[1] 张勇, 冯万鹏, 许力生, 周成虎, 陈运泰. 2008年汶川大地震的时空破裂过程[J]. 中国科学(D辑:地球科学), 2008, 38(10): 1186-1194.
[2] LAY T, KANAMORI H, AMMON C J, NETTLES M, WARD S N, ASTER R C, BECK S L, BILEK S L, BRUDZINSKI M R, BUTLER R, DESHON H R. The great Sumatra-Andaman earthquake of 26 december 2004[J]. Science, 2005, 308(5725): 1127-33.
[3] LAY T. Rupture process of the 2008 Wenchuan, China, earthquake: A review[J]. Earthquake and Disaster Risk: Decade Retrospective of the Wenchuan Earthquake, 2019: 31-67.
[4] AMMON C J, JI C, THIO H K, ROBINSON D, NI S, HJORLEIFSDOTTIR V, KANAMORI H, LAY T, DAS S, HELMBERGER D, ICHINOSE G. Rupture process of the 2004 Sumatra-Andaman earthquake[J]. Science, 2005, 308(5725): 1133-9.
[5] CHESTER F M, ROWE C, UJIIE K, KIRKPATRICK J, REGALLA C, REMITTI F, MOORE J C, TOY V, WOLFSON-SCHWEHR M, BOSE S, KAMEDA J. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake[J]. Science, 2013, 342(6163): 1208-11.
[6] FULTON P M, BRODSKY E E, KANO Y, MORI J, CHESTER F, ISHIKAWA T, HARRIS R N, LIN W, EGUCHI N, TOCZKO S, EXPEDITION 343, 343T, AND KR13-08 SCIENTISTS. Low coseismic friction on the Tohoku-Oki fault determined from temperature measurements[J]. Science, 2013, 342(6163): 1214-7.
[7] YE L, LAY T, KANAMORI H, RIVERA L. Rupture characteristics of major and great (Mw≥7.0) megathrust earthquakes from 1990 to 2015: 1. Source parameter scaling relationships[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 826-44.
[8] YE L, LAY T, KANAMORI H, RIVERA L. Rupture characteristics of major and great (Mw≥7.0) megathrust earthquakes from 1990 to 2015: 2. Depth dependence[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 845-63.
[9] YE L, KANAMORI H, LAY T. Global variations of large megathrust earthquake rupture characteristics[J]. Science advances, 2018, 4(3): eaao4915.
[10] LAY T, KANAMORI H. An asperity model of large earthquake sequences[J]. Earthquake prediction: An international review, 1981, 4: 579-92.
[11] XU J K, ZHANG H M, CHEN X F. Rupture phase diagrams for a planar fault in 3-D full-space and half-space[J]. Geophysical Journal International, 2015, 202(3): 2194-206.
[12] BRUNE J N. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. Journal of geophysical research, 1970, 75(26): 4997-5009.
[13] MADARIAGA R. Dynamics of an expanding circular fault[J]. Bulletin of the Seismological Society of America, 1976, 66(3): 639-66.
[14] ABERCROMBIE R E, RICE J R. Can observations of earthquake scaling constrain slip weakening?[J]. Geophysical Journal International, 2005, 162(2): 406-24.
[15] SHEARER P M, PRIETO G A, HAUKSSON E. Comprehensive analysis of earthquake source spectra in southern California[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B6): B06303.
[16] ALLMANN B P, SHEARER P M. Global variations of stress drop for moderate to large earthquakes[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B1): B01310.
[17] VIEGAS G, ABERCROMBIE R E, KIM W Y. The 2002 M5 Au Sable Forks, NY, earthquake sequence: Source scaling relationships and energy budget[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B7): B07310.
[18] TRUGMAN D T, SHEARER P M. Application of an improved spectral decomposition method to examine earthquake source scaling in Southern California[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(4): 2890-910.
[19] ABERCROMBIE R E. Stress drops of repeating earthquakes on the San Andreas Fault at Parkfield[J]. Geophysical Research Letters, 2014, 41(24): 784-91.
[20] YOSHIDA K. Prevalence of asymmetrical rupture in small earthquakes and its effect on the estimation of stress drop: a systematic investigation in inland Japan[J]. Geoscience Letters, 2019, 6(1): 16.
[21] SEO M S, KIM W Y, KIM Y. Rupture Directivity of the 2021 ML 2.2 Gwangyang, Korea, Microearthquake: Toward Resolving High‐Resolution Rupture Process of a Small Earthquake[J]. The Seismic Record, 2022, 2(4): 227-36.
[22] PENNINGTON C N, WU Q, CHEN X, ABERCROMBIE R E. Quantifying rupture characteristics of microearthquakes in the Parkfield area using a high-resolution borehole network[J]. Geophysical Journal International, 2023, 233(3): 1772-85.
[23] YOSHIDA K, KANAMORI H. Time-domain source parameter estimation of Mw 3–7 earthquakes in Japan from a large database of moment-rate functions[J]. Geophysical Journal International, 2023, 234(1): 243-62.
[24] WEN J, CHEN X F, XU J K. A dynamic explanation for the ruptures of repeating earthquakes on the San Andreas Fault at Parkfield[J]. Geophysical Research Letters. 2018, 45(20):11-6.
[25] PENNINGTON C N, UCHIDE T, CHEN X. Slip characteristics of induced earthquakes: insights from the 2015 Mw 4.0 Guthrie, Oklahoma earthquake[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(5): e2021JB023564.
[26] KANEKO Y, SHEARER P M. Variability of seismic source spectra, estimated stress drop, and radiated energy, derived from cohesive‐zone models of symmetrical and asymmetrical circular and elliptical ruptures[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(2): 1053-79.
[27] MCGUIRE J J, KANEKO Y. Directly estimating earthquake rupture area using second moments to reduce the uncertainty in stress drop[J]. Geophysical Journal International, 2018, 214(3): 2224-35.
[28] DREGER D, NADEAU R M, CHUNG A. Repeating earthquake finite source models: Strong asperities revealed on the San Andreas Fault[J]. Geophysical Research Letters, 2007, 34(23): L23302.
[29] ABERCROMBIE R E. Comparison of direct and coda wave stress drop measurements for the Wells, Nevada, earthquake sequence[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(4): 1458-70.
[30] ABERCROMBIE R E. Investigating uncertainties in empirical Green's function analysis of earthquake source parameters[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(6): 4263-77.
[31] SHEARER P M, ABERCROMBIE R E, TRUGMAN D T, WANG W. Comparing EGF methods for estimating corner frequency and stress drop from P wave spectra[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3966-86.
[32] SATO T, HIRASAWA T. Body wave spectra from propagating shear cracks[J]. Journal of Physics of the Earth, 1973, 21(4): 415-31.
[33] KANEKO Y, SHEARER P M. Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture[J]. Geophysical Journal International, 2014, 197(2): 1002-15.
[34] WANG Y, DAY S M. Seismic source spectral properties of crack‐like and pulse‐like modes of dynamic rupture[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(8): 6657-84.
[35] WEN J, XU J K, CHEN X F. The relations between the corner frequency, seismic moment and source dynamic parameters derived from the spontaneous rupture of a circular fault[J]. Geophysical Journal International, 2022, 228(1): 134-46.
[36] ZHANG H M, CHEN X F. Dynamic rupture on a planar fault in three-dimensional half space—I. Theory[J]. Geophysical Journal International, 2006, 164(3): 633-52.
[37] ZHANG H, CHEN X. Dynamic rupture on a planar fault in three-dimensional half-space–II. Validations and numerical experiments[J]. Geophysical Journal International, 2006, 167(2): 917-32.
[38] AKI K, RICHARDS PG. Quantitative seismology[M], 2002.
[39] EKSTRÖM G, NETTLES M, DZIEWOŃSKI A M. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes[J]. Physics of the Earth and Planetary Interiors, 2012, 200: 1-9.
[40] KANAMORI H, RIVERA L. Source inversion of Wphase: speeding up seismic tsunami warning[J]. Geophysical Journal International, 2008, 175(1): 222-38.
[41] ZHAO L S, HELMBERGER D V. Source estimation from broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 1994, 84(1): 91-104.
[42] KIKUCHI M, KANAMORI H. Inversion of complex body waves[J]. Bulletin of the Seismological Society of America, 1982, 72(2): 491-506.
[43] OLSON A H, APSEL R J. Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake[J]. Bulletin of the Seismological Society of America, 1982, 72(6A): 1969-2001.
[44] HARTZELL S H, HEATON T H. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake[J]. Bulletin of the Seismological Society of America, 1983, 73(6A): 1553-83.
[45] KIKUCHI M, KANAMORI H. Inversion of complex body waves—III[J]. Bulletin of the Seismological Society of America, 1991, 81(6): 2335-50.
[46] SEKIGUCHI H, IWATA T. Rupture process of the 1999 Kocaeli, Turkey, earthquake estimated from strong-motion waveforms[J]. Bulletin of the Seismological Society of America, 2002, 92(1): 300-11.
[47] YAGI Y, MIKUMO T, PACHECO J, REYES G. Source rupture process of the Tecomán, Colima, Mexico earthquake of 22 January 2003, determined by joint inversion of teleseismic body-wave and near-source data[J]. Bulletin of the Seismological Society of America, 2004, 94(5): 1795-807.
[48] 周仕勇, 陈晓非, 刘金朝, 等. 近震源破裂过程反演研究—I.方法和数字试验[J]. 中国科学(D辑:地球科学), 2003, (05): 482-495.
[49] JI C, WALD D J, HELMBERGER D V. Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1192-207.
[50] JI C, WALD DJ, HELMBERGER DV. Source description of the 1999 Hector Mine, California, earthquake, part II: Complexity of slip history[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1208-26.
[51] 许力生. 地震破裂的时空过程研究[D]. 北京: 中国地震局地球物理研究所, 1995
[52] DELOUIS B, GIARDINI D, LUNDGREN P, SALICHON J. Joint inversion of InSAR, GPS, teleseismic, and strong-motion data for the spatial and temporal distribution of earthquake slip: Application to the 1999 Izmit mainshock[J]. Bulletin of the Seismological Society of America, 2002, 92(1): 278-99.
[53] KAVERINA A, DREGER D, PRICE E. The combined inversion of seismic and geodetic data for the source process of the 16 October 1999 Mw 7.1 Hector Mine, California, earthquake[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1266-80.
[54] MORI J, HARTZELL S. Source inversion of the 1988 Upland, California, earthquake: Determination of a fault plane for a small event[J]. Bulletin of the Seismological Society of America, 1990, 80(3): 507-18.
[55] DREGER D S. Empirical Green's function study of the January 17, 1994 Northridge, California earthquake. Geophysical research letters, 1994, 21(24): 2633-6.
[56] FISCHER T. Modelling of multiple events using empirical Green’s functions: method, application to swarm earthquakes and implications for their rupture propagation[J]. Geophysical Journal International, 2005, 163(3): 991-1005.
[57] HARTZELL S H. Earthquake aftershocks as Green's functions[J]. Geophysical Research Letters, 1978, 5(1): 1-4.
[58] PARK J, LINDBERG C R, VERNON III F L. Multitaper spectral analysis of high‐frequency seismograms[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B12): 12675-84.
[59] PRIETO G A. The multitaper spectrum analysis package in Python[J]. Seismological Society of America, 2022, 93(3): 1922-9.
[60] LIGORRIA J P, AMMON C J. Iterative deconvolution and receiver-function estimation[J]. Bulletin of the seismological Society of America, 1999, 89(5): 1395-400.
[61] BERTERO M, BINDI D, BOCCACCI P, CATTANEO M, EVA C, LANZA V. Application of the projected Landweber method to the estimation of the source time function in seismology[J]. Inverse Problems, 1997, 13(2): 465.
[62] 张勇. 震源破裂过程反演方法研究[D]. 北京: 北京大学, 2008.
[63] AKI K. Scaling law of seismic spectrum[J]. Journal of geophysical research, 1967, 72(4): 1217-31.
[64] KANAMORI H, ANDERSON D L. Theoretical basis of some empirical relations in seismology[J]. Bulletin of the seismological society of America, 1975, 65(5): 1073-95.
[65] IDE S, BEROZA G C. Does apparent stress vary with earthquake size?[J]. Geophysical Research Letters, 2001, 28(17): 3349-52.
[66] BOETTCHER M S, MCGARR A, JOHNSTON M. Extension of Gutenberg‐Richter distribution to Mw -1.3, no lower limit in sight[J]. Geophysical Research Letters, 2009, 36(10): L10307.
[67] COCCO M, TINTI E, CIRELLA A. On the scale dependence of earthquake stress drop[J]. Journal of Seismology, 2016, 20: 1151-70.
[68] LAPUSTA N. Modeling earthquake source processes: from tectonics to dynamic rupture[C]. In AGU Fall Meeting 2019, 2019, AGU.
[69] WU Q, CHAPMAN M, CHEN X. Stress‐drop variations of induced earthquakes in Oklahoma[J]. Bulletin of the Seismological Society of America, 2018, 108(3A): 1107-23.
[70] OTH A. On the characteristics of earthquake stress release variations in Japan[J]. Earth and Planetary Science Letters, 2013, 377: 132-41.
[71] UCHIDE T, SHEARER P M, IMANISHI K. Stress drop variations among small earthquakes before the 2011 Tohoku‐oki, Japan, earthquake and implications for the main shock[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(9): 7164-74.
[72] GOEBEL T H, HAUKSSON E, SHEARER P M, AMPUERO J P. Stress-drop heterogeneity within tectonically complex regions: A case study of San Gorgonio Pass, southern California[J]. Geophysical Journal International, 2015, 202(1): 514-28.
[73] ALLMANN B P, SHEARER P M. A high-frequency secondary event during the 2004 Parkfield earthquake[J]. Science, 2007, 318(5854): 1279-83.
[74] IDE S, BEROZA G C, PREJEAN S G, ELLSWORTH W L. Apparent break in earthquake scaling due to path and site effects on deep borehole recordings[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B5): 2271.
[75] MORI J, FRANKEL A. Source parameters for small events associated with the 1986 North Palm Springs, California, earthquake determined using empirical Green functions[J]. Bulletin of the Seismological Society of America, 1990, 80(2): 278-95.
[76] MORI J, ABERCROMBIE R E, KANAMORI H. Stress drops and radiated energies of aftershocks of the 1994 Northridge, California, earthquake[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B11): 2545.
[77] PRIETO G A, SHEARER P M, VERNON F L, KILB D. Earthquake source scaling and self‐similarity estimation from stacking P and S spectra[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B8): B08310.
[78] PRIETO G A, PARKER R L, VERNON F L, SHEARER P M, THOMSON D J, ABERCROMBIE R, MCGARR A. Uncertainties in earthquake source spectrum estimation using empirical Green functions[J]. Geophysical Monograph-American Geophysical Union, 2006, 170: 69.
[79] MAYEDA K, HOFSTETTER A, O'BOYLE J L, WALTER W R. Stable and transportable regional magnitudes based on coda-derived moment-rate spectra[J]. Bulletin of the Seismological Society of America, 2003, 93(1): 224-39.
[80] KOSTROV B V. Self-similar Problems of Propagation of Shear Cracks[J]. Journal of Applied Mathematics and Mechanics, 1964, 28(5): 1077-1087.
[81] KOSTROV B V. Unsteady Propagation of Longitudinal Shear Cracks[J]. Journal of Applied Mathematics and Mechanics, 1966, 30(6): 1241-1248.
[82] ANDREWS D J. Rupture Propagation with Finite Stress in Antiplane Strain[J]. Journal of Geophysical Research, 1976, 81(20): 3575-3582.
[83] ANDREWS D J. Rupture Velocity of Plane Strain Shear Cracks[J]. Journal of Geophysical Research, 1976, 81(32): 5679-5687.
[84] ZHANG Z, ZHANG W, CHEN X. Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics[J]. Geophysical Journal International, 2014, 199(2): 860-79.
[85] CAI Y, HE T, WANG R. Numerical simulation of dynamic process of the Tangshan earthquake by a new method—LDDA[J]. Pure and Applied Geophysics, 2000, 157(11-12): 2083-2104.
[86] AOCHI H, FUKUYAMA E, MATSU’URA M. Spontaneous rupture propagation on a non-planar fault in 3-D elastic medium[J]. Pure and Applied Geophysics, 2000, 157(11-12): 2003-2027.
[87] COCHARD A, MADARIAGA R. Dynamic faulting under rate-dependent friction[J]. Pure and Applied Geophysics, 1994, 142(3-4): 419-445.
[88] MADARIAGA R, OLSEN K B. Criticality of rupture dynamics in 3-D[J]. Pure and Applied Geophysics, 2000, 157(11-12): 1981-2001.
[89] WEI X, XU J, LIU Y, CHEN X. The slow self-arresting nature of low-frequency earthquakes[J]. Nature communications, 2021, 12(1): 5464.
[90] ZHU L, HELMBERGER D V. Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 1996, 86(5): 1634-41.
[91] ZHU L, BEN-ZION Y. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data[J]. Geophysical Journal International, 2013, 194(2): 839-43.
[92] ZHU L, RIVERA L A. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophysical Journal International. 2002, 148(3): 619-27.
[93] WEI G, CHEN K, LYU M, GONG W, DAL ZILIO L, YE L, TU H. Complex strike-slip faulting during the 2021 Mw 7.4 Maduo earthquake[J]. Communications Earth & Environment, 2023, 4(1): 319.
[94] 龚文正. 小地震震源参数和破裂机理研究[D]. 黑龙江: 哈尔滨工业大学, 2020.
[95] 陈运泰, 顾浩鼎. 震源理论基础[M]. 2011.
[96] ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the royal society of London. Series A. Mathematical and physical sciences. 1957, 241(1226): 376-96.
[97] BOATWRIGHT J. A spectral theory for circular seismic sources; simple estimates of source dimension, dynamic stress drop, and radiated seismic energy[J]. Bulletin of the Seismological Society of America, 1980, 70(1): 1-27.
[98] VASSILIOU M S, KANAMORI H. The energy release in earthquakes[J]. Bulletin of the Seismological Society of America, 1982, 72(2): 371-87.
[99] KANAMORI H, RIVERA L. Energy partitioning during an earthquake[J]. Geophysical Monograph Series, 2006, 170:3-13.
[100] 雷兴林, 王志伟, 马胜利, 等. 关于2021年5月滇西漾濞MS 6.4地震序列特征及成因的初步研究[J]. 地震学报, 2021, 43(3): 261-286.
[101] 王月, 胡少乾, 何骁慧, 等. 2021年5月21日云南漾濞6.4级地震序列重定位及震源机制研究[J]. 地球物理学报, 2021, 64(12): 4510-4525.
[102] ZHOU Y, GHOSH A, FANG L, YUE H, ZHOU S, SU Y. A high-resolution seismic catalog for the 2021 Ms6.4/Mw6.1 Yangbi earthquake sequence, Yunnan, China: Application of AI picker and Matched Filter[J]. Earthquake Science, 2021, 34(5): 390-8.
[103] 龙锋, 祁玉萍, 易桂喜, 等. 2021年5月21日云南漾濞MS 6.4地震序列重新定位与发震构造分析[J]. 地球物理学报, 2021, 64(08): 2631-2646.
[104] ARGUS D F, GORDON R G. No‐net‐rotation model of current plate velocities incorporating plate motion model NUVEL‐1[J]. Geophysical research letters, 1991, 18(11): 2039-42.
[105] 王光明, 吴中海, 彭关灵, 等. 2021年5月21日漾濞MS 6.4地震的发震断层及其破裂特征:地震序列的重定位分析结果[J]. 地质力学学报, 2021, 27(04): 662-678.
[106] LELOUP P H, LACASSIN R, TAPPONNIER P, SCHÄRER U, ZHONG D, LIU X, ZHANG L, JI S, TRINH P T. The Ailao Shan-Red river shear zone (Yunnan, China), tertiary transform boundary of Indochina[J]. Tectonophysics, 1995, 251(1-4): 3-84.
[107] CUI X F, XIE F R, ZHANG H Y. Recent tectonic stress field zoning in Sichuan-Yunnan region and its dynamic interest[J]. Acta Seismologica Sinica, 2006, 19: 485-96.
[108] WANG M, SHEN Z K. Present‐day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774.
[109] WANG Y, WANG E, SHEN Z, WANG M, GAN W, QIAO X, MENG G, LI T, TAO W, YANG Y, CHENG J. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China[J]. Science in China Series D: Earth Sciences, 2008, 51(9): 1267-83.
[110] SUN Q, GUO Z, PEI S, FU Y V, CHEN Y J. Fluids triggered the 2021 Mw 6.1 Yangbi earthquake at an unmapped fault: Implications for the tectonics at the northern end of the red river fault[J]. Seismological Research Letters, 2022, 93(2A): 666-79.
[111] BAI Q, NI S, CHU R, JIA Z. gCAPjoint, a software package for full moment tensor inversion of moderately strong earthquakes with local and teleseismic waveforms[J]. Seismological Research Letters, 2020, 91(6): 3550-62.
[112] ZHENG X F, YAO Z X, LIANG J H, ZHENG J. The role played and opportunities provided by IGP DMC of China National Seismic Network in Wenchuan earthquake disaster relief and researches[J]. Bulletin of the Seismological Society of America, 2010, 100(5B): 2866-72.
[113] YANG Y, YAO H, WU H, ZHANG P, WANG M. A new crustal shear-velocity model in Southwest China from joint seismological inversion and its implications for regional crustal dynamics[J]. Geophysical Journal International, 2020, 220(2): 1379-93.
[114] ROSS Z E, KANAMORI H, HAUKSSON E. Anomalously large complete stress drop during the 2016 Mw 5.2 Borrego Springs earthquake inferred by waveform modeling and near‐source aftershock deficit[J]. Geophysical Research Letters, 2017, 44(12): 5994-6001.
[115] ROSS Z E, KANAMORI H, HAUKSSON E, ASO N. Dissipative intraplate faulting during the 2016 Mw 6.2 Tottori, Japan earthquake[J]. Journal of Geophysical Research: Solid Earth. 2018, 123(2): 1631-42.
[116] YE L, LAY T, ZHAN Z, KANAMORI H, HAO J L. The isolated∼ 680 km deep 30 may 2015 Mw 7.9 Ogasawara (Bonin) Islands earthquake[J]. Earth and Planetary Science Letters, 2016, 433: 169-79.
[117] 张克亮, 甘卫军, 梁诗明, 等. 2021年5月21日MS 6.4漾濞地震GNSS同震变形场及其约束反演的破裂滑动分布[J]. 地球物理学报, 2021, 64(07): 2253-2266.
[118] 杨九元, 温扬茂, 许才军. 2021年5月21日云南漾濞MS 6.4地震:一次破裂在隐伏断层上的浅源走滑事件[J]. 地球物理学报, 2021, 64(09): 3101-3110.
[119] CHEN J, HAO J, WANG Z, XU T. The 21 may 2021 Mw 6.1 Yangbi earthquake—A unilateral rupture event with conjugately distributed aftershocks[J]. Seismological Research Letters, 2022, 93(3): 1382-99.
[120] LIU C, LAY T, BRODSKY E E, DASCHER‐COUSINEAU K, XIONG X. Coseismic rupture process of the large 2019 Ridgecrest earthquakes from joint inversion of geodetic and seismological observations[J]. Geophysical Research Letters. 2019, 46(21): 11820-9.
[121] MANIGHETTI I, CAMPILLO M, BOULEY S, COTTON F. Earthquake scaling, fault segmentation, and structural maturity[J]. Earth and Planetary Science Letters, 2007, 253(3-4): 429-38.
[122] MANIGHETTI I, MERCIER A, DE BARROS L. Fault trace corrugation and segmentation as a measure of fault structural maturity[J]. Geophysical Research Letters, 2021, 48(20): e2021GL095372.
[123] KLINGER Y, OKUBO K, VALLAGE A, CHAMPENOIS J, DELORME A, ROUGIER E, LEI Z, KNIGHT E E, MUNJIZA A, SATRIANO C, BAIZE S. Earthquake damage patterns resolve complex rupture processes[J]. Geophysical Research Letters, 2018, 45(19): 10-279.
[124] DAI L, FAN X, WANG X, FANG C, ZOU C, TANG X, WEI Z, XIA M, WANG D, XU Q. Coseismic landslides triggered by the 2022 Luding Ms 6. 8 earthquake, China[J]. Landslides, 2023, 20(6): 1277-92.
[125] ALLEN C R, ZHUOLI L, HONG Q, XUEZE W, HUAWEI Z, WEISHI H. Field study of a highly active fault zone: The Xianshuihe fault of southwestern China[J]. Geological Society of America Bulletin, 1991, 103(9): 1178-99.
[126] BAI M, CHEVALIER M L, LELOUP P H, LI H, PAN J, REPLUMAZ A, WANG S, LI K, WU Q, LIU F, ZHANG J. Spatial slip rate distribution along the SE Xianshuihe fault, eastern Tibet, and earthquake hazard assessment[J]. Tectonics, 2021, 40(11): e2021TC006985.
[127] LI Y, NOCQUET J M, SHAN X, JIAN H. Heterogeneous interseismic coupling along the Xianshuihe‐Xiaojiang fault system, eastern Tibet[J]. Journal of Geophysical Research: Solid Earth. 2021, 126(11): e2020JB021187.
[128] WEN X Z, MA S L, XU X W, HE Y N. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China[J]. Physics of the Earth and Planetary Interiors, 2008, 168(1-2): 16-36.
[129] LI Y, ZHAO D, SHAN X, GAO Z, HUANG X, GONG W. Coseismic slip model of the 2022 Mw 6.7 Luding (Tibet) earthquake: pre‐and post‐earthquake interactions with surrounding major faults[J]. Geophysical Research Letters, 2022, 49(24): e2022GL102043.
[130] ZHAO X, XIAO Z, WANG W, LI J, ZHAO M, CHEN S, TANG L. Fine seismogenic fault structures and complex rupture characteristics of the 2022 M6.8 Luding, Sichuan earthquake sequence revealed by deep learning and waveform modeling[J]. Geophysical Research Letters, 2023, 50(18): e2023GL102976.
[131] ZHANG L, ZHOU Y, ZHANG X, ZHU A, LI B, WANG S, LIANG S, JIANG C, WU J, LI Y, SU J. 2022 Mw 6.6 Luding, China, earthquake: a strong continental event illuminating the Moxi seismic gap[J]. Seismological Research Letters, 2023, XX: 1–14.
[132] GUO R, LI L, ZHANG W, ZHANG Y, TANG X, DAI K, LI Y, ZHANG L, WANG J. Kinematic slip evolution during the 2022 Ms 6.8 Luding, China, earthquake: Compatible with the preseismic locked patch[J]. Geophysical Research Letters, 2023, 50(5): e2023GL103164.
[133] LIANG H, WU Y, SHAO Z, LI J, LI Y, YI S, YANG F, ZHUANG W, WANG H, ZHAN W, CHEN C. Coseismic slip and deformation mode of the 2022 Mw 6.5 Luding earthquake determined by GPS observation[J]. Tectonophysics, 2023, 865: 230042.
[134] ZOU R, WANG J, ZHAO X, FANG Z, CHEN K, FANG R, WANG Q. Slip model of the 2022 Mw 6.6 Luding earthquake from inversion of GNSS and InSAR with Sentinel-1[J]. Seismological Research Letters, 2023.
[135] SHAN B, XIONG X, WANG R, ZHENG Y, YANG S. Coulomb stress evolution along Xianshuihe–Xiaojiang Fault System since 1713 and its interaction with Wenchuan earthquake, May 12, 2008[J]. Earth and Planetary Science Letters, 2013, 377: 199-210.
[136] SONG X, LEI J, ZOU K. The 2022 Luding, Sichuan, China, M 6.8 earthquake: A fluid-related earthquake?[J]. Journal of Asian Earth Sciences, 2023, 9: 105543.
[137] 张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑:地球科学), 2003, 33(S1): 12-20.
[138] BAI M, CHEVALIER M L, LELOUP P H, LI H, PAN J, REPLUMAZ A, WANG S, LI K, WU Q, LIU F, ZHANG J. Spatial slip rate distribution along the SE Xianshuihe fault, eastern Tibet, and earthquake hazard assessment[J]. Tectonics, 2021, 40(11): e2021TC006985.
[139] 刘泽民, 李俊, 苏金蓉, 等. 2022年四川泸定M_S6.8地震余震序列的自动构建与地震活动性分析[J]. 地球物理学报, 2023, 66(05): 1976-1990.
[140] 张建勇, 王新, 陈凌, 等. 2022-2023年四川泸定Ms6.8、Ms5.0和Ms5.6地震序列的发震构造及成因. 地球物理学报, 2024.
[141] 刘影, 于子叶, 张智奇, 等. 基于密集流动台阵构建的川滇地区高分辨率公共速度模型2.0版本[J]. 中国科学:地球科学, 2023, 53(10):2407-2424.
[142] BROCHER T M. Empirical relations between elastic wavespeeds and density in the Earth's crust[J]. Bulletin of the seismological Society of America, 2005, 95(6): 2081-92.
[143] 李传友, 孙凯, 马骏, 等. 四川泸定6.8级地震——鲜水河断裂带磨西段局部发起、全段参与的一次复杂事件[J]. 地震地质, 2022, 44(06): 1648-1666.
[144] OKADA Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1135-54.
[145] GONG W, YE L, QIU Y, LAY T, KANAMORI H. Rupture directivity of the 2021 Mw 6.0 Yangbi, Yunnan earthquake[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(9): e2022JB024321.
[146] GUO H, LAY T, BRODSKY E E. Seismological indicators of geologically inferred fault maturity[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(10): e2023JB027096.
[147] KING G C, STEIN R S, LIN J. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 1994, 84(3): 935-53.
[148] TODA S, STEIN R S. Central shutdown and surrounding activation of aftershocks from megathrust earthquake stress transfer[J]. Nature Geoscience, 2022, 15(6): 494-500.
[149] TODA S, STEIN R S, SEVILGEN V, LIN J. Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—user guide[J]. US Geological Survey open-file report, 2011, 1060(2011): 63.
[150] DIETERICH J H, SMITH D E. Nonplanar faults: Mechanics of slip and off-fault damage[J]. Mechanics, structure and evolution of fault zones, 2010: 1799-815.
[151] HARDEBECK J L, HARRIS R A. Earthquakes in the shadows: Why aftershocks occur at surprising locations[J]. The Seismic Record, 2022, 2(3): 207-16.
[152] LAY T, WALLACE T C. Modern global seismology[M]. Elsevier, 1995, p391.
[153] SHIMAZAKI K. Small and large earthquakes: the effects of the thickness of seismogenic layer and the free surface[J]. Earthquake source mechanics, 1986, 37: 209-16.
[154] ZHANG X, FENG W, LI D, YIN F, YI L. Diverse rupture processes of the 2014 Kangding, China, earthquake doublet (MW 6.0 and 5.7) and driving mechanisms of aftershocks[J]. Tectonophysics. 2021, 820: 229118.
[155] LI T S, DU Q F, ZHANG C, YOU Z. The active Xianshuihe Fault Zone and its seismic risk assessment[J]. Chengdu: Chengdu Cartographic Publishing House, 1997.
[156] JIANG G, XU X, CHEN G, LIU Y, FUKAHATA Y, WANG H, YU G, TAN X, XU C. Geodetic imaging of potential seismogenic asperities on the Xianshuihe‐Anninghe‐Zemuhe fault system, southwest China, with a new 3‐D viscoelastic interseismic coupling model[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(3): 1855-73.
[157] 李钟武, 陈继良, 胡发德, 等. 贡嘎山地区地质构造[A]//中国科学院成都地理研究所. 贡嘎山地理考察[M]. 重庆: 科学技术文献出版社重庆分社, 1983, 4-20.
[158] 袁伟, 冉光静, 张恒. 海螺沟温泉地质成因分析[J]. 中国矿业, 2015, 24(04): 83-87.
[159] 冯静, 孔军, 康宏, 等. 2016年3月泸定地震序列重定位和震源机制研究[J]. 地球物理学进展, 2018, 33(02): 451-460.
[160] WANG K, HU Y. Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge[J]. Journal of Geophysical Research: Solid Earth, 111(B6).
[161] CUBAS N, AVOUAC J P, SOULOUMIAC P, LEROY Y. Megathrust friction determined from mechanical analysis of the forearc in the Maule earthquake area[J]. Earth and Planetary Science Letters, 2013, 381: 92-103.
[162] BEROZA G C, ZOBACK M D. Mechanism diversity of the Loma Prieta aftershocks and the mechanics of mainshock-aftershock interaction[J]. Science, 1993, 259(5092): 210-3.
[163] HARDEBECK J L, OKADA T. Temporal stress changes caused by earthquakes: A review[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 1350-65.
[164] HOUSTON H. Low friction and fault weakening revealed by rising sensitivity of tremor to tidal stress[J]. Nature Geoscience, 2015, 8(5): 409-15.
[165] KERANEN K M, SAVAGE H M, ABERS G A, COCHRAN E S. Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence[J]. Geology, 2013, 41(6): 699-702.
[166] LEI X, WANG Z, SU J. The December 2018 ML 5.7 and January 2019 ML 5.3 earthquakes in South Sichuan basin induced by shale gas hydraulic fracturing[J]. Seismological Research Letters, 2019, 90(3): 1099-110.
[167] SHENG M, CHU R, NI S, WANG Y, JIANG L, YANG H. Source parameters of three moderate size earthquakes in Weiyuan, China, and their relations to shale gas hydraulic fracturing[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(10): e2020JB019932.
[168] ELLSWORTH W L. Injection-induced earthquakes[J]. Science, 2013, 341(6142): 1225942.
[169] BAO X, EATON D W. Fault activation by hydraulic fracturing in western Canada[J]. Science, 2016, 354(6318): 1406-9.
[170] BHATTACHARYA P, VIESCA R C. Fluid-induced aseismic fault slip outpaces pore-fluid migration[J]. Science, 2019, 364(6439): 464-8.
[171] DENG K, LIU Y, HARRINGTON R M. Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence[J]. Geophysical Research Letters, 2016, 43(16): 8482-91.
[172] EYRE TS, EATON D W, GARAGASH D I, ZECEVIC M, VENIERI M, WEIR R, LAWTON D C. The role of aseismic slip in hydraulic fracturing–induced seismicity[J]. Science advances, 2019, 5(8): eaav7172.
[173] SHENG M, CHU R, PENG Z, WEI Z, ZENG X, WANG Q, WANG Y. Earthquakes triggered by fluid diffusion and boosted by fault reactivation in Weiyuan, China due to hydraulic fracturing[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(5): e2021JB022963.
[174] CHU R, SHENG M. Stress features inferred from induced earthquakes in the Weiyuan shale gas block in southwestern China[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(2): e2022JB025344.
[175] ZHAO C, ZHAO C, LEI H, YAO M. Seismic activities before and after the impoundment of the Xiangjiaba and Xiluodu reservoirs in the lower Jinsha River[J]. Earthquake Science, 2022, 35(5): 355-70.
[176] LEI H, WANG Q, ZHAO C, ZHAO C, ZHANG J, LI J. Seismic analysis of the Xiluodu reservoir area and insights into the geometry of seismogenic faults[J]. Earthquake Science, 2022, 35(5): 371-86.
[177] KANAMORI H, BRODSKY E E. The physics of earthquakes[J]. Reports on progress in physics, 2004, 67(8): 1429.
修改评论