中文版 | English
题名

Locally-primitive block designs

其他题名
局部本原区组设计
姓名
姓名拼音
WU Yanni
学号
12031209
学位类型
博士
学位专业
0701 数学
学科门类/专业学位类别
07 理学
导师
李才恒
导师单位
数学系
论文答辩日期
2024-05-10
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

One of the most important problems in combinatorial design theory is to classify flagtransitive block designs which has been extensively studied in the literature. However, the classification problem is still a widely open and challenging problem. A block design (or 𝑡-design) is a point-block incidence geometry such that each block contains a constant number of points, and any 𝑡 points lie on a constant number of blocks. In particular, for 𝑡 ⩾ 2, each t-design is also a 2-design. Observe that the flag-transitivity implies the locally-transitivity, that is, the point stabilizer is transitive on the incident blocks, and the block stabilizer is transitive on the incident points, respectively. Further, a block design is called locally-primitive if the point stabilizer is primitive on the incident blocks, and the block stabilizer is primitive on the incident points, respectively. Due to the difficulty of classifying flag-transitive designs, scholars usually focus their attention on the subclass of them. Most of the classification of flag-transitive designs focuses on flag-transitive designs with certain parameter conditions. While we limit the local action of the automorphism group to classify, that is, limiting local primitive. In group action, the 2-transitive action is also primitive, so locally 2-transitive block designs are a subclass of locally primitive designs. The main purpose of this thesis is to provide a feasible and simplified framework for the solution of this problem, which is given as follows: 1. (The Reduction Theorem) The automorphism group of a locally-primitive block design is an almost simple group or an affine group, and acts primitively on the points; 2. Give a characterization of the locally 2-transitive block designs. The proof of the above reduction theorem involves first reducing locally-primitive designs to point-primitive ones, and then analyzing the O’Nan-Scott types of primitive (quasiprimitive) groups in detail, associated with Giudici-Li-Praeger’s reduction theorem for locally-primitive graphs. Further, for the affine case in the reduction theorem, that is, 𝒟 = (𝒫, ℬ) is a locally primitive block design and the automorphism group G is an affine group, one of the following holds: (1) The action of 𝐺 on the block set ℬ is not quasiprimitive, and 𝒟 is a non-symmetric subdesign of a known design AG𝑖(𝑑, 𝑞) for some 𝑖 with 1 ⩽ 𝑖 ⩽ 𝑑 − 1. (2) 𝐺 acts primitively both on the point set 𝒫 and the block set ℬ, the design 𝒟 is symmetric, and the point stabilizer 𝐺0 is isomorphic to the block stabilizer 𝐺𝛽, but they are not necessarily conjugate in 𝐺. For the case (2), we prove that: • if 𝐺0 is an affine group, then 𝐺 ⩽ 𝐴Γ𝐿(1, 𝑝𝑑 ); • if 𝐺0 is almost simple with a sporadic socle 𝑇, then 𝑇 is 𝐽2 or 𝐶𝑜1; • if 𝐺0 is almost simple with an alternating 𝐴𝑐 , then either 5 ⩽ 𝑐 ⩽ 8; or 𝑐 ⩾ 14 and 𝒫 is isomorphic to the fully deleted permutation module for 𝐴𝑐 ; • if all complements of the socle of 𝐺 in 𝐺 have at least 2 conjugate classes, then 𝐺0 is almost simple; in particular, if 𝐺0 and 𝐺𝛽 are not conjugate in 𝐺, then 𝐺0 is almost simple. Locally 2-transitive designs constitute a special subclass of locally-primitive block designs. For a 𝐺-locally 2-transitive design 𝒟, we show that 𝐺 is also 2-transitive on the point set 𝒫, and the intersection of two blocks is empty or a constant number of points. Combined with this property, we rule out many cases by analyzing the actions of 2-transitive permutation groups in detail.

关键词
语种
英语
培养类别
独立培养
入学年份
2020
学位授予年份
2024-07
参考文献列表

[1] BETH T, JUNGNICKEL D, LENZ H. Encyclopedia of Mathematics and its Applications:Design Theory[M]. 2nd ed. Cambridge University Press, 1999.
[2] COLBOURN C J, DINITZ J H. Discrete Mathematics and its Applications (Boca Raton):Handbook of combinatorial designs[M]. Second ed. Chapman & Hall/CRC, Boca Raton, FL,2007: xxii+984.
[3] CAMERON P J, PRAEGER C E. Block-transitive 𝑡-designs. II. Large 𝑡[M]//London Math. Soc.Lecture Note Ser.: Vol. 191 Finite geometry and combinatorics (Deinze, 1992). CambridgeUniv. Press, Cambridge, 1993: 103-119.
[4] DEVILLERS A, PRAEGER C E. Analysing flag-transitive point-imprimitive 2-designs[J].Algebr. Comb., 2023, 6(4): 1041-1055.
[5] BUEKENHOUT F, DELANDTSHEER A, DOYEN J. Finite linear spaces with flag-transitiveand locally primitive groups[J]. Atti Sem. Mat. Fis. Univ. Modena, 1985, 34(2): 193-197.
[6] BUEKENHOUT F, DELANDTSHEER A, DOYEN J. Finite linear spaces with flag-transitivegroups[J]. Journal of Combinatorial Theory, Series A, 1988, 49(2): 268-293.
[7] BUEKENHOUT F. On a theorem of O’Nan and Scott[J]. Bull. Soc. Math. Belg. Sér. B, 1988,40(1): 1-9.
[8] CAMERON P J. Finite Permutation Groups and Finite Simple Groups[J]. Bulletin of TheLondon Mathematical Society - BULL LOND MATH SOC, 1981, 13: 1-22.
[9] LIEBECK M W, PRAEGER C E, SAXL J. On the O’Nan-Scott theorem for finite primitivepermutation groups[J]. J. Austral. Math. Soc. Ser. A, 1988, 44(3): 389-396.
[10] PRAEGER C E. An O’Nan-Scott theorem for finite quasiprimitive permutation groups and anapplication to 2-arc transitive graphs[J]. J. London Math. Soc. (2), 1993, 47(2): 227-239.
[11] PRAEGER C E. Finite quasiprimitive graphs[M]//London Math. Soc. Lecture Note Ser.: Vol.241 Surveys in combinatorics, 1997 (London). Cambridge Univ. Press, Cambridge, 1997:65-85.
[12] GIUDICI M, LI C H, PRAEGER C E. Analysing finite locally 𝑠-arc transitive graphs[J]. Trans.Amer. Math. Soc., 2004, 356(1): 291-317.
[13] KANTOR W M. Classification of 2-transitive symmetric designs[J]. Graphs Combin., 1985, 1(2): 165-166.
[14] HIGMAN D G, MCLAUGHLIN J E. Geometric 𝐴𝐵𝐴-groups[J]. Illinois J. Math., 1961, 5:382-397.
[15] KANTOR W M. Primitive permutation groups of odd degree, and an application to finiteprojective planes[J]. J. Algebra, 1987, 106(1): 15-45.
[16] BUEKENHOUT F, DELANDTSHEER A, DOYEN J, et al. Linear spaces with flag-transitiveautomorphism groups[J]. Geom. Dedicata, 1990, 36(1): 89-94.
[17] CAMINA A R, PRAEGER C E. Line-transitive, point quasiprimitive automorphism groups offinite linear spaces are affine or almost simple[J]. Aequationes Math., 2001, 61(3): 221-232.
[18] O’REILLY-REGUEIRO E. On primitivity and reduction for flag-transitive symmetric designs[J]. J. Combin. Theory Ser. A, 2005, 109(1): 135-148.
[19] O’REILLY-REGUEIRO E. Classification of flag-transitive symmetric designs[M]//Electron.Notes Discrete Math.: Vol. 28 6th Czech-Slovak International Symposium on Combinatorics,Graph Theory, Algorithms and Applications. Elsevier Sci. B. V., Amsterdam, 2007: 535-542.
[20] O’REILLY-REGUEIRO E. Biplanes with flag-transitive automorphism groups of almost simpletype, with alternating or sporadic socle[J]. European J. Combin., 2005, 26(5): 577-584.
[21] O’REILLY-REGUEIRO E. Biplanes with flag-transitive automorphism groups of almost simpletype, with classical socle[J]. J. Algebraic Combin., 2007, 26(4): 529-552.
[22] O’REILLY-REGUEIRO E. Biplanes with flag-transitive automorphism groups of almost simpletype, with exceptional socle of Lie type[J]. J. Algebraic Combin., 2008, 27(4): 479-491.
[23] ZHANG Z, ZHOU S. Flag-transitive point-quasiprimitive 2-(𝑣, 𝑘, 2) designs[J]. Des. CodesCryptogr., 2018, 86(9): 1963-1971.
[24] DEVILLERS A, LIANG H, PRAEGER C E, et al. On flag-transitive 2-(𝑣, 𝑘, 2) designs[J]. J.Combin. Theory Ser. A, 2021, 177: Paper No. 105309, 45.
[25] O’REILLY-REGUEIRO E. Reduction for primitive flag-transitive (𝑣, 𝑘, 4)-symmetric designs[J]. Des. Codes Cryptogr., 2010, 56(1): 61-63.
[26] LIANG H, ZHOU S. Flag-transitive point-primitive automorphism groups of non-symmetric2-(𝑣, 𝑘, 3) designs[J]. Des. Codes Cryptogr., 2018, 86(8): 1757-1766.
[27] ZHANG Z, ZHOU S. Flag-transitive point-quasiprimitive automorphism groups of 2-designswith 𝜆 ⩽ 4[J]. Discrete Math., 2019, 342(2): 427–432.
[28] TIAN D, ZHOU S. Flag-transitive point-primitive symmetric (𝑣, 𝑘, 𝜆) designs with 𝜆 at most100[J]. J. Combin. Des., 2013, 21(4): 127-141.
[29] ZHAN X, DING S. A reduction for block-transitive triple systems[J]. Discrete Math., 2018,341(9): 2442-2447.
[30] ZHAN X, ZHOU S, CHEN G. Flag-transitive 2-(𝑣, 4, 𝜆) designs of product type[J]. J. Combin.Des., 2018, 26(9): 455-462.
[31] SHEN J, ZHOU S. Flag-transitive 2-(𝑣, 5, 𝜆) designs with sporadic socle[J]. Front. Math.China, 2020, 15(6): 1201-1210.
[32] ZHANG Z, YUAN P, ZHOU S. Flag-transitive point-primitive symmetric (𝑣, 𝑘, 𝜆) designs withbounded 𝑘[J]. Electron. J. Combin., 2020, 27(4): Paper No. 4.40, 20.
[33] ZIESCHANG P H. Flag transitive automorphism groups of 2-designs with (𝑟, 𝜆) = 1[J]. J.Algebra, 1988, 118(2): 369-375.
[34] ALAVI S H, BAYAT M, BILIOTTI M, et al. Block designs with gcd(𝑟, 𝜆) = 1 admittingflag-transitive automorphism groups[J]. Results Math., 2022, 77(4): Paper No. 151, 17.
[35] ZHANG Y, CHEN J. Reduction for flag-transitive point-primitive 2-(𝑣, 𝑘, 𝜆) designs with 𝜆prime[J]. Journal of Combinatorial Designs, 2024, 32(2): 88-101.
[36] ZHANG Y, ZHANG Z, ZHOU S. Reduction for primitive flag-transitive symmetric 2-(𝑣, 𝑘, 𝜆)designs with 𝜆 prime[J]. Discrete Math., 2020, 343(6): 111843, 4.
[37] ALAVI S H, CHOULAKI J, DANESHKHAH A. A classification of 2-designs with primereplication numbers and flag-transitive automorphism groups[J]. Miskolc Math. Notes, 2023,24(2): 535-540.
[38] ZHAO Y, ZHOU S. Flag-transitive 2-(𝑣, 𝑘, 𝜆) designs with 𝑟 > 𝜆(𝑘 − 3)[J]. Des. CodesCryptogr., 2022, 90(4): 863-869.
[39] CHEN J, SHEN J, ZHOU S. Reduction for flag-transitive symmetric designs with 𝑘 > 𝜆(𝜆−2)[J]. Discrete Math., 2023, 346(10): Paper No. 113557, 8.
[40] CHEN J, ZHOU S. Flag-transitive, point-imprimitive 2-(𝑣, 𝑘, 𝜆) symmetric designs with 𝑘 and𝜆 prime powers[J]. Des. Codes Cryptogr., 2021, 89(6): 1255-1260.
[41] BRAIć S. Primitive symmetric designs with at most 255 points[J]. Glas. Mat. Ser. III, 2010,45(65)(2): 291-305.
[42] BRAIć S, GOLEMAC A, MANDIć J, et al. Primitive symmetric designs with prime powernumber of points[J]. J. Combin. Des., 2010, 18(2): 141-154.
[43] BRAIć S, GOLEMAC A, MANDIć J, et al. Primitive symmetric designs with up to 2500 points[J]. J. Combin. Des., 2011, 19(6): 463-474.
[44] DEMPWOLFF U. Primitive rank 3 groups on symmetric designs[J]. Des. Codes Cryptogr.,2001, 22(2): 191-207.
[45] DEMPWOLFF U. Affine rank 3 groups on symmetric designs[J]. Des. Codes Cryptogr., 2004,31(2): 159-168.
[46] LIEBECK M W. The classification of finite linear spaces with flag-transitive automorphismgroups of affine type[J]. J. Combin. Theory Ser. A, 1998, 84(2): 196-235.
[47] BILIOTTI M, MONTINARO A. On flag-transitive symmetric designs of affine type[J]. J.Combin. Des., 2017, 25(2): 85-97.
[48] BILIOTTI M, MONTINARO A, RIZZO P. Nonsymmetric 2-(𝑣, 𝑘, 𝜆) designs, with (𝑟, 𝜆) = 1,admitting a solvable flag-transitive automorphism group of affine type[J]. J. Combin. Des.,2019, 27(12): 784-800.
[49] MONTINARO A, BILIOTTI M, FRANCOT E. Classification of the non-trivial 2-(𝑣, 𝑘, 𝜆)designs, with (𝑟, 𝜆) = 1 and 𝜆 > 1, admitting a non-solvable flag-transitive automorphismgroup of affine type[J]. J. Algebraic Combin., 2022, 55(3): 853-889.
[50] ALAVI S H, BURNESS T C. Large subgroups of simple groups[J]. J. Algebra, 2015, 421:187-233.
[51] ALAVI S H, BAYAT M, CHOULAKI J, et al. Flag-transitive block designs with prime replication number and almost simple groups[J]. Des. Codes Cryptogr., 2020, 88(5): 971-992.
[52] TIAN D, ZHOU S. Flag-transitive 2-(𝑣, 𝑘, 𝜆) symmetric designs with sporadic socle[J]. J.Combin. Des., 2015, 23(4): 140-150.
[53] ALAVI S H, DANESHKHAH A. Sporadic simple groups as flag-transitive automorphismgroups of symmetric designs[J]. J. Combin. Des., 2024, 32(3): 127-168.
[54] WANG Y, ZHOU S. Symmetric designs admitting flag-transitive and point-primitive almostsimple automorphism groups of Lie type[J]. J. Algebra Appl., 2017, 16(10): 1750192, 13.
[55] ALAVI S H, BAYAT M, DANESHKHAH A. Almost simple groups of Lie type and symmetricdesigns with 𝜆 prime[J]. Electron. J. Combin., 2021, 28(2): Paper No. 2.13, 38.
[56] ALAVI S H, BAYAT M, DANESHKHAH A. Finite exceptional groups of Lie type and symmetric designs[J]. Discrete Math., 2022, 345(8): Paper No. 112894, 22.
[57] ZHANG Y, ZHOU S. Flag-transitive non-symmetric 2-designs with (𝑟, 𝜆) = 1 and exceptionalgroups of Lie type[J]. Electron. J. Combin., 2020, 27(2): Paper No. 2.9, 16.
[58] ALAVI S H. Flag-transitive block designs and finite simple exceptional groups of Lie type[J].Graphs Combin., 2020, 36(4): 1001-1014.
[59] ALAVI S H, BAYAT M, DANESHKHAH A, et al. Almost simple groups with socle PSp4(𝑞) asflag-transitive automorphism groups of symmetric designs[J]. Discrete Math., 2021, 344(12):Paper No. 112615, 14.
[60] ALAVI S H, BAYAT M, DANESHKHAH A. Symmetric designs admitting flag-transitive andpoint-primitive automorphism groups associated to two dimensional projective special groups[J]. Des. Codes Cryptogr., 2016, 79(2): 337-351.
[61] TIAN D, ZHOU S. Classification of flag-transitive primitive symmetric (𝑣, 𝑘, 𝜆) designs withPSL(2, 𝑞) as socle[J]. J. Math. Res. Appl., 2016, 36(2): 127-139.
[62] ZHAN X, DING S, BAI S. Flag-transitive 2-designs from 𝑃𝑆𝐿(2, 𝑞) with block size 4[J]. Des.Codes Cryptogr., 2019, 87(11): 2723-2728.
[63] ZHAN X, LI R. Three dimensional projective special linear groups on 2-designs[J]. FiniteFields Appl., 2020, 67: 101724, 9.
[64] ALAVI S H, BAYAT M. Flag-transitive point-primitive symmetric designs and three dimensional projective special linear groups[J]. Bull. Iranian Math. Soc., 2016, 42(1): 201-221.
[65] ALAVI S H, BAYAT M, DANESHKHAH A. Symmetric designs and projective special lineargroups of dimension at most four[J]. J. Combin. Des., 2020, 28(9): 688-709.
[66] ALAVI S H, BAYAT M, DANESHKHAH A, et al. Symmetric designs and four dimensionalprojective special unitary groups[J]. Discrete Math., 2019, 342(4): 1159-1169.
[67] DANESHKHAH A. Symmetric designs and projective special unitary groups PSU5(𝑞)[J]. Int.J. Group Theory, 2022, 11(3): 175-185.
[68] ALAVI S H, BAYAT M, DANESHKHAH A. Flag-transitive block designs and unitary groups[J]. Monatsh. Math., 2020, 193(3): 535-553.
[69] ZHAN X, DING S. Comments on “Flag-transitive block designs and unitary groups”[J].Monatsh. Math., 2021, 195(1): 177-180.
[70] ALAVI S H, BAYAT M, DANESHKHAH A. Correction to: Flag-transitive block designs andunitary groups[J]. Monatsh. Math., 2021, 195(2): 371-376.
[71] HAN G, LI H L. Block designs admitting an automorphism group with an alternating socle[J].J. Zhejiang Univ. Sci. Ed., 2002, 29(3): 241-245.
[72] LIANG H, ZHOU S. Flag-transitive point-primitive non-symmetric 2-(𝑣, 𝑘, 2) designs withalternating socle[J]. Bull. Belg. Math. Soc. Simon Stevin, 2016, 23(4): 559-571.
[73] SHEN J, CHEN J, ZHOU S. Flag-transitive 2-designs with prime square replication numberand alternating groups[J]. Des. Codes Cryptogr., 2023, 91(3): 709-717.
[74] ZHU Y, GUAN H, ZHOU S. Flag-transitive 2-(𝑣, 𝑘, 𝜆) symmetric designs with (𝑘, 𝜆) = 1 andalternating socle[J]. Front. Math. China, 2015, 10(6): 1483-1496.
[75] ZHOU S, WANG Y. Flag-transitive non-symmetric 2-designs with (𝑟, 𝜆) = 1 and alternatingsocle[J]. Electron. J. Combin., 2015, 22(2): Paper 2.6, 15.
[76] WANG Y, SHEN J, ZHOU S. Alternating groups and flag-transitive non-symmetric 2-(𝑣, 𝑘, 𝜆)designs with 𝜆 ≥ (𝑟, 𝜆)2[J]. Discrete Math., 2022, 345(2): Paper No. 112703, 9.
[77] DONG H, ZHOU S. Flag-transitive primitive (𝑣, 𝑘, 𝜆) symmetric designs with 𝜆 at most 10and alternating socle[J]. J. Algebra Appl., 2014, 13(6): 1450025, 10.
[78] WANG Y, ZHOU S. Flag-transitive 2-(𝑣, 𝑘, 𝜆) symmetric designs with 𝜆 ⩾ (𝑘, 𝜆)2and alternating socle[J]. Discrete Math., 2020, 343(9): 111973, 7.
[79] DAVIES H. Flag-transitivity and primitivity[J]. Discrete Math., 1987, 63(1): 91-93.
[80] GURALNICK R M. Subgroups of prime power index in a simple group[J]. J. Algebra, 1983,81(2): 304-311.
[81] DEMBOWSKI P. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematicsand Related Areas]: Band 44 Finite geometries[M]. Springer-Verlag, Berlin-New York, 1968:xi+375.
[82] FOULSER D A. The Flag-Transitive Collineation Groups of the Finite Desarguesian AffinePlanes[J]. Canadian Journal of Mathematics, 1964, 16: 443–472.
[83] LüNEBURG H. Translation planes[M]. Springer-Verlag, Berlin-New York, 1980: ix+278.
[84] FOULSER D A. Solvable flag transitive affine groups[J]. Math. Z., 1964, 86: 191-204.
[85] HERING C. Eine nicht-desarguessche zweifach transitive affine Ebene der Ordnung 27[J].Abh. Math. Sem. Univ. Hamburg, 1969, 34: 203-208.
[86] HERING C. Two new sporadic doubly transitive linear spaces[M]//Lecture Notes in Pure andAppl. Math.: Vol. 103 Finite geometries (Winnipeg, Man., 1984). Dekker, New York, 1985:127-129.
[87] JAMES G, LIEBECK M. Representations and characters of groups[M]. Second ed. CambridgeUniversity Press, New York, 2001: viii+458.
[88] HUPPERT B. Die Grundlehren der mathematischen Wissenschaften: Band 134 EndlicheGruppen. I[M]. Springer-Verlag, Berlin-New York, 1967: xii+793.
[89] JAMES. Encyclopedia of Mathematics and its Applications: The Representation Theory of theSymmetric Group[M]. Cambridge University Press, 1984.
[90] DU S, XU M. A classification of semisymmetric graphs of order 2𝑝𝑞[J]. Comm. Algebra,2000, 28(6): 2685-2715.
[91] ZIESCHANG P H. Point regular normal subgroups of flag transitive automorphism groups of2-designs[J]. Adv. Math., 1996, 121(1): 102-123.
[92] BIGGS N L, WHITE A T. London Mathematical Society Lecture Note Series: Vol. 33 Permutation groups and combinatorial structures[M]. Cambridge University Press, Cambridge-NewYork, 1979: 140.
[93] VAN LINT J H, WILSON R M. A course in combinatorics[M]. Second ed. Cambridge University Press, Cambridge, 2001: xiv+602.
[94] KANTOR W M. Symplectic groups, symmetric designs, and line ovals[J]. J. Algebra, 1975,33: 43-58.
[95] 徐明曜. 有限群初步[M]. 北京: 科学出版社, 2014.
[96] ASCHBACHER M, SCOTT L. Maximal subgroups of finite groups[J]. J. Algebra, 1985, 92(1): 44-80.
[97] CONWAY J H, CURTIS R T, NORTON S P, et al. ATLAS of finite groups[M]. Oxford University Press, Eynsham, 1985: xxxiv+252.
[98] JANSEN C, LUX K, PARKER R, et al. London Mathematical Society Monographs. NewSeries: Vol. 11 An atlas of Brauer characters[M]. The Clarendon Press, Oxford UniversityPress, New York, 1995: xviii+327.
[99] GROUP T G. GAP – groups, algorithms, and programming[EB/OL]. 2022. http://www.gap-system.org.
[100] 徐尚进. GAP 入门导引[M]. 北京: 科学出版社, 2014.
[101] KLEIDMAN P, LIEBECK M. London Mathematical Society Lecture Note Series: Vol. 129The subgroup structure of the finite classical groups[M]. Cambridge University Press, Cambridge, 1990: x+303.
[102] JAMES G D. On the minimal dimensions of irreducible representations of symmetric groups[J]. Math. Proc. Cambridge Philos. Soc., 1983, 94(3): 417-424.
[103] LIEBECK M W, PRAEGER C E, SAXL J. A classification of the maximal subgroups of thefinite alternating and symmetric groups[J]. J. Algebra, 1987, 111(2): 365-383.
[104] CAMERON P J, VAN LINT J H. London Mathematical Society Lecture Note Series: No. 19Graph theory, coding theory and block designs[M]. Cambridge University Press, CambridgeNew York-Melbourne, 1975: v+114.
[105] CAMERON P J. Finite permutation groups and finite simple groups[J]. Bull. London Math.Soc., 1981, 13(1): 1-22.
[106] LIEBECK M W. The affine permutation groups of rank three[J]. Proc. London Math. Soc. (3),1987, 54(3): 477-516.
[107] LI C H, LIM T K, PRAEGER C E. Homogeneous factorisations of complete graphs with edgetransitive factors[J]. J. Algebraic Combin., 2009, 29(1): 107-132.
[108] BRAY J N, HOLT D F, RONEY-DOUGAL C M. London Mathematical Society Lecture NoteSeries: Vol. 407 The maximal subgroups of the low-dimensional finite classical groups[M].Cambridge University Press, Cambridge, 2013: xiv+438.
[109] 王杰. 典型群引论[M]. 北京: 北京大学出版社, 2015.
[110] WILSON R A. Graduate Texts in Mathematics: Vol. 251 The finite simple groups[M].Springer-Verlag London, Ltd., London, 2009: xvi+298.
[111] DIXON J D, MORTIMER B. Graduate Texts in Mathematics: Vol. 163 Permutation groups[M]. Springer-Verlag, New York, 1996: xii+346.
[112] HUBER M. Frontiers in Mathematics: Flag-transitive Steiner designs[M]. Birkhäuser Verlag,Basel, 2009: x+124.
[113] HéTHELYI L, HORVáTH E, PETéNYI F. The depth of subgroups of Suzuki groups[J]. Comm.Algebra, 2015, 43(10): 4553-4569.
[114] HéTHELYI L, HORVáTH E, PETéNYI F. The depth of the maximal subgroups of Ree groups[J]. Comm. Algebra, 2019, 47(1): 37-66

所在学位评定分委会
数学
国内图书分类号
O157.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765948
专题南方科技大学
理学院_数学系
推荐引用方式
GB/T 7714
Wu YN. Locally-primitive block designs[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031209-吴燕妮-数学系.pdf(1374KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴燕妮]的文章
百度学术
百度学术中相似的文章
[吴燕妮]的文章
必应学术
必应学术中相似的文章
[吴燕妮]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。