[1] BETH T, JUNGNICKEL D, LENZ H. Encyclopedia of Mathematics and its Applications:Design Theory[M]. 2nd ed. Cambridge University Press, 1999.
[2] COLBOURN C J, DINITZ J H. Discrete Mathematics and its Applications (Boca Raton):Handbook of combinatorial designs[M]. Second ed. Chapman & Hall/CRC, Boca Raton, FL,2007: xxii+984.
[3] CAMERON P J, PRAEGER C E. Block-transitive 𝑡-designs. II. Large 𝑡[M]//London Math. Soc.Lecture Note Ser.: Vol. 191 Finite geometry and combinatorics (Deinze, 1992). CambridgeUniv. Press, Cambridge, 1993: 103-119.
[4] DEVILLERS A, PRAEGER C E. Analysing flag-transitive point-imprimitive 2-designs[J].Algebr. Comb., 2023, 6(4): 1041-1055.
[5] BUEKENHOUT F, DELANDTSHEER A, DOYEN J. Finite linear spaces with flag-transitiveand locally primitive groups[J]. Atti Sem. Mat. Fis. Univ. Modena, 1985, 34(2): 193-197.
[6] BUEKENHOUT F, DELANDTSHEER A, DOYEN J. Finite linear spaces with flag-transitivegroups[J]. Journal of Combinatorial Theory, Series A, 1988, 49(2): 268-293.
[7] BUEKENHOUT F. On a theorem of O’Nan and Scott[J]. Bull. Soc. Math. Belg. Sér. B, 1988,40(1): 1-9.
[8] CAMERON P J. Finite Permutation Groups and Finite Simple Groups[J]. Bulletin of TheLondon Mathematical Society - BULL LOND MATH SOC, 1981, 13: 1-22.
[9] LIEBECK M W, PRAEGER C E, SAXL J. On the O’Nan-Scott theorem for finite primitivepermutation groups[J]. J. Austral. Math. Soc. Ser. A, 1988, 44(3): 389-396.
[10] PRAEGER C E. An O’Nan-Scott theorem for finite quasiprimitive permutation groups and anapplication to 2-arc transitive graphs[J]. J. London Math. Soc. (2), 1993, 47(2): 227-239.
[11] PRAEGER C E. Finite quasiprimitive graphs[M]//London Math. Soc. Lecture Note Ser.: Vol.241 Surveys in combinatorics, 1997 (London). Cambridge Univ. Press, Cambridge, 1997:65-85.
[12] GIUDICI M, LI C H, PRAEGER C E. Analysing finite locally 𝑠-arc transitive graphs[J]. Trans.Amer. Math. Soc., 2004, 356(1): 291-317.
[13] KANTOR W M. Classification of 2-transitive symmetric designs[J]. Graphs Combin., 1985, 1(2): 165-166.
[14] HIGMAN D G, MCLAUGHLIN J E. Geometric 𝐴𝐵𝐴-groups[J]. Illinois J. Math., 1961, 5:382-397.
[15] KANTOR W M. Primitive permutation groups of odd degree, and an application to finiteprojective planes[J]. J. Algebra, 1987, 106(1): 15-45.
[16] BUEKENHOUT F, DELANDTSHEER A, DOYEN J, et al. Linear spaces with flag-transitiveautomorphism groups[J]. Geom. Dedicata, 1990, 36(1): 89-94.
[17] CAMINA A R, PRAEGER C E. Line-transitive, point quasiprimitive automorphism groups offinite linear spaces are affine or almost simple[J]. Aequationes Math., 2001, 61(3): 221-232.
[18] O’REILLY-REGUEIRO E. On primitivity and reduction for flag-transitive symmetric designs[J]. J. Combin. Theory Ser. A, 2005, 109(1): 135-148.
[19] O’REILLY-REGUEIRO E. Classification of flag-transitive symmetric designs[M]//Electron.Notes Discrete Math.: Vol. 28 6th Czech-Slovak International Symposium on Combinatorics,Graph Theory, Algorithms and Applications. Elsevier Sci. B. V., Amsterdam, 2007: 535-542.
[20] O’REILLY-REGUEIRO E. Biplanes with flag-transitive automorphism groups of almost simpletype, with alternating or sporadic socle[J]. European J. Combin., 2005, 26(5): 577-584.
[21] O’REILLY-REGUEIRO E. Biplanes with flag-transitive automorphism groups of almost simpletype, with classical socle[J]. J. Algebraic Combin., 2007, 26(4): 529-552.
[22] O’REILLY-REGUEIRO E. Biplanes with flag-transitive automorphism groups of almost simpletype, with exceptional socle of Lie type[J]. J. Algebraic Combin., 2008, 27(4): 479-491.
[23] ZHANG Z, ZHOU S. Flag-transitive point-quasiprimitive 2-(𝑣, 𝑘, 2) designs[J]. Des. CodesCryptogr., 2018, 86(9): 1963-1971.
[24] DEVILLERS A, LIANG H, PRAEGER C E, et al. On flag-transitive 2-(𝑣, 𝑘, 2) designs[J]. J.Combin. Theory Ser. A, 2021, 177: Paper No. 105309, 45.
[25] O’REILLY-REGUEIRO E. Reduction for primitive flag-transitive (𝑣, 𝑘, 4)-symmetric designs[J]. Des. Codes Cryptogr., 2010, 56(1): 61-63.
[26] LIANG H, ZHOU S. Flag-transitive point-primitive automorphism groups of non-symmetric2-(𝑣, 𝑘, 3) designs[J]. Des. Codes Cryptogr., 2018, 86(8): 1757-1766.
[27] ZHANG Z, ZHOU S. Flag-transitive point-quasiprimitive automorphism groups of 2-designswith 𝜆 ⩽ 4[J]. Discrete Math., 2019, 342(2): 427–432.
[28] TIAN D, ZHOU S. Flag-transitive point-primitive symmetric (𝑣, 𝑘, 𝜆) designs with 𝜆 at most100[J]. J. Combin. Des., 2013, 21(4): 127-141.
[29] ZHAN X, DING S. A reduction for block-transitive triple systems[J]. Discrete Math., 2018,341(9): 2442-2447.
[30] ZHAN X, ZHOU S, CHEN G. Flag-transitive 2-(𝑣, 4, 𝜆) designs of product type[J]. J. Combin.Des., 2018, 26(9): 455-462.
[31] SHEN J, ZHOU S. Flag-transitive 2-(𝑣, 5, 𝜆) designs with sporadic socle[J]. Front. Math.China, 2020, 15(6): 1201-1210.
[32] ZHANG Z, YUAN P, ZHOU S. Flag-transitive point-primitive symmetric (𝑣, 𝑘, 𝜆) designs withbounded 𝑘[J]. Electron. J. Combin., 2020, 27(4): Paper No. 4.40, 20.
[33] ZIESCHANG P H. Flag transitive automorphism groups of 2-designs with (𝑟, 𝜆) = 1[J]. J.Algebra, 1988, 118(2): 369-375.
[34] ALAVI S H, BAYAT M, BILIOTTI M, et al. Block designs with gcd(𝑟, 𝜆) = 1 admittingflag-transitive automorphism groups[J]. Results Math., 2022, 77(4): Paper No. 151, 17.
[35] ZHANG Y, CHEN J. Reduction for flag-transitive point-primitive 2-(𝑣, 𝑘, 𝜆) designs with 𝜆prime[J]. Journal of Combinatorial Designs, 2024, 32(2): 88-101.
[36] ZHANG Y, ZHANG Z, ZHOU S. Reduction for primitive flag-transitive symmetric 2-(𝑣, 𝑘, 𝜆)designs with 𝜆 prime[J]. Discrete Math., 2020, 343(6): 111843, 4.
[37] ALAVI S H, CHOULAKI J, DANESHKHAH A. A classification of 2-designs with primereplication numbers and flag-transitive automorphism groups[J]. Miskolc Math. Notes, 2023,24(2): 535-540.
[38] ZHAO Y, ZHOU S. Flag-transitive 2-(𝑣, 𝑘, 𝜆) designs with 𝑟 > 𝜆(𝑘 − 3)[J]. Des. CodesCryptogr., 2022, 90(4): 863-869.
[39] CHEN J, SHEN J, ZHOU S. Reduction for flag-transitive symmetric designs with 𝑘 > 𝜆(𝜆−2)[J]. Discrete Math., 2023, 346(10): Paper No. 113557, 8.
[40] CHEN J, ZHOU S. Flag-transitive, point-imprimitive 2-(𝑣, 𝑘, 𝜆) symmetric designs with 𝑘 and𝜆 prime powers[J]. Des. Codes Cryptogr., 2021, 89(6): 1255-1260.
[41] BRAIć S. Primitive symmetric designs with at most 255 points[J]. Glas. Mat. Ser. III, 2010,45(65)(2): 291-305.
[42] BRAIć S, GOLEMAC A, MANDIć J, et al. Primitive symmetric designs with prime powernumber of points[J]. J. Combin. Des., 2010, 18(2): 141-154.
[43] BRAIć S, GOLEMAC A, MANDIć J, et al. Primitive symmetric designs with up to 2500 points[J]. J. Combin. Des., 2011, 19(6): 463-474.
[44] DEMPWOLFF U. Primitive rank 3 groups on symmetric designs[J]. Des. Codes Cryptogr.,2001, 22(2): 191-207.
[45] DEMPWOLFF U. Affine rank 3 groups on symmetric designs[J]. Des. Codes Cryptogr., 2004,31(2): 159-168.
[46] LIEBECK M W. The classification of finite linear spaces with flag-transitive automorphismgroups of affine type[J]. J. Combin. Theory Ser. A, 1998, 84(2): 196-235.
[47] BILIOTTI M, MONTINARO A. On flag-transitive symmetric designs of affine type[J]. J.Combin. Des., 2017, 25(2): 85-97.
[48] BILIOTTI M, MONTINARO A, RIZZO P. Nonsymmetric 2-(𝑣, 𝑘, 𝜆) designs, with (𝑟, 𝜆) = 1,admitting a solvable flag-transitive automorphism group of affine type[J]. J. Combin. Des.,2019, 27(12): 784-800.
[49] MONTINARO A, BILIOTTI M, FRANCOT E. Classification of the non-trivial 2-(𝑣, 𝑘, 𝜆)designs, with (𝑟, 𝜆) = 1 and 𝜆 > 1, admitting a non-solvable flag-transitive automorphismgroup of affine type[J]. J. Algebraic Combin., 2022, 55(3): 853-889.
[50] ALAVI S H, BURNESS T C. Large subgroups of simple groups[J]. J. Algebra, 2015, 421:187-233.
[51] ALAVI S H, BAYAT M, CHOULAKI J, et al. Flag-transitive block designs with prime replication number and almost simple groups[J]. Des. Codes Cryptogr., 2020, 88(5): 971-992.
[52] TIAN D, ZHOU S. Flag-transitive 2-(𝑣, 𝑘, 𝜆) symmetric designs with sporadic socle[J]. J.Combin. Des., 2015, 23(4): 140-150.
[53] ALAVI S H, DANESHKHAH A. Sporadic simple groups as flag-transitive automorphismgroups of symmetric designs[J]. J. Combin. Des., 2024, 32(3): 127-168.
[54] WANG Y, ZHOU S. Symmetric designs admitting flag-transitive and point-primitive almostsimple automorphism groups of Lie type[J]. J. Algebra Appl., 2017, 16(10): 1750192, 13.
[55] ALAVI S H, BAYAT M, DANESHKHAH A. Almost simple groups of Lie type and symmetricdesigns with 𝜆 prime[J]. Electron. J. Combin., 2021, 28(2): Paper No. 2.13, 38.
[56] ALAVI S H, BAYAT M, DANESHKHAH A. Finite exceptional groups of Lie type and symmetric designs[J]. Discrete Math., 2022, 345(8): Paper No. 112894, 22.
[57] ZHANG Y, ZHOU S. Flag-transitive non-symmetric 2-designs with (𝑟, 𝜆) = 1 and exceptionalgroups of Lie type[J]. Electron. J. Combin., 2020, 27(2): Paper No. 2.9, 16.
[58] ALAVI S H. Flag-transitive block designs and finite simple exceptional groups of Lie type[J].Graphs Combin., 2020, 36(4): 1001-1014.
[59] ALAVI S H, BAYAT M, DANESHKHAH A, et al. Almost simple groups with socle PSp4(𝑞) asflag-transitive automorphism groups of symmetric designs[J]. Discrete Math., 2021, 344(12):Paper No. 112615, 14.
[60] ALAVI S H, BAYAT M, DANESHKHAH A. Symmetric designs admitting flag-transitive andpoint-primitive automorphism groups associated to two dimensional projective special groups[J]. Des. Codes Cryptogr., 2016, 79(2): 337-351.
[61] TIAN D, ZHOU S. Classification of flag-transitive primitive symmetric (𝑣, 𝑘, 𝜆) designs withPSL(2, 𝑞) as socle[J]. J. Math. Res. Appl., 2016, 36(2): 127-139.
[62] ZHAN X, DING S, BAI S. Flag-transitive 2-designs from 𝑃𝑆𝐿(2, 𝑞) with block size 4[J]. Des.Codes Cryptogr., 2019, 87(11): 2723-2728.
[63] ZHAN X, LI R. Three dimensional projective special linear groups on 2-designs[J]. FiniteFields Appl., 2020, 67: 101724, 9.
[64] ALAVI S H, BAYAT M. Flag-transitive point-primitive symmetric designs and three dimensional projective special linear groups[J]. Bull. Iranian Math. Soc., 2016, 42(1): 201-221.
[65] ALAVI S H, BAYAT M, DANESHKHAH A. Symmetric designs and projective special lineargroups of dimension at most four[J]. J. Combin. Des., 2020, 28(9): 688-709.
[66] ALAVI S H, BAYAT M, DANESHKHAH A, et al. Symmetric designs and four dimensionalprojective special unitary groups[J]. Discrete Math., 2019, 342(4): 1159-1169.
[67] DANESHKHAH A. Symmetric designs and projective special unitary groups PSU5(𝑞)[J]. Int.J. Group Theory, 2022, 11(3): 175-185.
[68] ALAVI S H, BAYAT M, DANESHKHAH A. Flag-transitive block designs and unitary groups[J]. Monatsh. Math., 2020, 193(3): 535-553.
[69] ZHAN X, DING S. Comments on “Flag-transitive block designs and unitary groups”[J].Monatsh. Math., 2021, 195(1): 177-180.
[70] ALAVI S H, BAYAT M, DANESHKHAH A. Correction to: Flag-transitive block designs andunitary groups[J]. Monatsh. Math., 2021, 195(2): 371-376.
[71] HAN G, LI H L. Block designs admitting an automorphism group with an alternating socle[J].J. Zhejiang Univ. Sci. Ed., 2002, 29(3): 241-245.
[72] LIANG H, ZHOU S. Flag-transitive point-primitive non-symmetric 2-(𝑣, 𝑘, 2) designs withalternating socle[J]. Bull. Belg. Math. Soc. Simon Stevin, 2016, 23(4): 559-571.
[73] SHEN J, CHEN J, ZHOU S. Flag-transitive 2-designs with prime square replication numberand alternating groups[J]. Des. Codes Cryptogr., 2023, 91(3): 709-717.
[74] ZHU Y, GUAN H, ZHOU S. Flag-transitive 2-(𝑣, 𝑘, 𝜆) symmetric designs with (𝑘, 𝜆) = 1 andalternating socle[J]. Front. Math. China, 2015, 10(6): 1483-1496.
[75] ZHOU S, WANG Y. Flag-transitive non-symmetric 2-designs with (𝑟, 𝜆) = 1 and alternatingsocle[J]. Electron. J. Combin., 2015, 22(2): Paper 2.6, 15.
[76] WANG Y, SHEN J, ZHOU S. Alternating groups and flag-transitive non-symmetric 2-(𝑣, 𝑘, 𝜆)designs with 𝜆 ≥ (𝑟, 𝜆)2[J]. Discrete Math., 2022, 345(2): Paper No. 112703, 9.
[77] DONG H, ZHOU S. Flag-transitive primitive (𝑣, 𝑘, 𝜆) symmetric designs with 𝜆 at most 10and alternating socle[J]. J. Algebra Appl., 2014, 13(6): 1450025, 10.
[78] WANG Y, ZHOU S. Flag-transitive 2-(𝑣, 𝑘, 𝜆) symmetric designs with 𝜆 ⩾ (𝑘, 𝜆)2and alternating socle[J]. Discrete Math., 2020, 343(9): 111973, 7.
[79] DAVIES H. Flag-transitivity and primitivity[J]. Discrete Math., 1987, 63(1): 91-93.
[80] GURALNICK R M. Subgroups of prime power index in a simple group[J]. J. Algebra, 1983,81(2): 304-311.
[81] DEMBOWSKI P. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematicsand Related Areas]: Band 44 Finite geometries[M]. Springer-Verlag, Berlin-New York, 1968:xi+375.
[82] FOULSER D A. The Flag-Transitive Collineation Groups of the Finite Desarguesian AffinePlanes[J]. Canadian Journal of Mathematics, 1964, 16: 443–472.
[83] LüNEBURG H. Translation planes[M]. Springer-Verlag, Berlin-New York, 1980: ix+278.
[84] FOULSER D A. Solvable flag transitive affine groups[J]. Math. Z., 1964, 86: 191-204.
[85] HERING C. Eine nicht-desarguessche zweifach transitive affine Ebene der Ordnung 27[J].Abh. Math. Sem. Univ. Hamburg, 1969, 34: 203-208.
[86] HERING C. Two new sporadic doubly transitive linear spaces[M]//Lecture Notes in Pure andAppl. Math.: Vol. 103 Finite geometries (Winnipeg, Man., 1984). Dekker, New York, 1985:127-129.
[87] JAMES G, LIEBECK M. Representations and characters of groups[M]. Second ed. CambridgeUniversity Press, New York, 2001: viii+458.
[88] HUPPERT B. Die Grundlehren der mathematischen Wissenschaften: Band 134 EndlicheGruppen. I[M]. Springer-Verlag, Berlin-New York, 1967: xii+793.
[89] JAMES. Encyclopedia of Mathematics and its Applications: The Representation Theory of theSymmetric Group[M]. Cambridge University Press, 1984.
[90] DU S, XU M. A classification of semisymmetric graphs of order 2𝑝𝑞[J]. Comm. Algebra,2000, 28(6): 2685-2715.
[91] ZIESCHANG P H. Point regular normal subgroups of flag transitive automorphism groups of2-designs[J]. Adv. Math., 1996, 121(1): 102-123.
[92] BIGGS N L, WHITE A T. London Mathematical Society Lecture Note Series: Vol. 33 Permutation groups and combinatorial structures[M]. Cambridge University Press, Cambridge-NewYork, 1979: 140.
[93] VAN LINT J H, WILSON R M. A course in combinatorics[M]. Second ed. Cambridge University Press, Cambridge, 2001: xiv+602.
[94] KANTOR W M. Symplectic groups, symmetric designs, and line ovals[J]. J. Algebra, 1975,33: 43-58.
[95] 徐明曜. 有限群初步[M]. 北京: 科学出版社, 2014.
[96] ASCHBACHER M, SCOTT L. Maximal subgroups of finite groups[J]. J. Algebra, 1985, 92(1): 44-80.
[97] CONWAY J H, CURTIS R T, NORTON S P, et al. ATLAS of finite groups[M]. Oxford University Press, Eynsham, 1985: xxxiv+252.
[98] JANSEN C, LUX K, PARKER R, et al. London Mathematical Society Monographs. NewSeries: Vol. 11 An atlas of Brauer characters[M]. The Clarendon Press, Oxford UniversityPress, New York, 1995: xviii+327.
[99] GROUP T G. GAP – groups, algorithms, and programming[EB/OL]. 2022. http://www.gap-system.org.
[100] 徐尚进. GAP 入门导引[M]. 北京: 科学出版社, 2014.
[101] KLEIDMAN P, LIEBECK M. London Mathematical Society Lecture Note Series: Vol. 129The subgroup structure of the finite classical groups[M]. Cambridge University Press, Cambridge, 1990: x+303.
[102] JAMES G D. On the minimal dimensions of irreducible representations of symmetric groups[J]. Math. Proc. Cambridge Philos. Soc., 1983, 94(3): 417-424.
[103] LIEBECK M W, PRAEGER C E, SAXL J. A classification of the maximal subgroups of thefinite alternating and symmetric groups[J]. J. Algebra, 1987, 111(2): 365-383.
[104] CAMERON P J, VAN LINT J H. London Mathematical Society Lecture Note Series: No. 19Graph theory, coding theory and block designs[M]. Cambridge University Press, CambridgeNew York-Melbourne, 1975: v+114.
[105] CAMERON P J. Finite permutation groups and finite simple groups[J]. Bull. London Math.Soc., 1981, 13(1): 1-22.
[106] LIEBECK M W. The affine permutation groups of rank three[J]. Proc. London Math. Soc. (3),1987, 54(3): 477-516.
[107] LI C H, LIM T K, PRAEGER C E. Homogeneous factorisations of complete graphs with edgetransitive factors[J]. J. Algebraic Combin., 2009, 29(1): 107-132.
[108] BRAY J N, HOLT D F, RONEY-DOUGAL C M. London Mathematical Society Lecture NoteSeries: Vol. 407 The maximal subgroups of the low-dimensional finite classical groups[M].Cambridge University Press, Cambridge, 2013: xiv+438.
[109] 王杰. 典型群引论[M]. 北京: 北京大学出版社, 2015.
[110] WILSON R A. Graduate Texts in Mathematics: Vol. 251 The finite simple groups[M].Springer-Verlag London, Ltd., London, 2009: xvi+298.
[111] DIXON J D, MORTIMER B. Graduate Texts in Mathematics: Vol. 163 Permutation groups[M]. Springer-Verlag, New York, 1996: xii+346.
[112] HUBER M. Frontiers in Mathematics: Flag-transitive Steiner designs[M]. Birkhäuser Verlag,Basel, 2009: x+124.
[113] HéTHELYI L, HORVáTH E, PETéNYI F. The depth of subgroups of Suzuki groups[J]. Comm.Algebra, 2015, 43(10): 4553-4569.
[114] HéTHELYI L, HORVáTH E, PETéNYI F. The depth of the maximal subgroups of Ree groups[J]. Comm. Algebra, 2019, 47(1): 37-66
修改评论