[1] RAYMOND A E. Ground influence on airfoils[R]. 1921.
[2] TRAUB L W. Experimental and analytic investigation of ground effect[J]. Journal of Aircraft, 2015, 52(1): 235-243.
[3] AHMED M R, TAKASAKI T, KOHAMA Y. Aerodynamics of a NACA4412 airfoil in ground effect[J]. AIAA journal, 2007, 45(1): 37-47.
[4] ABRAMOWSKI T. Numerical investigation of airfoil in ground proximity[J]. Journal of theoretical and applied mechanics, 2007, 45(2): 425-436.
[5] ROZHDESTVENSKY K V. Wing-in-ground effect vehicles[J]. Progress in aerospace sciences, 2006, 42(3): 211-283.
[6] 林文祥, 吴榕, 唐雯. 地效飞行器发展回顾及前景展望[J]. 航空科学技术, 2011, No.128(01):8-10.
[7] GEE N. THE PRACTICAL APPLICATION OF HYBRID DESIGN TECHNIQUES TO FASTFERRIES FOR THE 1990’S[Z]. 1992.
[8] LIANG Y, ALAN B, JOHNNY D. WIG craft and ekranoplan ground effect craft technology [M]. Springer New York, 2010.
[9] JORG G. Tandem airfoil flairboats (taf)[C]//RINA International Conference Pro ceedings on WIGs: Vol. 4. 1997.
[10] LAO C, WONG E. Cfd simulation of a wing-in-ground-effect uav[C]//IOP Conference Series: Materials Science and Engineering: Vol. 370. IOP Publishing, 2018: 012006.
[11] MAIMUN A, TOFA M, AHMED Y M, et al. Aerodynamic characteristics of a wig craft by numerical simulation[C]//International Conference on Marine Technology Kuala Terengganu, Malaysia. 2012: 20-22.
[12] HE W, GUAN Y, THEOFILIS V, et al. Stability of low-Reynolds-number separated flow around an airfoil near a wavy ground[J]. AIAA Journal, 2019, 57(1): 29-34.
[13] SU S, SHAN X, YU P, et al. The inherent stability characteristics of a Wing-in-Ground (WIG) craft in various ground effect regions[C]//AIAA AVIATION 2022 Forum. 2022: 3598.
[14] GHADIMI P, ROSTAMI A B, JAFARKAZEMI F. Aerodynamic analysis of the boundary layer region of symmetric airfoils at ground proximity[J]. Aerospace science and technology, 2012, 17(1): 7-20.
[15] ZERIHAN J, ZHANG X. Aerodynamics of a single element wing in ground effect[J]. Journal of aircraft, 2000, 37(6): 1058-1064.
[16] ZHANG X, ZERIHAN J. Aerodynamics of a double-element wing in ground effect[J]. AIAA journal, 2003, 41(6): 1007-1016.
[17] RADHAKRISHNAN A, SCHMITZ F. An experimental investigation of a quad tilt rotor in ground effect[C]//21st AIAA Applied Aerodynamics Conference. 2003: 3517.
[18] RADHAKRISHNAN A, SCHMITZ F. Quad tilt rotor aerodynamics in ground effect[C]//23rd AIAA Applied Aerodynamics Conference. 2005: 5218.
[19] RADHAKRISHNAN A, SCHMITZ F. Quad tilt rotor download and power measurements in ground effect[C]//24th AIAA applied aerodynamics conference. 2006: 3471.
[20] LAVALLE S M. Rapidly-exploring random trees: A new tool for path planning[Z]. 1998.
[21] KUFFNER J, LAVALLE S. RRT-connect: An efficient approach to single-query path planning [C/OL]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065): Vol. 2. 2000: 995-1001 vol.2. DOI: 10.1109/ROBOT.2000.844730.
[22] SUN Q, LI M, WANG T, et al. UAV path planning based on improved rapidly-exploring random tree[C/OL]//2018 Chinese Control And Decision Conference (CCDC). 2018: 6420-6424. DOI: 10.1109/CCDC.2018.8408258.
[23] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The international journal of robotics research, 2011, 30(7): 846-894.
[24] GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT*: Optimal samplingbased path planning focused via direct sampling of an admissible ellipsoidal heuristic[C/OL]// 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2014: 2997-3004. DOI: 10.1109/IROS.2014.6942976.
[25] LI X Q, QIU L, AZIZ S, et al. Control method of UAV based on RRT* for target tracking in cluttered environment[C/OL]//2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA). 2017: 1-4. DOI: 10.1109/PESA.2017.8277732.
[26] NURIMBETOV B, ADIYATOV O, YELEU S, et al. Motion planning for hybrid UAVs indense urban environments[C/OL]//2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). 2017: 1627-1632. DOI: 10.1109/AIM.2017.8014251.
[27] DOLGOV D, THRUN S, MONTEMERLO M, et al. Path planning for autonomous vehicles in unknown semi-structured environments[J]. The international journal of robotics research, 2010, 29(5): 485-501.
[28] CHEN T, ZHANG G, HU X, et al. Unmanned aerial vehicle route planning method based on a star algorithm[C/OL]//2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). 2018: 1510-1514. DOI: 10.1109/ICIEA.2018.8397948.
[29] SZCZERBA R J, GALKOWSKI P, GLICKTEIN I S, et al. Robust algorithm for real-time route planning[J]. IEEE Transactions on aerospace and electronic systems, 2000, 36(3): 869-878.
[30] 李春华, 郑昌文, 周成平, 等. 一种三维航迹快速搜索方法[J]. 宇航学报, 2002(13-17).
[31] 周成平, 陈前洋, 秦筱楲. 基于稀疏A* 算法的三维航迹并行规划算法[J/OL]. 华中科技大学学报(自然科学版), 2005(42-45). DOI: 10.13245/j.hust.2005.05.014.
[32] GIRARDEAU D. Fonction décision-commande d’un robot manipulateur destiné à tailler automatiquement la vigne[D]. Université de Bordeaux I, 1983.
[33] CONNOLLY C I, BURNS J B, WEISS R. Path planning using Laplace’s equation[C]// Proceedings., IEEE International Conference on Robotics and Automation. IEEE, 1990: 2102-2106.
[34] CONNOLLY C I, SOUCCAR K, GRUPEN R A. A hamiltonian framework for kinodynamic planning and control[C]//Proceedings of 1995 IEEE International Conference on Robotics and Automation: Vol. 3. IEEE, 1995: 2746-2751.
[35] ZELEK J S. Dynamic path planning[C]//1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century: Vol. 2. IEEE, 1995: 1285-1290.
[36] AHUJA N, CHUANG J H. Shape representation using a generalized potential field model [J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(2): 169-176. DOI: 10.1109/34.574801.
[37] FU-GUANG D, PENG J, XIN-QIAN B, et al. AUV local path planning based on virtual potential field[C/OL]//IEEE International Conference Mechatronics and Automation, 2005: Vol. 4. 2005: 1711-1716 Vol. 4. DOI: 10.1109/ICMA.2005.1626816.
[38] BUDIYANTO A, CAHYADI A, ADJI T B, et al. UAV obstacle avoidance using potential field under dynamic environment[C/OL]//2015 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC). 2015: 187-192. DOI: 10.1109/ICCEREC.2015.7337041.
[39] EATON C M, CHONG E K, MACIEJEWSKI A A. Multiple-scenario unmanned aerial system control: A systems engineering approach and review of existing control methods[J]. Aerospace, 2016, 3(1): 1.
[40] SATHYAN A, BOONE N, COHEN K. Comparison of approximate approaches to solving the travelling salesman problem and its application to UAV swarming[J]. International Journal of Unmanned Systems Engineering., 2015, 3(1): 1.
[41] CHENG Z, SUN Y, LIU Y. Path planning based on immune genetic algorithm for UAV[C/OL]// 2011 International Conference on Electric Information and Control Engineering. 2011: 590-593. DOI: 10.1109/ICEICE.2011.5777407.
[42] PEHLIVANOGLU Y V. A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV[J]. Aerospace Science and Technology, 2012, 16(1):47-55.
[43] SAHINGOZ O K. Flyable path planning for a multi-UAV system with Genetic Algorithms and Bezier curves[C/OL]//2013 International Conference on Unmanned Aircraft Systems (ICUAS). 2013: 41-48. DOI: 10.1109/ICUAS.2013.6564672.
[44] NIAN R, LIU J, HUANG B. A review On reinforcement learning: Introduction and applications in industrial process control[J/OL]. Computers & Chemical Engineering, 2020, 139: 106886. https://www.sciencedirect.com/science/article/pii/S0098135420300557. DOI: https://doi.org/10.1016/j.compchemeng.2020.106886.
[45] ZHANG B, LIU W, MAO Z, et al. Cooperative and Geometric Learning Algorithm (CGLA) for path planning of UAVs with limited information[J/OL]. Automatica, 2014, 50(3): 809-820. https://www.sciencedirect.com/science/article/pii/S0005109813005943. DOI: https://doi.org/10.1016/j.automatica.2013.12.035.
[46] DOS SANTOS S R B, GIVIGI S N, NASCIMENTO C L. Autonomous construction of structures in a dynamic environment using reinforcement learning[C]//2013 IEEE International Systems Conference (SysCon). IEEE, 2013: 452-459.
[47] ZHOU X, WANG Z, YE H, et al. Ego-planner: An esdf-free gradient-based local planner for quadrotors[J]. IEEE Robotics and Automation Letters, 2020, 6(2): 478-485.
[48] ZHOU X, ZHU J, ZHOU H, et al. Ego-swarm: A fully autonomous and decentralized quadrotor swarm system in cluttered environments[C]//2021 IEEE international conference on robotics and automation (ICRA). IEEE, 2021: 4101-4107.
[49] HWANGBO M, KUFFNER J, KANADE T. Efficient two-phase 3D motion planning for small fixed-wing UAVs[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE, 2007: 1035-1041.
[50] YAN L, ZHAO Y, XIE H, et al. An Inert and Efficient Fusion Replanning Method for UAV Fast Autonomous Flight[C]//2022 IEEE International Conference on Unmanned Systems (ICUS). IEEE, 2022: 140-145.
[51] WANG H, LIANG Y, QIU X, et al. The wind resistance capability of the Egretta tail-sitter VTOL UAV[C]//AIAA SCITECH 2022 Forum. 2022: 0197.
[52] VERSTEEG H K, MALALASEKERA W. An introduction to computational fluid dynamics: the finite volume method[M]. Pearson education, 2007.
[53] SPALART P, ALLMARAS S. A ONE-EQUATION TURBULENCE MODEL FOR AERODYNAMIC FLOWS[J]. RECHERCHE AEROSPATIALE, 1994(1): 5-21.
[54] LANFRIT M. Best practice guidelines for handling Automotive External Aerodynamics with FLUENT[M]. Version, 2005.
[55] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. MIT press, 2016.
[56] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25.
[57] 王松涛. 固定翼无人机飞行控制系统设计[D]. 北京理工大学, 2015.
[58] 逄伟. 低速环境下的智能车无人驾驶技术研究[D]. 浙江大学, 2015.
[59] 吴宗胜. 室外移动机器人的道路场景识别及路径规划研究[D]. 西安: 西安理工大学, 2017.
[60] DUBINS L E. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents[J]. American Journal of mathematics, 1957, 79(3): 497-516.
[61] BUI X N, BOISSONNAT J D, SOUERES P, et al. Shortest path synthesis for Dubins nonholonomic robot[C]//Proceedings of the 1994 IEEE International Conference on Robotics and Automation. IEEE, 1994: 2-7.
[62] MCLAIN T, BEARD R W, OWEN M. Implementing dubins airplane paths on fixed-wing uavs [M]. Springer Link, 2014.
[63] ZHOU B, GAO F, WANG L, et al. Robust and efficient quadrotor trajectory generation for fast autonomous flight[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3529-3536.
[64] USENKO V, VON STUMBERG L, PANGERCIC A, et al. Real-time trajectory replanning for MAVs using uniform B-splines and a 3D circular buffer[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 215-222.
[65] BARZILAI J, BORWEIN J M. Two-point step size gradient methods[J]. IMA journal of numerical analysis, 1988, 8(1): 141-148.
[66] STEIHA R. TruncatedNewton algorithmsforlarge-scale optimization[J]. Math. Programming, 1983, 26: 190-212.
[67] LIU D C, NOCEDAL J. On the limited memory BFGS method for large scale optimization[J]. Mathematical programming, 1989, 45(1-3): 503-528.
修改评论