中文版 | English
题名

中小地震的破裂过程研究

其他题名
INVESTIGATIONS ON RUPTURE PROCESS OF MODERATE AND SMALL EARTHQUAKES
姓名
姓名拼音
GONG Wenzheng
学号
12031300
学位类型
博士
学位专业
0708 地球物理学
学科门类/专业学位类别
07 理学
导师
陈晓非
导师单位
地球与空间科学系;地球与空间科学系
论文答辩日期
2024-05-10
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

研究断层上地震的破裂过程以及发震机制,有助于人们认识发震断层的性质和状态,进而更好地评估断层潜在的地震危险性。相比于大地震,56级中等地震有较高的发生频率,它能够给断层上的破裂研究带来丰富的地震观测资料。基于近源宽频带台站的视震源时间函数(AMRFs)数据,我们研究了2021年云南漾濞MW 6.0地震的破裂过程。该地震发生在青藏高原东南缘川滇块体西南边界的未知右旋走滑断层上。破裂沿断层走向向东南方向单向传播了~8 km,破裂速度为2.4 km/s,峰值滑动量为~2.1 m。由于应力被分散,主震破裂在三个分叉断层的位置处停止。余震和前震主要发生在主要滑动区域的外围,这表明在主要滑动区域的应力基本被释放了。漾濞地震有相对低的ER/M01.5 × 10-5)以及丰富的余震和前震,这表明该未知断层可能是一个被重新激活的不成熟断层。我们也使用远场体波和GNSS数据反演了2022年四川泸定MW 6.6地震的破裂过程。该地震发生在川滇块体东北边界的左旋走滑鲜水河断层南端的磨西段。磨西段是一个地震空区,其位于与龙门山断层和安宁河断层交汇处。主震破裂主要向东南方向传播,峰值滑动量为~2.8 m,其破裂了磨西段南部~20 km,基本释放了上次地震以来积累的滑动亏欠。但是,磨西段北部并没有大的破裂并且泸定地震在其上产生了高达0.1 MPa的正静态库伦破裂应力变化(∆CFS),这使得北段存在较大的潜在地震危险性。位于主震西侧、贡嘎山东侧的余震活动性强且为正断层震源机制。我们认为贡嘎山东侧陡峭的地势有利于下方北西-南东走向的正断层形成,且地下发达的结构裂隙有利于水渗入到深部从而弱化断层使其有相对较高的地震活动性。

研究小地震的震源过程对于认识震源物理机理是非常重要的。基于简单圆盘震源模型使用震源谱估计小地震的震源参数是一种常用方法。但是,对于复杂破裂小地震, 使用震源谱估计的震源参数可能会存在较大误差, 因此我们直接反演了它们的滑动分布。我们使用近源宽频带台站的AMRFs数据估计了四川威远两个2级地震的破裂过程。两个地震都表现出复杂的滑动分布,一个为双向破裂,一个为单向破裂。它们的震源参数值有明显区别,其应力降分别为~1.4 MPa和~0.4 MPa,ER/M0分别为~1.6 × 10-5和~2.5 × 10-6。同时,我们使用经验格林函数方法获得了57个3-5级地震的AMRFs和视震源谱并通过震源谱分析估计了它们的震源参数。一些地震的AMRFs简单且视震源谱符合简单震源模型的震源谱,称为简单自停止破裂地震;一些地震的视震源谱存在“凹陷”且AMRFs较为复杂,称为复杂破裂地震。复杂破裂地震的拐角频率通常会被错误低估,从而导致估计的应力降偏小。应力降估计公式中ks/kp在1.0 - 1.5之间,平均值为~1.26,这可能意味着更小的破裂速度或者更小的P波和S波速度比。特定的震源模型会给使用震源谱估计的震源参数带来不确定性。基于破裂相图理论,我们使用破裂动力学模拟方法研究了不同动力学参数状态的自停止破裂地震的震源性质。自停止破裂地震呈现不同特征,较小临界滑移距离(Dc)地震的震源时间函数在开始阶段上升快而呈现右偏态,随着Dc增加,逐渐变为左偏态。Dc越小,ER/M0、地震辐射效率以及估计应力降公式中的k系数越大。

其他摘要

Investigating the causes and rupture process of earthquakes along faults is beneficial to understanding the properties and state of faults, which will enable a better assessment of the potential seismic hazard on the faults. Compared to larger earthquakes, M5-6 moderate earthquakes have a higher frequency, providing abundant seismic observations to investigate the rupture on faults. Based on the apparent moment rate functions (AMRFs) data extracted from near-source broadband seismic stations, we study the rupture process of the 2021 MW 6.0 Yangbi, Yunnan earthquake. The earthquake occurred on an unmapped right-lateral strike-slip fault as the southwest boundary of the Sichuan-Yunnan block along the southeastern margin of the Tibetan Platea. The rupture propagated unilaterally toward the southeast along the strike with a rupture length of ~8 km, a rupture velocity of 2.4 km/s, and a peak slip of ~2.1 m. The rupture propagation stopped near the three bifurcating faults due to the stress dispersed by these faults. Foreshocks and aftershocks are distributed near the periphery of the main slip area, suggesting the substantial release of stress in the main slip area. The low moment scaled radiated energy ER/M0 of 1.5 × 10-5 and high foreshock and aftershock productivity may be the result of reactivation of an immature fault. We also invert the rupture process of the 2022 MW 6.6 Luding, Sichuan earthquake using teleseismic and GNSS data. The earthquake occurred on the Moxi segment in the southernmost part of the left-lateral strike-slip Xianshuihe fault as the northeast boundary of the Sichuan-Yunnan block. The Moxi segment is a seismic gap, located at the intersection of the Longmenshan fault and the Anninghe fault. The rupture mainly propagated toward the southeast along the strike with a peak slip of ~2.8 m. It ruptured in the southern part of the Moxi segment with a spatial extent of ~20 km, which approximately balanced the accumulated slip deficit on it since the last earthquake. However, no large ruptures have occurred in the northern part of the Moxi segment, and the positive CFS  is up to 0.1 MPa on the northern Moxi segment induced by the Luding mainshock, indicating a relatively high seismic potential in the northern Moxi segment in the future. The aftershocks that occurred in the eastern flank of Mt. Gongga west of the mainshock have high activity and normal-faulting mechanisms. We speculate that the steep Mt. Gongga tends to favor the NW-SE trending normal faults underneath it, and the well-developed structural fissures benefit the water to penetrate into deep faults to weaken the faults, causing high seismicity.

Investigating the source process of small earthquakes is important for understanding the physics of the source process. It is a common method that estimating the source parameters of small earthquakes using the source spectra based on a simple circular source model. However, for small earthquakes with complex ruptures, the source parameters estimated using the source spectra can have significant uncertainties, so we can invert the slip distribution to estimate their source parameters. We estimated the rupture processes of two o M ~2.0 earthquakes in the Weiyuan region, Sichuan, using the AMRFs extracted from near-source broadband stations. Two earthquakes exhibited complex slip distributions, with one showing bilateral rupture and another showing unilateral rupture. They have significantly different source parameters with the stress drop of ~1.4 MPa and ~0.4 MPa, and the ER/M0  of ~1.6 × 10-5 and ~2.5 × 10-6, respectively. Meanwhile, we utilize the empirical Green's function (EGF) method to obtain AMRFs and apparent source spectra for 57 M 3-5 earthquakes and then estimate the source parameters for these earthquakes by analysis of source spectra. Some earthquakes with simple AMRFs and the apparent source spectra fitted well by those of a simple source model are referred to as simple self-arresting ruptures. Others with complex AMRFs and the apparent source spectra having "holes", are referred to as complex ruptures. The corner frequencies of complex rupture earthquakes usually be mistakenly underestimated, causing the underestimation of stress drop. The ratio of ks/kp in the stress drop estimation formula are between 1.0 and 1.5 with a mean of ~1.26, implying a low rupture velocity or ratio of P wave to S wave velocity. Specific source models can introduce uncertainties for the source parameters estimated using source spectra. Based on the rupture phase diagram, we investigate the source properties of self-arresting rupture earthquakes with varied dynamic parameters by dynamic simulation. The source time functions of the earthquakes with less critical slip distance (Dc) exhibit a right-skewed shape with a rapid rise at the initiation, and turn a left-skewed shape with a large Dc. As Ddecreases, the ER/M0, seismic radiation efficiency, and the k coefficient in stress drop estimation increase.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] 张勇, 冯万鹏, 许力生, 周成虎, 陈运泰. 2008年汶川大地震的时空破裂过程[J]. 中国科学(D辑:地球科学), 2008, 38(10): 1186-1194.
[2] LAY T, KANAMORI H, AMMON C J, NETTLES M, WARD S N, ASTER R C, BECK S L, BILEK S L, BRUDZINSKI M R, BUTLER R, DESHON H R. The great Sumatra-Andaman earthquake of 26 december 2004[J]. Science, 2005, 308(5725): 1127-33.
[3] LAY T. Rupture process of the 2008 Wenchuan, China, earthquake: A review[J]. Earthquake and Disaster Risk: Decade Retrospective of the Wenchuan Earthquake, 2019: 31-67.
[4] AMMON C J, JI C, THIO H K, ROBINSON D, NI S, HJORLEIFSDOTTIR V, KANAMORI H, LAY T, DAS S, HELMBERGER D, ICHINOSE G. Rupture process of the 2004 Sumatra-Andaman earthquake[J]. Science, 2005, 308(5725): 1133-9.
[5] CHESTER F M, ROWE C, UJIIE K, KIRKPATRICK J, REGALLA C, REMITTI F, MOORE J C, TOY V, WOLFSON-SCHWEHR M, BOSE S, KAMEDA J. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake[J]. Science, 2013, 342(6163): 1208-11.
[6] FULTON P M, BRODSKY E E, KANO Y, MORI J, CHESTER F, ISHIKAWA T, HARRIS R N, LIN W, EGUCHI N, TOCZKO S, EXPEDITION 343, 343T, AND KR13-08 SCIENTISTS. Low coseismic friction on the Tohoku-Oki fault determined from temperature measurements[J]. Science, 2013, 342(6163): 1214-7.
[7] YE L, LAY T, KANAMORI H, RIVERA L. Rupture characteristics of major and great (Mw≥7.0) megathrust earthquakes from 1990 to 2015: 1. Source parameter scaling relationships[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 826-44.
[8] YE L, LAY T, KANAMORI H, RIVERA L. Rupture characteristics of major and great (Mw≥7.0) megathrust earthquakes from 1990 to 2015: 2. Depth dependence[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 845-63.
[9] YE L, KANAMORI H, LAY T. Global variations of large megathrust earthquake rupture characteristics[J]. Science advances, 2018, 4(3): eaao4915.
[10] LAY T, KANAMORI H. An asperity model of large earthquake sequences[J]. Earthquake prediction: An international review, 1981, 4: 579-92.
[11] XU J K, ZHANG H M, CHEN X F. Rupture phase diagrams for a planar fault in 3-D full-space and half-space[J]. Geophysical Journal International, 2015, 202(3): 2194-206.
[12] BRUNE J N. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. Journal of geophysical research, 1970, 75(26): 4997-5009.
[13] MADARIAGA R. Dynamics of an expanding circular fault[J]. Bulletin of the Seismological Society of America, 1976, 66(3): 639-66.
[14] ABERCROMBIE R E, RICE J R. Can observations of earthquake scaling constrain slip weakening?[J]. Geophysical Journal International, 2005, 162(2): 406-24.
[15] SHEARER P M, PRIETO G A, HAUKSSON E. Comprehensive analysis of earthquake source spectra in southern California[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B6): B06303.
[16] ALLMANN B P, SHEARER P M. Global variations of stress drop for moderate to large earthquakes[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B1): B01310.
[17] VIEGAS G, ABERCROMBIE R E, KIM W Y. The 2002 M5 Au Sable Forks, NY, earthquake sequence: Source scaling relationships and energy budget[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B7): B07310.
[18] TRUGMAN D T, SHEARER P M. Application of an improved spectral decomposition method to examine earthquake source scaling in Southern California[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(4): 2890-910.
[19] ABERCROMBIE R E. Stress drops of repeating earthquakes on the San Andreas Fault at Parkfield[J]. Geophysical Research Letters, 2014, 41(24): 784-91.
[20] YOSHIDA K. Prevalence of asymmetrical rupture in small earthquakes and its effect on the estimation of stress drop: a systematic investigation in inland Japan[J]. Geoscience Letters, 2019, 6(1): 16.
[21] SEO M S, KIM W Y, KIM Y. Rupture Directivity of the 2021 ML 2.2 Gwangyang, Korea, Microearthquake: Toward Resolving High‐Resolution Rupture Process of a Small Earthquake[J]. The Seismic Record, 2022, 2(4): 227-36.
[22] PENNINGTON C N, WU Q, CHEN X, ABERCROMBIE R E. Quantifying rupture characteristics of microearthquakes in the Parkfield area using a high-resolution borehole network[J]. Geophysical Journal International, 2023, 233(3): 1772-85.
[23] YOSHIDA K, KANAMORI H. Time-domain source parameter estimation of Mw 3–7 earthquakes in Japan from a large database of moment-rate functions[J]. Geophysical Journal International, 2023, 234(1): 243-62.
[24] WEN J, CHEN X F, XU J K. A dynamic explanation for the ruptures of repeating earthquakes on the San Andreas Fault at Parkfield[J]. Geophysical Research Letters. 2018, 45(20):11-6.
[25] PENNINGTON C N, UCHIDE T, CHEN X. Slip characteristics of induced earthquakes: insights from the 2015 Mw 4.0 Guthrie, Oklahoma earthquake[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(5): e2021JB023564.
[26] KANEKO Y, SHEARER P M. Variability of seismic source spectra, estimated stress drop, and radiated energy, derived from cohesive‐zone models of symmetrical and asymmetrical circular and elliptical ruptures[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(2): 1053-79.
[27] MCGUIRE J J, KANEKO Y. Directly estimating earthquake rupture area using second moments to reduce the uncertainty in stress drop[J]. Geophysical Journal International, 2018, 214(3): 2224-35.
[28] DREGER D, NADEAU R M, CHUNG A. Repeating earthquake finite source models: Strong asperities revealed on the San Andreas Fault[J]. Geophysical Research Letters, 2007, 34(23): L23302.
[29] ABERCROMBIE R E. Comparison of direct and coda wave stress drop measurements for the Wells, Nevada, earthquake sequence[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(4): 1458-70.
[30] ABERCROMBIE R E. Investigating uncertainties in empirical Green's function analysis of earthquake source parameters[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(6): 4263-77.
[31] SHEARER P M, ABERCROMBIE R E, TRUGMAN D T, WANG W. Comparing EGF methods for estimating corner frequency and stress drop from P wave spectra[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3966-86.
[32] SATO T, HIRASAWA T. Body wave spectra from propagating shear cracks[J]. Journal of Physics of the Earth, 1973, 21(4): 415-31.
[33] KANEKO Y, SHEARER P M. Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture[J]. Geophysical Journal International, 2014, 197(2): 1002-15.
[34] WANG Y, DAY S M. Seismic source spectral properties of crack‐like and pulse‐like modes of dynamic rupture[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(8): 6657-84.
[35] WEN J, XU J K, CHEN X F. The relations between the corner frequency, seismic moment and source dynamic parameters derived from the spontaneous rupture of a circular fault[J]. Geophysical Journal International, 2022, 228(1): 134-46.
[36] ZHANG H M, CHEN X F. Dynamic rupture on a planar fault in three-dimensional half space—I. Theory[J]. Geophysical Journal International, 2006, 164(3): 633-52.
[37] ZHANG H, CHEN X. Dynamic rupture on a planar fault in three-dimensional half-space–II. Validations and numerical experiments[J]. Geophysical Journal International, 2006, 167(2): 917-32.
[38] AKI K, RICHARDS PG. Quantitative seismology[M], 2002.
[39] EKSTRÖM G, NETTLES M, DZIEWOŃSKI A M. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes[J]. Physics of the Earth and Planetary Interiors, 2012, 200: 1-9.
[40] KANAMORI H, RIVERA L. Source inversion of Wphase: speeding up seismic tsunami warning[J]. Geophysical Journal International, 2008, 175(1): 222-38.
[41] ZHAO L S, HELMBERGER D V. Source estimation from broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 1994, 84(1): 91-104.
[42] KIKUCHI M, KANAMORI H. Inversion of complex body waves[J]. Bulletin of the Seismological Society of America, 1982, 72(2): 491-506.
[43] OLSON A H, APSEL R J. Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake[J]. Bulletin of the Seismological Society of America, 1982, 72(6A): 1969-2001.
[44] HARTZELL S H, HEATON T H. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake[J]. Bulletin of the Seismological Society of America, 1983, 73(6A): 1553-83.
[45] KIKUCHI M, KANAMORI H. Inversion of complex body waves—III[J]. Bulletin of the Seismological Society of America, 1991, 81(6): 2335-50.
[46] SEKIGUCHI H, IWATA T. Rupture process of the 1999 Kocaeli, Turkey, earthquake estimated from strong-motion waveforms[J]. Bulletin of the Seismological Society of America, 2002, 92(1): 300-11.
[47] YAGI Y, MIKUMO T, PACHECO J, REYES G. Source rupture process of the Tecomán, Colima, Mexico earthquake of 22 January 2003, determined by joint inversion of teleseismic body-wave and near-source data[J]. Bulletin of the Seismological Society of America, 2004, 94(5): 1795-807.
[48] 周仕勇, 陈晓非, 刘金朝, 等. 近震源破裂过程反演研究—I.方法和数字试验[J]. 中国科学(D辑:地球科学), 2003, (05): 482-495.
[49] JI C, WALD D J, HELMBERGER D V. Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1192-207.
[50] JI C, WALD DJ, HELMBERGER DV. Source description of the 1999 Hector Mine, California, earthquake, part II: Complexity of slip history[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1208-26.
[51] 许力生. 地震破裂的时空过程研究[D]. 北京: 中国地震局地球物理研究所, 1995
[52] DELOUIS B, GIARDINI D, LUNDGREN P, SALICHON J. Joint inversion of InSAR, GPS, teleseismic, and strong-motion data for the spatial and temporal distribution of earthquake slip: Application to the 1999 Izmit mainshock[J]. Bulletin of the Seismological Society of America, 2002, 92(1): 278-99.
[53] KAVERINA A, DREGER D, PRICE E. The combined inversion of seismic and geodetic data for the source process of the 16 October 1999 Mw 7.1 Hector Mine, California, earthquake[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1266-80.
[54] MORI J, HARTZELL S. Source inversion of the 1988 Upland, California, earthquake: Determination of a fault plane for a small event[J]. Bulletin of the Seismological Society of America, 1990, 80(3): 507-18.
[55] DREGER D S. Empirical Green's function study of the January 17, 1994 Northridge, California earthquake. Geophysical research letters, 1994, 21(24): 2633-6.
[56] FISCHER T. Modelling of multiple events using empirical Green’s functions: method, application to swarm earthquakes and implications for their rupture propagation[J]. Geophysical Journal International, 2005, 163(3): 991-1005.
[57] HARTZELL S H. Earthquake aftershocks as Green's functions[J]. Geophysical Research Letters, 1978, 5(1): 1-4.
[58] PARK J, LINDBERG C R, VERNON III F L. Multitaper spectral analysis of high‐frequency seismograms[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B12): 12675-84.
[59] PRIETO G A. The multitaper spectrum analysis package in Python[J]. Seismological Society of America, 2022, 93(3): 1922-9.
[60] LIGORRIA J P, AMMON C J. Iterative deconvolution and receiver-function estimation[J]. Bulletin of the seismological Society of America, 1999, 89(5): 1395-400.
[61] BERTERO M, BINDI D, BOCCACCI P, CATTANEO M, EVA C, LANZA V. Application of the projected Landweber method to the estimation of the source time function in seismology[J]. Inverse Problems, 1997, 13(2): 465.
[62] 张勇. 震源破裂过程反演方法研究[D]. 北京: 北京大学, 2008.
[63] AKI K. Scaling law of seismic spectrum[J]. Journal of geophysical research, 1967, 72(4): 1217-31.
[64] KANAMORI H, ANDERSON D L. Theoretical basis of some empirical relations in seismology[J]. Bulletin of the seismological society of America, 1975, 65(5): 1073-95.
[65] IDE S, BEROZA G C. Does apparent stress vary with earthquake size?[J]. Geophysical Research Letters, 2001, 28(17): 3349-52.
[66] BOETTCHER M S, MCGARR A, JOHNSTON M. Extension of Gutenberg‐Richter distribution to Mw -1.3, no lower limit in sight[J]. Geophysical Research Letters, 2009, 36(10): L10307.
[67] COCCO M, TINTI E, CIRELLA A. On the scale dependence of earthquake stress drop[J]. Journal of Seismology, 2016, 20: 1151-70.
[68] LAPUSTA N. Modeling earthquake source processes: from tectonics to dynamic rupture[C]. In AGU Fall Meeting 2019, 2019, AGU.
[69] WU Q, CHAPMAN M, CHEN X. Stress‐drop variations of induced earthquakes in Oklahoma[J]. Bulletin of the Seismological Society of America, 2018, 108(3A): 1107-23.
[70] OTH A. On the characteristics of earthquake stress release variations in Japan[J]. Earth and Planetary Science Letters, 2013, 377: 132-41.
[71] UCHIDE T, SHEARER P M, IMANISHI K. Stress drop variations among small earthquakes before the 2011 Tohoku‐oki, Japan, earthquake and implications for the main shock[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(9): 7164-74.
[72] GOEBEL T H, HAUKSSON E, SHEARER P M, AMPUERO J P. Stress-drop heterogeneity within tectonically complex regions: A case study of San Gorgonio Pass, southern California[J]. Geophysical Journal International, 2015, 202(1): 514-28.
[73] ALLMANN B P, SHEARER P M. A high-frequency secondary event during the 2004 Parkfield earthquake[J]. Science, 2007, 318(5854): 1279-83.
[74] IDE S, BEROZA G C, PREJEAN S G, ELLSWORTH W L. Apparent break in earthquake scaling due to path and site effects on deep borehole recordings[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B5): 2271.
[75] MORI J, FRANKEL A. Source parameters for small events associated with the 1986 North Palm Springs, California, earthquake determined using empirical Green functions[J]. Bulletin of the Seismological Society of America, 1990, 80(2): 278-95.
[76] MORI J, ABERCROMBIE R E, KANAMORI H. Stress drops and radiated energies of aftershocks of the 1994 Northridge, California, earthquake[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B11): 2545.
[77] PRIETO G A, SHEARER P M, VERNON F L, KILB D. Earthquake source scaling and self‐similarity estimation from stacking P and S spectra[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B8): B08310.
[78] PRIETO G A, PARKER R L, VERNON F L, SHEARER P M, THOMSON D J, ABERCROMBIE R, MCGARR A. Uncertainties in earthquake source spectrum estimation using empirical Green functions[J]. Geophysical Monograph-American Geophysical Union, 2006, 170: 69.
[79] MAYEDA K, HOFSTETTER A, O'BOYLE J L, WALTER W R. Stable and transportable regional magnitudes based on coda-derived moment-rate spectra[J]. Bulletin of the Seismological Society of America, 2003, 93(1): 224-39.
[80] KOSTROV B V. Self-similar Problems of Propagation of Shear Cracks[J]. Journal of Applied Mathematics and Mechanics, 1964, 28(5): 1077-1087.
[81] KOSTROV B V. Unsteady Propagation of Longitudinal Shear Cracks[J]. Journal of Applied Mathematics and Mechanics, 1966, 30(6): 1241-1248.
[82] ANDREWS D J. Rupture Propagation with Finite Stress in Antiplane Strain[J]. Journal of Geophysical Research, 1976, 81(20): 3575-3582.
[83] ANDREWS D J. Rupture Velocity of Plane Strain Shear Cracks[J]. Journal of Geophysical Research, 1976, 81(32): 5679-5687.
[84] ZHANG Z, ZHANG W, CHEN X. Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics[J]. Geophysical Journal International, 2014, 199(2): 860-79.
[85] CAI Y, HE T, WANG R. Numerical simulation of dynamic process of the Tangshan earthquake by a new method—LDDA[J]. Pure and Applied Geophysics, 2000, 157(11-12): 2083-2104.
[86] AOCHI H, FUKUYAMA E, MATSU’URA M. Spontaneous rupture propagation on a non-planar fault in 3-D elastic medium[J]. Pure and Applied Geophysics, 2000, 157(11-12): 2003-2027.
[87] COCHARD A, MADARIAGA R. Dynamic faulting under rate-dependent friction[J]. Pure and Applied Geophysics, 1994, 142(3-4): 419-445.
[88] MADARIAGA R, OLSEN K B. Criticality of rupture dynamics in 3-D[J]. Pure and Applied Geophysics, 2000, 157(11-12): 1981-2001.
[89] WEI X, XU J, LIU Y, CHEN X. The slow self-arresting nature of low-frequency earthquakes[J]. Nature communications, 2021, 12(1): 5464.
[90] ZHU L, HELMBERGER D V. Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 1996, 86(5): 1634-41.
[91] ZHU L, BEN-ZION Y. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data[J]. Geophysical Journal International, 2013, 194(2): 839-43.
[92] ZHU L, RIVERA L A. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophysical Journal International. 2002, 148(3): 619-27.
[93] WEI G, CHEN K, LYU M, GONG W, DAL ZILIO L, YE L, TU H. Complex strike-slip faulting during the 2021 Mw 7.4 Maduo earthquake[J]. Communications Earth & Environment, 2023, 4(1): 319.
[94] 龚文正. 小地震震源参数和破裂机理研究[D]. 黑龙江: 哈尔滨工业大学, 2020.
[95] 陈运泰, 顾浩鼎. 震源理论基础[M]. 2011.
[96] ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the royal society of London. Series A. Mathematical and physical sciences. 1957, 241(1226): 376-96.
[97] BOATWRIGHT J. A spectral theory for circular seismic sources; simple estimates of source dimension, dynamic stress drop, and radiated seismic energy[J]. Bulletin of the Seismological Society of America, 1980, 70(1): 1-27.
[98] VASSILIOU M S, KANAMORI H. The energy release in earthquakes[J]. Bulletin of the Seismological Society of America, 1982, 72(2): 371-87.
[99] KANAMORI H, RIVERA L. Energy partitioning during an earthquake[J]. Geophysical Monograph Series, 2006, 170:3-13.
[100] 雷兴林, 王志伟, 马胜利, 等. 关于2021年5月滇西漾濞MS 6.4地震序列特征及成因的初步研究[J]. 地震学报, 2021, 43(3): 261-286.
[101] 王月, 胡少乾, 何骁慧, 等. 2021年5月21日云南漾濞6.4级地震序列重定位及震源机制研究[J]. 地球物理学报, 2021, 64(12): 4510-4525.
[102] ZHOU Y, GHOSH A, FANG L, YUE H, ZHOU S, SU Y. A high-resolution seismic catalog for the 2021 Ms6.4/Mw6.1 Yangbi earthquake sequence, Yunnan, China: Application of AI picker and Matched Filter[J]. Earthquake Science, 2021, 34(5): 390-8.
[103] 龙锋, 祁玉萍, 易桂喜, 等. 2021年5月21日云南漾濞MS 6.4地震序列重新定位与发震构造分析[J]. 地球物理学报, 2021, 64(08): 2631-2646.
[104] ARGUS D F, GORDON R G. No‐net‐rotation model of current plate velocities incorporating plate motion model NUVEL‐1[J]. Geophysical research letters, 1991, 18(11): 2039-42.
[105] 王光明, 吴中海, 彭关灵, 等. 2021年5月21日漾濞MS 6.4地震的发震断层及其破裂特征:地震序列的重定位分析结果[J]. 地质力学学报, 2021, 27(04): 662-678.
[106] LELOUP P H, LACASSIN R, TAPPONNIER P, SCHÄRER U, ZHONG D, LIU X, ZHANG L, JI S, TRINH P T. The Ailao Shan-Red river shear zone (Yunnan, China), tertiary transform boundary of Indochina[J]. Tectonophysics, 1995, 251(1-4): 3-84.
[107] CUI X F, XIE F R, ZHANG H Y. Recent tectonic stress field zoning in Sichuan-Yunnan region and its dynamic interest[J]. Acta Seismologica Sinica, 2006, 19: 485-96.
[108] WANG M, SHEN Z K. Present‐day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774.
[109] WANG Y, WANG E, SHEN Z, WANG M, GAN W, QIAO X, MENG G, LI T, TAO W, YANG Y, CHENG J. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China[J]. Science in China Series D: Earth Sciences, 2008, 51(9): 1267-83.
[110] SUN Q, GUO Z, PEI S, FU Y V, CHEN Y J. Fluids triggered the 2021 Mw 6.1 Yangbi earthquake at an unmapped fault: Implications for the tectonics at the northern end of the red river fault[J]. Seismological Research Letters, 2022, 93(2A): 666-79.
[111] BAI Q, NI S, CHU R, JIA Z. gCAPjoint, a software package for full moment tensor inversion of moderately strong earthquakes with local and teleseismic waveforms[J]. Seismological Research Letters, 2020, 91(6): 3550-62.
[112] ZHENG X F, YAO Z X, LIANG J H, ZHENG J. The role played and opportunities provided by IGP DMC of China National Seismic Network in Wenchuan earthquake disaster relief and researches[J]. Bulletin of the Seismological Society of America, 2010, 100(5B): 2866-72.
[113] YANG Y, YAO H, WU H, ZHANG P, WANG M. A new crustal shear-velocity model in Southwest China from joint seismological inversion and its implications for regional crustal dynamics[J]. Geophysical Journal International, 2020, 220(2): 1379-93.
[114] ROSS Z E, KANAMORI H, HAUKSSON E. Anomalously large complete stress drop during the 2016 Mw 5.2 Borrego Springs earthquake inferred by waveform modeling and near‐source aftershock deficit[J]. Geophysical Research Letters, 2017, 44(12): 5994-6001.
[115] ROSS Z E, KANAMORI H, HAUKSSON E, ASO N. Dissipative intraplate faulting during the 2016 Mw 6.2 Tottori, Japan earthquake[J]. Journal of Geophysical Research: Solid Earth. 2018, 123(2): 1631-42.
[116] YE L, LAY T, ZHAN Z, KANAMORI H, HAO J L. The isolated∼ 680 km deep 30 may 2015 Mw 7.9 Ogasawara (Bonin) Islands earthquake[J]. Earth and Planetary Science Letters, 2016, 433: 169-79.
[117] 张克亮, 甘卫军, 梁诗明, 等. 2021年5月21日MS 6.4漾濞地震GNSS同震变形场及其约束反演的破裂滑动分布[J]. 地球物理学报, 2021, 64(07): 2253-2266.
[118] 杨九元, 温扬茂, 许才军. 2021年5月21日云南漾濞MS 6.4地震:一次破裂在隐伏断层上的浅源走滑事件[J]. 地球物理学报, 2021, 64(09): 3101-3110.
[119] CHEN J, HAO J, WANG Z, XU T. The 21 may 2021 Mw 6.1 Yangbi earthquake—A unilateral rupture event with conjugately distributed aftershocks[J]. Seismological Research Letters, 2022, 93(3): 1382-99.
[120] LIU C, LAY T, BRODSKY E E, DASCHER‐COUSINEAU K, XIONG X. Coseismic rupture process of the large 2019 Ridgecrest earthquakes from joint inversion of geodetic and seismological observations[J]. Geophysical Research Letters. 2019, 46(21): 11820-9.
[121] MANIGHETTI I, CAMPILLO M, BOULEY S, COTTON F. Earthquake scaling, fault segmentation, and structural maturity[J]. Earth and Planetary Science Letters, 2007, 253(3-4): 429-38.
[122] MANIGHETTI I, MERCIER A, DE BARROS L. Fault trace corrugation and segmentation as a measure of fault structural maturity[J]. Geophysical Research Letters, 2021, 48(20): e2021GL095372.
[123] KLINGER Y, OKUBO K, VALLAGE A, CHAMPENOIS J, DELORME A, ROUGIER E, LEI Z, KNIGHT E E, MUNJIZA A, SATRIANO C, BAIZE S. Earthquake damage patterns resolve complex rupture processes[J]. Geophysical Research Letters, 2018, 45(19): 10-279.
[124] DAI L, FAN X, WANG X, FANG C, ZOU C, TANG X, WEI Z, XIA M, WANG D, XU Q. Coseismic landslides triggered by the 2022 Luding Ms 6. 8 earthquake, China[J]. Landslides, 2023, 20(6): 1277-92.
[125] ALLEN C R, ZHUOLI L, HONG Q, XUEZE W, HUAWEI Z, WEISHI H. Field study of a highly active fault zone: The Xianshuihe fault of southwestern China[J]. Geological Society of America Bulletin, 1991, 103(9): 1178-99.
[126] BAI M, CHEVALIER M L, LELOUP P H, LI H, PAN J, REPLUMAZ A, WANG S, LI K, WU Q, LIU F, ZHANG J. Spatial slip rate distribution along the SE Xianshuihe fault, eastern Tibet, and earthquake hazard assessment[J]. Tectonics, 2021, 40(11): e2021TC006985.
[127] LI Y, NOCQUET J M, SHAN X, JIAN H. Heterogeneous interseismic coupling along the Xianshuihe‐Xiaojiang fault system, eastern Tibet[J]. Journal of Geophysical Research: Solid Earth. 2021, 126(11): e2020JB021187.
[128] WEN X Z, MA S L, XU X W, HE Y N. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China[J]. Physics of the Earth and Planetary Interiors, 2008, 168(1-2): 16-36.
[129] LI Y, ZHAO D, SHAN X, GAO Z, HUANG X, GONG W. Coseismic slip model of the 2022 Mw 6.7 Luding (Tibet) earthquake: pre‐and post‐earthquake interactions with surrounding major faults[J]. Geophysical Research Letters, 2022, 49(24): e2022GL102043.
[130] ZHAO X, XIAO Z, WANG W, LI J, ZHAO M, CHEN S, TANG L. Fine seismogenic fault structures and complex rupture characteristics of the 2022 M6.8 Luding, Sichuan earthquake sequence revealed by deep learning and waveform modeling[J]. Geophysical Research Letters, 2023, 50(18): e2023GL102976.
[131] ZHANG L, ZHOU Y, ZHANG X, ZHU A, LI B, WANG S, LIANG S, JIANG C, WU J, LI Y, SU J. 2022 Mw 6.6 Luding, China, earthquake: a strong continental event illuminating the Moxi seismic gap[J]. Seismological Research Letters, 2023, XX: 1–14.
[132] GUO R, LI L, ZHANG W, ZHANG Y, TANG X, DAI K, LI Y, ZHANG L, WANG J. Kinematic slip evolution during the 2022 Ms 6.8 Luding, China, earthquake: Compatible with the preseismic locked patch[J]. Geophysical Research Letters, 2023, 50(5): e2023GL103164.
[133] LIANG H, WU Y, SHAO Z, LI J, LI Y, YI S, YANG F, ZHUANG W, WANG H, ZHAN W, CHEN C. Coseismic slip and deformation mode of the 2022 Mw 6.5 Luding earthquake determined by GPS observation[J]. Tectonophysics, 2023, 865: 230042.
[134] ZOU R, WANG J, ZHAO X, FANG Z, CHEN K, FANG R, WANG Q. Slip model of the 2022 Mw 6.6 Luding earthquake from inversion of GNSS and InSAR with Sentinel-1[J]. Seismological Research Letters, 2023.
[135] SHAN B, XIONG X, WANG R, ZHENG Y, YANG S. Coulomb stress evolution along Xianshuihe–Xiaojiang Fault System since 1713 and its interaction with Wenchuan earthquake, May 12, 2008[J]. Earth and Planetary Science Letters, 2013, 377: 199-210.
[136] SONG X, LEI J, ZOU K. The 2022 Luding, Sichuan, China, M 6.8 earthquake: A fluid-related earthquake?[J]. Journal of Asian Earth Sciences, 2023, 9: 105543.
[137] 张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑:地球科学), 2003, 33(S1): 12-20.
[138] BAI M, CHEVALIER M L, LELOUP P H, LI H, PAN J, REPLUMAZ A, WANG S, LI K, WU Q, LIU F, ZHANG J. Spatial slip rate distribution along the SE Xianshuihe fault, eastern Tibet, and earthquake hazard assessment[J]. Tectonics, 2021, 40(11): e2021TC006985.
[139] 刘泽民, 李俊, 苏金蓉, 等. 2022年四川泸定M_S6.8地震余震序列的自动构建与地震活动性分析[J]. 地球物理学报, 2023, 66(05): 1976-1990.
[140] 张建勇, 王新, 陈凌, 等. 2022-2023年四川泸定Ms6.8、Ms5.0和Ms5.6地震序列的发震构造及成因. 地球物理学报, 2024.
[141] 刘影, 于子叶, 张智奇, 等. 基于密集流动台阵构建的川滇地区高分辨率公共速度模型2.0版本[J]. 中国科学:地球科学, 2023, 53(10):2407-2424.
[142] BROCHER T M. Empirical relations between elastic wavespeeds and density in the Earth's crust[J]. Bulletin of the seismological Society of America, 2005, 95(6): 2081-92.
[143] 李传友, 孙凯, 马骏, 等. 四川泸定6.8级地震——鲜水河断裂带磨西段局部发起、全段参与的一次复杂事件[J]. 地震地质, 2022, 44(06): 1648-1666.
[144] OKADA Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1135-54.
[145] GONG W, YE L, QIU Y, LAY T, KANAMORI H. Rupture directivity of the 2021 Mw 6.0 Yangbi, Yunnan earthquake[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(9): e2022JB024321.
[146] GUO H, LAY T, BRODSKY E E. Seismological indicators of geologically inferred fault maturity[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(10): e2023JB027096.
[147] KING G C, STEIN R S, LIN J. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 1994, 84(3): 935-53.
[148] TODA S, STEIN R S. Central shutdown and surrounding activation of aftershocks from megathrust earthquake stress transfer[J]. Nature Geoscience, 2022, 15(6): 494-500.
[149] TODA S, STEIN R S, SEVILGEN V, LIN J. Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—user guide[J]. US Geological Survey open-file report, 2011, 1060(2011): 63.
[150] DIETERICH J H, SMITH D E. Nonplanar faults: Mechanics of slip and off-fault damage[J]. Mechanics, structure and evolution of fault zones, 2010: 1799-815.
[151] HARDEBECK J L, HARRIS R A. Earthquakes in the shadows: Why aftershocks occur at surprising locations[J]. The Seismic Record, 2022, 2(3): 207-16.
[152] LAY T, WALLACE T C. Modern global seismology[M]. Elsevier, 1995, p391.
[153] SHIMAZAKI K. Small and large earthquakes: the effects of the thickness of seismogenic layer and the free surface[J]. Earthquake source mechanics, 1986, 37: 209-16.
[154] ZHANG X, FENG W, LI D, YIN F, YI L. Diverse rupture processes of the 2014 Kangding, China, earthquake doublet (MW 6.0 and 5.7) and driving mechanisms of aftershocks[J]. Tectonophysics. 2021, 820: 229118.
[155] LI T S, DU Q F, ZHANG C, YOU Z. The active Xianshuihe Fault Zone and its seismic risk assessment[J]. Chengdu: Chengdu Cartographic Publishing House, 1997.
[156] JIANG G, XU X, CHEN G, LIU Y, FUKAHATA Y, WANG H, YU G, TAN X, XU C. Geodetic imaging of potential seismogenic asperities on the Xianshuihe‐Anninghe‐Zemuhe fault system, southwest China, with a new 3‐D viscoelastic interseismic coupling model[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(3): 1855-73.
[157] 李钟武, 陈继良, 胡发德, 等. 贡嘎山地区地质构造[A]//中国科学院成都地理研究所. 贡嘎山地理考察[M]. 重庆: 科学技术文献出版社重庆分社, 1983, 4-20.
[158] 袁伟, 冉光静, 张恒. 海螺沟温泉地质成因分析[J]. 中国矿业, 2015, 24(04): 83-87.
[159] 冯静, 孔军, 康宏, 等. 2016年3月泸定地震序列重定位和震源机制研究[J]. 地球物理学进展, 2018, 33(02): 451-460.
[160] WANG K, HU Y. Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge[J]. Journal of Geophysical Research: Solid Earth, 111(B6).
[161] CUBAS N, AVOUAC J P, SOULOUMIAC P, LEROY Y. Megathrust friction determined from mechanical analysis of the forearc in the Maule earthquake area[J]. Earth and Planetary Science Letters, 2013, 381: 92-103.
[162] BEROZA G C, ZOBACK M D. Mechanism diversity of the Loma Prieta aftershocks and the mechanics of mainshock-aftershock interaction[J]. Science, 1993, 259(5092): 210-3.
[163] HARDEBECK J L, OKADA T. Temporal stress changes caused by earthquakes: A review[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 1350-65.
[164] HOUSTON H. Low friction and fault weakening revealed by rising sensitivity of tremor to tidal stress[J]. Nature Geoscience, 2015, 8(5): 409-15.
[165] KERANEN K M, SAVAGE H M, ABERS G A, COCHRAN E S. Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence[J]. Geology, 2013, 41(6): 699-702.
[166] LEI X, WANG Z, SU J. The December 2018 ML 5.7 and January 2019 ML 5.3 earthquakes in South Sichuan basin induced by shale gas hydraulic fracturing[J]. Seismological Research Letters, 2019, 90(3): 1099-110.
[167] SHENG M, CHU R, NI S, WANG Y, JIANG L, YANG H. Source parameters of three moderate size earthquakes in Weiyuan, China, and their relations to shale gas hydraulic fracturing[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(10): e2020JB019932.
[168] ELLSWORTH W L. Injection-induced earthquakes[J]. Science, 2013, 341(6142): 1225942.
[169] BAO X, EATON D W. Fault activation by hydraulic fracturing in western Canada[J]. Science, 2016, 354(6318): 1406-9.
[170] BHATTACHARYA P, VIESCA R C. Fluid-induced aseismic fault slip outpaces pore-fluid migration[J]. Science, 2019, 364(6439): 464-8.
[171] DENG K, LIU Y, HARRINGTON R M. Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence[J]. Geophysical Research Letters, 2016, 43(16): 8482-91.
[172] EYRE TS, EATON D W, GARAGASH D I, ZECEVIC M, VENIERI M, WEIR R, LAWTON D C. The role of aseismic slip in hydraulic fracturing–induced seismicity[J]. Science advances, 2019, 5(8): eaav7172.
[173] SHENG M, CHU R, PENG Z, WEI Z, ZENG X, WANG Q, WANG Y. Earthquakes triggered by fluid diffusion and boosted by fault reactivation in Weiyuan, China due to hydraulic fracturing[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(5): e2021JB022963.
[174] CHU R, SHENG M. Stress features inferred from induced earthquakes in the Weiyuan shale gas block in southwestern China[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(2): e2022JB025344.
[175] ZHAO C, ZHAO C, LEI H, YAO M. Seismic activities before and after the impoundment of the Xiangjiaba and Xiluodu reservoirs in the lower Jinsha River[J]. Earthquake Science, 2022, 35(5): 355-70.
[176] LEI H, WANG Q, ZHAO C, ZHAO C, ZHANG J, LI J. Seismic analysis of the Xiluodu reservoir area and insights into the geometry of seismogenic faults[J]. Earthquake Science, 2022, 35(5): 371-86.
[177] KANAMORI H, BRODSKY E E. The physics of earthquakes[J]. Reports on progress in physics, 2004, 67(8): 1429.

所在学位评定分委会
地球物理学
国内图书分类号
P315.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765947
专题南方科技大学
理学院_地球与空间科学系
推荐引用方式
GB/T 7714
龚文正. 中小地震的破裂过程研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031300-龚文正-地球与空间科学(36947KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[龚文正]的文章
百度学术
百度学术中相似的文章
[龚文正]的文章
必应学术
必应学术中相似的文章
[龚文正]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。