISNER S R. Evidence for the duplex theory of tactile texture perception[J].Perception & psychophysics, 2000, 62(4): 695-705.
[19] MANSOUR N A, EL-BAB A M F, ABDELLATIF M. Shape characterization of a multi-modaltactile display device for biomedical applications[C]//2012 First International Conference onInnovative Engineering Systems. IEEE, 2012: 7-12.
[20] MANSOUR N A, EL-BAB A M F, ABDELLATIF M. Design of a novel multi-modal tac-tile display device for biomedical applications[C]//2012 4th IEEE RAS & EMBS InternationalConference on Biomedical Robotics and Biomechatronics (BioRob). IEEE, 2012: 183-188.
[21] CHOI I, OFEK E, BENKO H, et al. Claw: A multifunctional handheld haptic controller forgrasping, touching, and triggering in virtual reality[C]//Proceedings of the 2018 CHI conferenceon human factors in computing systems. 2018: 1-13.
[22] WHITMIRE E, BENKO H, HOLZ C, et al. Haptic revolver: Touch, shear, texture, and shaperendering on a reconfigurable virtual reality controller[C]//Proceedings of the 2018 CHI con-ference on human factors in computing systems. 2018: 1-12.
[23] NAKAMURA T, YAMAMOTO A. Extension of an electrostatic visuo-haptic display to providesoftness sensation[C]//2016 IEEE Haptics Symposium (HAPTICS). IEEE, 2016: 78-83.
[24] YANG G H, KYUNG K U, SRINIVASAN M A, et al. Development of quantitative tactiledisplay device to provide both pin-array-type tactile feedback and thermal feedback[C]//SecondJoint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environmentand Teleoperator Systems (WHC’07). IEEE, 2007: 578-579.
[25] YANG G H, KYUNG K U, SRINIVASAN M A, et al. Quantitative tactile display device withpin-array type tactile feedback and thermal feedback[C]//Proceedings 2006 IEEE InternationalConference on Robotics and Automation, 2006. ICRA 2006. IEEE, 2006: 3917-3922.
[26] HRIBAR V E, PAWLUK D T. A tactile-thermal display for haptic exploration of virtual paint-ings[C]//The proceedings of the 13th international ACM SIGACCESS conference on Comput-ers and accessibility. 2011: 221-222.
[27] GALLO S, SON C, LEE H J, et al. A flexible multimodal tactile display for delivering shapeand material information[J]. Sensors and Actuators A: Physical, 2015, 236: 180-189.
[28] TIEST W M B, KAPPERS A M. Discrimination of thermal diffusivity[C]//World Haptics 2009-Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environ-ment and Teleoperator Systems. IEEE, 2009: 635-639.
[29] LI B, GERLING G J. Individual differences impacting skin deformation and tactile discrimina-tion with compliant elastic surfaces[C]//2021 IEEE World Haptics Conference (WHC). IEEE,2021: 721-726.
[30] DING S, PAN Y, TONG M, et al. Tactile perception of roughness and hardness to discriminatematerials by friction-induced vibration[J]. Sensors, 2017, 17(12): 2748.
[31] YUAN W, ZHU C, OWENS A, et al. Shape-independent hardness estimation using deep learn-ing and a gelsight tactile sensor[C]//2017 IEEE International Conference on Robotics and Au-tomation (ICRA). IEEE, 2017: 951-958.
[32] PETERS L, SERHAT G, VARDAR Y. ThermoSurf: Thermal display technology for dynamicand multi-finger interactions[J]. Ieee Access, 2023, 11: 12004-12014.
[33] HO H, JONES L. Material identification using real and simulated thermal cues[C]//The 26thannualinternationalconference ofthe IEEEengineering inmedicine andbiology society: Vol.1.IEEE, 2004: 2462-2465.
[34] NAM S, KUCHENBECKER K J. Optimizing a viscoelastic finite element model to representthe dry, natural, and moist human finger pressing on glass[J]. IEEE Transactions on Haptics,2021, 14(2): 303-309.
[35] KENSHALO D R, DECKER T, HAMILTON A. Spatial summation on the forehead, forearm,and back produced by radiant and conducted heat.[J]. Journal of comparative and physiologicalpsychology, 1967, 63(3): 510.
[36] JOHNSON K O, DARIAN-SMITH I, LAMOTTE C. Peripheral neural determinants of tem-perature discrimination in man: a correlative study of responses to cooling skin.[J]. Journal ofNeurophysiology, 1973, 36(2): 347-370.
[37] LIAO Z, HOSSAIN M, YAO X. Ecoflex polymer of different Shore hardnesses: Experimentalinvestigations and constitutive modelling[J]. Mechanics of Materials, 2020, 144: 103366.
[38] LI A, ZHANG C, ZHANG Y F. Thermal conductivity of graphene-polymer composites: Mech-anisms, properties, and applications[J]. Polymers, 2017, 9(9): 437.
[39] HUANG C, QIAN X, YANG R. Thermal conductivity of polymers and polymer nanocompos-ites[J]. Materials Science and Engineering: R: Reports, 2018, 132: 1-22.
[40] 刘少刚, 王李波, 王晓龙, 等. 高导热网络聚合物基复合材料的研究进展.[J]. China Plastic-s/Zhongguo Suliao, 2019, 33(8).
[41] 杜伯学, 孔晓晓, 肖萌, 等. 高导热聚合物基复合材料研究进展[J]. 电工技术学报, 2018, 33(14): 3149-3159.
[42] GUO Y, RUAN K, SHI X, et al. Factors affecting thermal conductivities of the polymers andpolymer composites: A review[J]. Composites Science and Technology, 2020, 193: 108134.
[43] 周文英. 高导热绝缘高分子复合材料研究[D]. 西北工业大学, 2007.
[44] BURGER N, LAACHACHI A, FERRIOL M, et al. Review of thermal conductivity in com-posites: Mechanisms, parameters and theory[J]. Progress in Polymer Science, 2016, 61: 1-28.
[45] 储九荣徐传骧. 导热高分子材料的研究与应用[J/OL]. 高分子材料科学与工程, 2000: 17-21. DOI: 10.16865/j.cnki.1000-7555.2000.04.005.
[46] BAI X, ZHANG C, ZENG X, et al. Recent progress in thermally conductive polymer/boron ni-tride composites by constructing three-dimensional networks[J]. Composites Communications,2021, 24: 100650.
[47] WANG W, ZHAO M, JIANG D, et al. Amino functionalized boron nitride and enhanced thermalconductivity of epoxy composites via combining mixed sizes of fillers[J]. Ceramics Interna-tional, 2022, 48(2): 2763-2770.
[48] BAI L, ZHANG Z M, PU J H, et al. Highly thermally conductive electrospun stereocomplexpolylactide fibrous film dip-coated with silver nanowires[J]. Polymer, 2020, 194: 122390.
[49] AZIZI S, DAVID E, FRÉCHETTE M F, et al. Electrical and thermal phenomena in low-densitypolyethylene/carbon black composites near the percolation threshold[J]. Journal of AppliedPolymer Science, 2019, 136(6): 47043.
[50] SHEN W, WU W, LIU C, et al. Achieving a high thermal conductivity for segregated BN/-PLA composites via hydrogen bonding regulation through cellulose network[J]. Polymers forAdvanced Technologies, 2020, 31(9): 1911-1920.
[51] LIU C, WU W, WANG Y, et al. Silver-coated thermoplastic polyurethane hybrid granules fordual-functional elastomer composites with exceptional thermal conductive and electromagneticinterference shielding performances[J]. Composites Communications, 2021, 25: 100719.
[52] QIAN T, LI J, MIN X, et al. Enhanced thermal conductivity of PEG/diatomite shape-stabilizedphase change materials with Ag nanoparticles for thermal energy storage[J]. Journal of materialschemistry A, 2015, 3(16): 8526-8536.
[53] YUAN H, WANG Y, LI T, et al. Highly thermal conductive and electrically insulating poly-mer composites based on polydopamine-coated copper nanowire[J]. Composites Science andTechnology, 2018, 164: 153-159.
[54] TAVMAN I. Thermal and mechanical properties of aluminum powder-filled high-densitypolyethylene composites[J]. Journal of Applied Polymer Science, 1996, 62(12): 2161-2167.
[55] HAN Z, FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites:A review[J]. Progress in polymer science, 2011, 36(7): 914-944.
[56] SHEN X, KIM J K. 3D graphene and boron nitride structures for nanocomposites with tai-lored thermal conductivities: recent advances and perspectives[J]. Functional Composites andStructures, 2020, 2(2): 022001.
[57] ZHANGZ,QUJ,FENGY,etal. Assemblyofgraphene-alignedpolymercompositesforthermalconductive applications[J]. Composites Communications, 2018, 9: 33-41.
[58] YANG D, WEI Q, LI B, et al. High thermal conductive silicone rubber composites constructedby strawberry-structured Al2O3-PCPA-Ag hybrids[J]. Composites Part A: Applied Science andManufacturing, 2021, 142: 106260.
[59] ZHANG K, TAO P, ZHANG Y, et al. Highly thermal conductivity of CNF/AlN hybrid filmsfor thermal management of flexible energy storage devices[J]. Carbohydrate polymers, 2019,213: 228-235.
[60] YAO Y, ZENG X, PAN G, et al. Interfacial engineering of silicon carbide nanowire/cellulosemicrocrystal paper toward high thermal conductivity[J]. ACS applied materials & interfaces,2016, 8(45): 31248-31255.
[61] GUO Y, RUAN K, GU J. Controllable thermal conductivity in composites by constructingthermal conduction networks[J]. Materials Today Physics, 2021, 20: 100449.
[62] ZHANG F, FENG Y, FENG W. Three-dimensional interconnected networks for thermallyconductive polymer composites: Design, preparation, properties, and mechanisms[J]. Materi-als Science and Engineering: R: Reports, 2020, 142: 100580.
[63] SHEN X, ZHENG Q, KIM J K. Rational design of two-dimensional nanofillers for polymernanocomposites toward multifunctional applications[J]. Progress in Materials Science, 2021,115: 100708.
[64] 蒋军祥, 吴浩斌. 自模板法构筑中空纳米结构 CoP-C 复合微球及其电化学储钠性能[J/OL]. 材料科学与工程学报, 2022, 40: 191-198+366. DOI: 10.14136/j.cnki.issn1673-2812.2022.02.002.
[65] 卢鹏荐, 章嵩, 官建国. 自模板法制备中空多孔银纳米片[J/OL]. 应用化工, 2022, 51: 89-92.DOI: 10.16581/j.cnki.issn1671-3206.2022.01.017.
[66] CAO L, WANG J, DONG J, et al. Preparation of highly thermally conductive and electricallyinsulating PI/BNNSs nanocomposites by hot-pressing self-assembled PI/BNNSs microspheres[J]. Composites Part B: Engineering, 2020, 188: 107882.
[67] 赵嘉腾, 王星稳, 任冬梅, 等. ZIF-67 牺牲模板法制备CoCu-LDH 及电化学法测定多巴胺[J/OL]. 分析试验室, 2023, 42: 1039-1044. DOI:10.13595/j.cnki.issn1000-0720.2022.061502.
[68] 和祥, 黄千里, 陈煜辉, 等. 多孔氧化铝陶瓷材料的制备工艺研究进展[J]. 粉末冶金材料科学与工程, 2021, 26: 483-491.
[69] WU Y, YE K, LIU Z, et al. Cotton candy-templated fabrication of three-dimensional ceramicpathway within polymer composite for enhanced thermal conductivity[J]. ACS Applied Mate-rials & Interfaces, 2019, 11(47): 44700-44707.
[70] 王晓亮, 张多, 石雪梅, 等. Co 金属有机骨架模板制备NiCo 水滑石/泡沫镍复合材料及电容性能[J]. 无机化学学报, 2023, 39: 607-616.
[71] LEE S, KIM J. Thermally conductive 3D binetwork structured aggregated boron nitride/Cu-foam/polymer composites[J]. Synthetic Metals, 2020, 270: 116587.
[72] JIANG F, ZHOU S, XU T, et al. Enhanced thermal conductive and mechanical properties ofthermoresponsive polymeric composites: Influence of 3D interconnected boron nitride networksupported by polyurethane@ polydopamine skeleton[J]. Composites Science and Technology,2021, 208: 108779.
[73] GOLSTEIJN C, VAN DEN HOVEN E. Facilitating parent-teenager communication throughinteractive photo cubes[J]. Personal and Ubiquitous Computing, 2013, 17: 273-286.
[74] VONACH E, TERNEK M, GERSTWEILER G, et al. Design of a health monitoring toy forchildren[C]//Proceedings of the The 15th International Conference on Interaction Design andChildren. 2016: 58-67.
[75] SHEN X, WANG Z, WU Y, et al. A three-dimensional multilayer graphene web for poly-mer nanocomposites with exceptional transport properties and fracture resistance[J]. MaterialsHorizons, 2018, 5(2): 275-284.
[76] JIA X, LI Q, AO C, et al. High thermal conductive shape-stabilized phase change materials ofpolyethylene glycol/boron nitride@ chitosan composites for thermal energy storage[J]. Com-posites Part A: Applied Science and Manufacturing, 2020, 129: 105710.
[77] YANG J, TANG L S, BAO R Y, et al. An ice-templated assembly strategy to construct grapheneoxide/boron nitride hybrid porous scaffolds in phase change materials with enhanced thermalconductivity and shape stability for light–thermal–electric energy conversion[J]. Journal ofmaterials chemistry A, 2016, 4(48): 18841-18851.
[78] 关振铎, 张中太, 焦金生. 无机材料物理性能(第2 版)[M]. 清华大学出版社, 2011.
[79] 陈火成. 浅析指针式A 型邵氏硬度计硬度测定值影响因素和解决对策[J]. 计量与测试技术, 2014, 41: 31-32+35.
[80] YE C M, SHENTU B Q, WENG Z X. Thermal conductivity of high density polyethylene filledwith graphite[J]. Journal of Applied Polymer Science, 2006, 101(6): 3806-3810.
[81] 王正芳. 氮化硼填充聚合物基导热复合材料的制备与性能研究[Z]. 哈尔滨理工大学,2024.
[82] GUAN H D, HE X B, ZHANG Z J, et al. Recent advances in 3D interconnected carbon/metalhigh thermal conductivity composites[J]. New Carbon Materials, 2023, 38(5): 804-824.
[83] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites:Fundamentals and applications[J]. Progress in Polymer Science, 2016, 59: 41-85.
[84] KEMALOGLU S, OZKOC G, AYTAC A. Thermally conductive boron nitride/SEBS/EVAternary composites:“processing and characterization”[J]. Polymer composites, 2010, 31(8):1398-1408.
[85] GREEN B G. Localization of thermal sensation: An illusion and synthetic heat[J]. Perception& Psychophysics, 1977, 22(4): 331-337.
[86] SHERIDAN J G, SHORT B W, VAN LAERHOVEN K, et al. Exploring cube affordance:Towards a classification of non-verbal dynamics of physical interfaces for wearable computing[M]. IET, 2003.
[87] LECHELT Z, ROGERS Y, MARQUARDT N, et al. ConnectUs: A new toolkit for teachingabout the Internet of Things[C]//Proceedings of the 2016 CHI Conference Extended Abstractson Human Factors in Computing Systems. 2016: 3711-3714.
[88] 许涤龙, 谭朵朵, 沈春华. 统计学基础实验[M]. 中国统计出版社, 2010.
[89] 裴文明, 张慧, 鞠昌华, 等. 基于韦伯-费希纳定律的淮南采煤沉陷水域水环境综合预警评价[J]. 煤田地质与勘探, 2020, 48: 1-7.
[90] WEBER E H. EH Weber on the tactile senses[M]. Psychology Press, 1996.
[91] VAN DER HORST B J, KAPPERS A M. Curvature discrimination in various finger conditions[J]. Experimental brain research, 2007, 177: 304-311.67
修改评论