中文版 | English
题名

青藏高原典型流域冰川退缩及对地下水的影响模拟研究

其他题名
NUMERICAL STUDY ON GLACIER RETREAT AND ITS IMPACT ON GROUNDWATER IN THE TYPICAL BASINS OF TIBETAN PLATEAU
姓名
姓名拼音
HE Qiule
学号
12049008
学位类型
博士
学位专业
0857 资源与环境
学科门类/专业学位类别
08 工学
导师
匡星星
导师单位
环境科学与工程学院
论文答辩日期
2024-04-21
论文提交日期
2024-06-24
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

冰川作为固体水库,对气候变化极其敏感,由气候变暖导致的冰川退缩对冰川发育的高寒流域的水文过程产生了重要的影响。青藏高原被称为第三极,是亚洲众多大江大河的源头,在青藏高原广泛分布着冰川。研究气候变化影响下青藏高原冰川退缩规律及其对水文循环的影响对预估和应对气候变化对水资源和生态环境的影响具有重要的意义。然而,目前有关青藏高原冰川退缩对水文过程的影响的研究,多集中在地表水水文过程,对地下水的影响尚不清楚。鉴于目前地下水对冰川退缩的响应机制尚不完善,亟需开展相关研究来探讨这些问题。

本文基于冰川厚度模拟、水文观测、冰川模型和地表水-地下水耦合模型等相关研究成果,利用度日因子方法、Δh-参数化方法、HydroGeoSphere(HGS)模型等研究方法,就青藏高原典型高寒流域冰川退缩规律及其对地下水的影响展开系统研究。以冰川主导的冬克玛底河流域和杰玛央宗流域为研究对象,探究了冰川退缩对冰下融水补给地下水的影响机制。对于冰川不占主导的拉萨河流域,探讨了冰川退缩对冰川表面融水补给地下水的影响机制。

以长江源区典型冰川主导的流域-冬克玛底河流域为研究对象,采用度日因子方法和HGS模型构建了冬克玛底河流域的三维水文模型,探究了冬克玛底冰川在未来不同升温趋势下的退缩规律和不同因子对冰下融水补给地下水影响机制。结果表明,在未来升温最为剧烈的1.5 ℃情景下,冬克玛底冰川面积和平均厚度到2070年将分别减少2.7%和26.2%。渗透系数的增加有助于冰下融水补给地下水,而降水和气温的增加不利于冰下融水补给地下水。渗透系数的增加引起非冰川区的地下水水头的迅速减小,降水的增加引起非冰川区地下水水头增加,而气温的增加将导致冰川区的地下水水头迅速减小。

以雅鲁藏布江源区典型冰川主导流域-杰玛央宗流域为研究对象,采用Δh-参数化方法和HGS模型,结合未来最新的CMIP6气候模型,构建了杰玛央宗流域三维水文模型来探究杰玛央宗冰川在不同气候变化情景下的退缩规律和地下水演变规律。结果表明,在SSP5-8.5情景下,冰川面积、体积和平均厚度到2100年将分别减少了的57%、85%和66%。稳定流阶段多年平均冰下融水补给地下水的速率为24 mm/a,占总地下水补给的63%。冰下融水补给地下水和总地下水补给在SSP5-8.5情景下,到2100年将分别减小74%和37%。在SSP5-8.5情景下,降水补给地下水将在2100年增加51%,但不能抵消冰下融水补给地下水的减少。未来杰玛央宗流域在冰川末端和含水层浅层区域地下水水头将显著的降低。

以雅鲁藏布江中游的拉萨河流域为研究对象,基于CMIP6气候模型数据,利用Δh-参数化方法和HGS模型,构建了拉萨河流域三维水文模型。模拟了未来冰川退缩趋势,探究了未来不同气候情景下冰川融水和地下水对径流贡献的变化及地下水补给来源的变化。结果表明,在SSP2-4.5情景下,拉萨河流域的拉萨、旁多和羊八井等子流域的冰川体积到2100年将分别损失39.4%、43.1%和33.5%。在SSP5-8.5情景下,冰川体积到2100年几乎完全消失。在历史时期(1980–2020),拉萨、旁多、唐加和羊八井四个子流域冰川融水径流对总径流的贡献分别为6.3%、9.2%、7.3%和34.1%。地下水排泄对于维持总径流的稳定性上起着重要的作用,尤其是在干旱年份。在极端干旱年份,在拉萨、旁多和唐加三个子流域,地下水贡献能达到8%–13%,而在羊八井子流域,地下水的贡献能够达到38%。历史时期,在拉萨和羊八井子流域中,冰川融水对地下水的补给占地下水总补给的5.6%和26.4%,但在未来时期(2021–2100),由于冰川快速退缩,冰川融水对地下水补给的贡献将迅速减少。由于地下水排泄量在未来不断地增加,在一定程度上可以弥补未来总径流中冰川融水径流和融雪径流的减少。同时,由于未来有更多的降水能够补给地下水,拉萨河流域浅层水头在两种气候情景下都呈现增加的趋势。

本研究系统地探究了气候变化影响下青藏高原典型流域冰川退缩情况及未来演变趋势,深入分析了冰川退缩对地下水的影响机制,揭示了未来冰川退缩将会导致的水文响应规律,提高了对冰川流域地下水对气候变化响应机制的认识,为高寒山区流域的水资源管理、规划、利用以及相关应对策略提供了理论支持和科学依据。

关键词
语种
中文
培养类别
联合培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] 陈德亮, 张宪洲, 徐柏青,等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 2015, 60(32): 3025-3035.
[2] KUANG X, JIAO J J. Review on climate change on the Tibetan Plateau during the last half century[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(8): 3979-4007.
[3] YAO T, XUE Y, CHEN D, et al. Recent Third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444.
[4] YOU Q, CAI Z, PEPIN N, et al. Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences[J]. Earth-Science Reviews, 2021, 217: 103625.
[5] GAO K, DUAN A, CHEN D. Interdecadal summer warming of the Tibetan Plateau potentially regulated by a sea surface temperature anomaly in the Labrador Sea[J]. International Journal of Climatology, 2020, 41(S1): E2633-E2643.
[6] LIU X, ZHANG M. Contemporary climate change of the Qinghai-Xizang Plateau and its response to greenhouse effect[J]. Scientia Geographica Sinica, 1998, 18: 113-121.
[7] NIU X, TANG J, CHEN D, et al. Elevation‐dependent warming over the tibetan plateau from an ensemble of cordex‐ea regional climate simulations[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(9): e2020JD033997.
[8] NIU X, TANG J, CHEN D, et al. The performance of CORDEX-EA-II simulations in simulating seasonal temperature and elevation-dependent warming over the Tibetan Plateau[J]. Climate Dynamics, 2021, 57(3-4): 1135-1153.
[9] YOU Q, CHEN D, WU F, et al. Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives[J]. Earth-Science Reviews, 2020, 210: 103349.
[10] ZHANG H, IMMERZEEL W W, ZHANG F, et al. Snow cover persistence reverses the altitudinal patterns of warming above and below 5000 m on the Tibetan Plateau[J]. Science of the Total Environment, 2022, 803: 149889.
[11] GAO K, DUAN A, CHEN D, et al. Surface energy budget diagnosis reveals possible mechanism for the different warming rate among Earth's three poles in recent decades[J]. Science Bulletin, 2019, 64(16): 1140-1143.
[12] 罗玉, 秦宁生, 庞轶舒, 等. 气候变暖对长江源径流变化的影响分析——以沱沱河为例[J]. 冰川冻土, 2020, 42(3): 952-964.
[13] 刘光生, 王根绪, 胡宏昌, 等. 长江黄河源区近45年气候变化特征分析[J]. 资源科学, 2010, 32(8): 1486-1492.
[14] 王可丽, 程国栋, 丁永建, 等. 黄河、长江源区降水变化的水汽输送和环流特征[J]. 冰川冻土, 2006, 28(1): 8-14.
[15] 曹建廷, 秦大河, 罗勇, 等. 长江源区1956-2000年径流量变化分析[J]. 水科学进展, 2007, 01: 29-33.
[16] 齐冬梅, 李跃清, 陈永仁, 等. 气候变化背景下长江源区径流变化特征及其成因分析[J]. 冰川冻土, 2015, 37(04): 1075-1086.
[17] 聂宁,张万昌,邓财. 雅鲁藏布江流域1978—2009年气候时空变化及未来趋势研究[J]. 冰川冻土, 2012, 34(01): 64-71.
[18] PERVEZ M S, HENEBRY G M. Projections of the Ganges–Brahmaputra precipitation—downscaled from GCM predictors[J]. Journal of Hydrology, 2014, 517: 120-134.
[19] LI B, ZHOU W, ZHAO Y, et al. Using the SPEI to assess recent climate change in the Yarlung Zangbo River Basin, South Tibet[J]. Water, 2015, 7(10): 5474-5486.
[20] CUO L, LI N, LIU Z, et al. Warming and human activities induced changes in the Yarlung Tsangpo basin of the Tibetan plateau and their influences on streamflow[J]. Journal of Hydrology: Regional Studies, 2019, 25: 100625.
[21] GAO C, LIU L, MA D, et al. Assessing responses of hydrological processes to climate change over the southeastern Tibetan Plateau based on resampling of future climate scenarios[J]. Science of the Total Environment, 2019, 664: 737-752.
[22] LUO X, FAN X, JI X, et al. Evaluation of corrected aphrodite estimates for hydrological simulation in the Yarlung Tsangpo–Brahmaputra River Basin[J]. International Journal of Climatology, 2019, 40(9): 4158-4170.
[23] LI H, LIU L, SHAN B, et al. Spatiotemporal variation of drought and associated multi-scale response to climate change over the Yarlung Zangbo River Basin of Qinghai–Tibet Plateau, China[J]. Remote Sensing, 2019, 11(13): 1596.
[24] FAN J, SUN W, ZHAO Y, et al. Trend analyses of extreme precipitation events in the Yarlung Zangbo River Basin, China using a high-resolution precipitation product[J]. Sustainability, 2018, 10(5): 1396.
[25] HUO J, QU X, ZHU D, et al. Impacts of climate change on blue and green water resources in the middle and upper Yarlung Zangbo River, China[J]. Atmosphere, 2021, 12(10): 1280.
[26] IMMERZEEL W. Historical trends and future predictions of climate variability in the Brahmaputra basin[J]. International Journal of Climatology, 2008, 28(2): 243-254.
[27] MA D, WANG T, GAO C, et al. Potential evapotranspiration changes in Lancang River Basin and Yarlung Zangbo River Basin, southwest China[J]. Hydrological Sciences Journal, 2018, 63(11): 1653-1668.
[28] REN M, PANG B, XU Z, et al. Downscaling of daily extreme temperatures in the Yarlung Zangbo River Basin using machine learning techniques[J]. Theoretical and Applied Climatology, 2018, 136(3-4): 1275-1288.
[29] DENG Y, YAO Y, ZHAO Y, et al. Impact of climate change on the long-term water balance in the Yarlung Zangbo basin[J]. Frontiers in Earth Science, 2023, 11: 1107809.
[30] IMMERZEEL W W, VAN BEEK L P, BIERKENS M F. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984): 1382-1385.

[31] KANG S, XU Y, YOU Q, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters, 2010, 5(1): 015101.

[32] BIBI S, WANG L, LI X, et al. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: A review[J]. International Journal of Climatology, 2018, 38(S1): e1-e17.

[33] YAO T, THOMPSON L, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.

[34] GARDELLE J, BERTHIER E, ARNAUD Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011[J]. The Cryosphere, 2013, 7(4): 1263-1286.

[35] HUSS M, HOCK R. Global-scale hydrological response to future glacier mass loss[J]. Nature Climate Change, 2018, 8(2): 135-140.

[36] YI K, MENG J, YANG H, et al. The cascade of global trade to large climate forcing over the Tibetan Plateau glaciers[J]. Nature Communications, 2019, 10(1): 3281.

[37] FARINOTTI D, HUSS M, FÜRST J J, et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth[J]. Nature Geoscience, 2019, 12(3): 168-173.

[38] 李晨毓,井哲帆,何晓波. 1986—2015年长江源各拉丹冬地区冰川退缩遥感监测研究[J]. 冰川冻土, 2021, 43(02): 405-416.

[39] GARDNER A S, MOHOLDT G, COGLEY J G, et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009[J]. Science, 2013, 340(6134): 852-857.

[40] KääB A, TREICHLER D, NUTH C, et al. Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya[J]. The Cryosphere, 2015, 9(2): 557-564.

[41] BRUN F, BERTHIER E, WAGNON P, et al. A spatially resolved estimate of high mountain Asia glacier mass balances, 2000-2016[J]. Nature Geosciience, 2017, 10(9): 668-673.

[42] SHEAN D E, BHUSHAN S, MONTESANO P, et al. A systematic, regional assessment of high mountain Asia glacier mass balance[J]. Frontiers in Earth Science, 2020, 7: 363.

[43] MENG F, SU F, LI Y, et al. Changes in terrestrial water storage during 2003–2014 and possible causes in Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(6): 2909-2931.

[44] YI S, SONG C, HEKI K, et al. Satellite-observed monthly glacier and snow mass changes in southeast Tibet: Implication for substantial meltwater contribution to the Brahmaputra[J]. The Cryosphere, 2020, 14(7): 2267-2281.

[45] QIAO B, NIE B, LIANG C, et al. Spatial difference of terrestrial water storage change and lake water storage change in the Inner Tibetan Plateau[J]. Remote Sensing, 2021, 13(10): 1984.

[46] LUO W, ZHANG G, CHEN W, et al. Response of glacial lakes to glacier and climate changes in the western Nyainqentanglha range[J]. Science of the Total Environment, 2020, 735: 139607.

[47] MCGLYNN B L, MCDONNEL J J, BRAMMER D D. A review of the evolving perceptual model of hillslope flowpaths at the Maimai catchments, New Zealand[J]. Journal of Hydrology, 2002, 257(1-4): 1-26.

[48] SOULSBY C, MALCOLM R, HELLIWELL R, et al. Isotope hydrology of the Allt a' Mharcaidh catchment, Cairngorms, Scotland: Implications for hydrological pathways and residence times[J]. Hydrological Processes, 2000, 14(4): 747-762.

[49] FORSTER C. Groundwater flow systems in mountainous terrain 2. controlling factors[J]. Water Resources Research, 1988, 24(7): 1011-1023.

[50] HUSS M, JOUVET G, FARINOTTI D, et al. Future high-mountain hydrology: A new parameterization of glacier retreat[J]. Hydrology and Earth System Sciences, 2010, 14(5): 815-829.

[51] GAO H, LI H, DUAN Z, et al. Modelling glacier variation and its impact on water resource in the Urumqi Glacier No. 1 in Central Asia[J]. Science of the Total Environment, 2018, 644: 1160-1170.

[52] HE Q, KUANG X, MA E, et al. Reconstructing runoff components and glacier mass balance with climate change: Niyang river basin, southeastern Tibetan plateau[J]. Frontiers in Earth Science, 2023, 11: 1165390.

[53] LEVY A, ROBINSON Z, KRAUSE S, et al. Long-term variability of proglacial groundwater-fed hydrological systems in an area of glacier retreat, Skeiðarársandur, Iceland[J]. Earth Surface Processes and Landforms, 2015, 40(7): 981-994.

[54] LILJEDAHL A K, GÄDEKE A, O'NEEL S, et al. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska[J]. Geophysical Research Letters, 2017, 44(13): 6876-6885.

[55] HE Q, KUANG X, CHEN J, et al. Subglacial meltwater recharge in the Dongkemadi River Basin, Yangtze River Source Region[J]. Groundwater, 2022, 60(3): 434-450.

[56] HE Q, KUANG X, CHEN J, et al. Glacier retreat and its impact on groundwater system evolution in the Yarlung Zangbo source region, Tibetan Plateau[J]. Journal of Hydrology: Regional Studies, 2023, 47: 101368.

[57] HE Q, KUANG X, MA E, et al. Evolution of runoff components and groundwater discharge under rapid climate warming: Lhasa river basin, Tibetan Plateau[J]. Journal of Hydrology, 2024, 628: 130556.

[58] SOMERS L D, MCKENZIE J M, MARK B G, et al. Groundwater buffers decreasing glacier melt in an Andean watershed—but not forever[J]. Geophysical Research Letters, 2019, 46(22): 13016-13026.

[59] SABERI L, MCLAUGHLIN R T, NG G H C, et al. Multi-scale temporal variability in meltwater contributions in a tropical glacierized watershed[J]. Hydrology and Earth System Sciences, 2019, 23(1): 405-425.

[60] LEMIEUX J M, SUDICKY E A, PELTIER W R, et al. Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation[J]. Journal of Geophysical Research, 2008, 113(F1): F01011.

[61] LEMIEUX J M, SUDICKY E A, PELTIER W R, et al. Simulating the impact of glaciations on continental groundwater flow systems: 1. Relevant processes and model formulation[J]. Journal of Geophysical Research, 2008, 113(F3): F03017.

[62] LEMIEUX J M, SUDICKY E A, PELTIER W R, et al. Simulating the impact of glaciations on continental groundwater flow systems: 2. Model application to the Wisconsinian glaciation over the Canadian landscape[J]. Journal of Geophysical Research, 2008, 113(F3): F03018.

[63] MCINTOSH J C, SCHLEGEL M E, PERSON M. Glacial impacts on hydrologic processes in sedimentary basins: Evidence from natural tracer studies[J]. Geofluids, 2012, 12(1): 7-21.

[64] MIKUCKI J A, AUKEN E, TULACZYK S, et al. Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley[J]. Nature Communications, 2015, 6: 6831.

[65] GOOCH B T, YOUNG D A, BLANKENSHIP D D. Potential groundwater and heterogeneous heat source contributions to ice sheet dynamics in critical submarine basins of East Antarctica[J]. Geochemistry Geophysics Geosystems, 2016, 17(2): 395-409.

[66] FLOWERS G E. Sensitivity of Vatnajökull ice cap hydrology and dynamics to climate warming over the next 2 centuries[J]. Journal of Geophysical Research, 2005, 110(F2): F02011.

[67] PIOTROWSKI J A, HERMANOWSKI P, PIECHOTA A M. Meltwater discharge through the subglacial bed and its land-forming consequences from numerical experiments in the Polish lowland during the last glaciation[J]. Earth Surface Processes and Landforms, 2009, 34(4): 481-492.

[68] MCCORMACK F S, ROBERTS J L, DOW C F, et al. Fine‐scale geothermal heat flow in Antarctica can increase simulated subglacial melt estimates[J]. Geophysical Research Letters, 2022, 49(15): e2022GL098539.

[69] HERMANOWSKI P, PIOTROWSKI J A. Groundwater flow under a Paleo‐ice stream of the Scandinavian Ice Sheet and its implications for the formation of Stargard Drumlin Field, NW Poland[J]. Journal of Geophysical Research: Earth Surface, 2019, 124(7): 1720-1741.

[70] PROVOST A M, VOSS C I, NEUZIL C E. Glaciation and regional groundwater flow in the Fennoscandian shield[J]. Geofluids, 2012, 12(1): 79-96.

[71] BREEMER C W, CLARK P U, HAGGERTY R. Modeling the subglacial hydrology of the late Pleistocene Lake Michigan Lobe, Laurentide Ice Sheet[J]. Geological Society of America Bulletin, 2002, 114(6): 665-674.

[72] GRASBY S E, CHEN Z. Subglacial recharge into the Western Canada Sedimentary Basin—impact of Pleistocene glaciation on basin hydrodynamics[J]. Geological Society of America Bulletin, 2005, 117(3-4): 500-514.

[73] CARLSON A E, JENSON J W, CLARK P U. Modeling the subglacial hydrology of the James Lobe of the Laurentide Ice Sheet[J]. Quaternary Science Reviews, 2007, 26(9-10): 1384-1397.

[74] BROCQ A M L, PAYNE A J, SIEGERT M J, et al. A subglacial water-flow model for West Antarctica[J]. Journal of Glaciology, 2009, 55(193): 879-888.

[75] PERSON M, MCINTOSH J, BENSE V, et al. Pleistocene hydrology of North America: The role of ice sheets in reorganizing groundwater flow systems[J]. Reviews of Geophysics, 2007, 45(3): RG3007.

[76] BENSE V F, PERSON M A. Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles[J]. Journal of Geophysical Research, 2008, 113(F4): F04005.

[77] NORMANI S D, SYKES J F. Paleohydrogeologic simulations of Laurentide ice-sheet history on groundwater at the eastern flank of the Michigan Basin[J]. Geofluids, 2012, 12(1): 97-122.

[78] BOULTON G S, CABAN P E, VAN G K. Groundwater flow beneath ice sheets Part I—Large scale patterns[J]. Quatermary Science Reviews, 1995, 14: 545-562.

[79] VAN WEERT F H A, VAN GIJSSEL K, LEIJNSE A, et al. The effects of Pleistocene glaciations on the geohydrological system of Northwest Europe[J]. Journal of Hydrology, 1997, 195(1997): 137-159.

[80] VOLPI G, MAGRI F, FRATTINI P, et al. Groundwater-driven temperature changes at thermal springs in response to recent glaciation: Bormio hydrothermal system, Central Italian Alps[J]. Hydrogeology Journal, 2017, 25(7): 1967-1984.

[81] HARPER J, MEIERBACHTOL T, HUMPHREY N, et al. Generation and fate of basal meltwater during winter, western Greenland Ice Sheet[J]. The Cryosphere, 2021, 15(12): 5409-5421.

[82] GREMAUD V, GOLDSCHEIDER N. Geometry and drainage of a retreating glacier overlying and recharging a karst aquifer, Tsanfleuron-Sanetsch, Swiss Alps[J]. Acta Carsologica, 2010, 39(2): 289-300.

[83] NULL K A, REIDE CORBETT D, CRENSHAW J, et al. Groundwater discharge to the western Antarctic coastal ocean[J]. Polar Research, 2019, 38(0): 3497.

[84] PERSON M, BENSE V, COHEN D, et al. Models of ice-sheet hydrogeologic interactions: A review[J]. Geofluids, 2012, 12(1): 58-78.

[85] ALLEN D M, MACKIE D C, WEI M. Groundwater and climate change: A sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada[J]. Hydrogeology Journal, 2004, 12(3): 270-290.

[86] CHRISTOFFERSEN P, BOUGAMONT M, CARTER S P, et al. Significant groundwater contribution to Antarctic ice streams hydrologic budget[J]. Geophysical Research Letters, 2014, 41(6): 2003-2010.

[87] PIOTROWSKI J A. Subglacial groundwater flow during the last glaciation in northwestern Germany[J]. Sedimentary Geology, 1997, 111(1997): 217-224.

[88] LEMIEUX J-M, SUDICKY E A. Simulation of groundwater age evolution during the Wisconsinian glaciation over the Canadian landscape[J]. Environmental Fluid Mechanics, 2009, 10(1-2): 91-102.

[89] COHEN D, PERSON M, WANG P, et al. Origin and Extent of Fresh Paleowaters on the Atlantic Continental Shelf, USA[J]. Groundwater, 2010, 48(1): 143-158.

[90] ZHANG T, JU L, LENG W, et al. Thermomechanically coupled modelling for land-terminating glaciers: A comparison of two-dimensional, first-order and three-dimensional, full-Stokes approaches[J]. Journal of Glaciology, 2017, 61(228): 702-712.

[91] STERCKX A, LEMIEUX J-M, VAIKMÄE R. Representing glaciations and subglacial processes in hydrogeological models: A numerical investigation[J]. Geofluids, 2017, 2017: 1-12.

[92] STERCKX A, LEMIEUX J-M, VAIKMäE R. Assessment of paleo-recharge under the Fennoscandian Ice Sheet and its impact on regional groundwater flow in the northern Baltic Artesian Basin using a numerical model[J]. Hydrogeology Journal, 2018, 26(8): 2793-2810.

[93] AQUANTY. HydroGeoSphere: A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport[M]. Waterloo, ON, Canada: Aquanty, 2018.

[94] LEMIEUX J-M, FORTIER R, TALBOT-POULIN M-C, et al. Groundwater occurrence in cold environments: examples from Nunavik, Canada[J]. Hydrogeology Journal, 2016, 24(6): 1497-1513.

[95] ZHANG Y, PERSON M, VOLLER V, et al. Hydromechanical impacts of Pleistocene Glaciations on pore fluid pressure evolution, Rock Failure, and Brine Migration Within Sedimentary Basins and the Crystalline Basement[J]. Water Resources Research, 2018, 54(10): 7577-7602.

[96] FORSBERG C F. Possible consequences of glacially induced groundwater flow[J]. Global and Planetary Change, 1996, 12(1996): 387-396.

[97] PERSON M, DUGAN B, SWENSON J B, et al. Pleistocene hydrogeology of the Atlantic continental shelf, New England[J]. Geological Society of America Bulletin, 2003, 115(11): 1324-1343.

[98] GE S, WU Q B, LU N, et al. Groundwater in the Tibet Plateau, western China[J]. Geophysical Research Letters, 2008, 35(18): L18403.

[99] GE S, MCKENZIE J, VOSS C, et al. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation[J]. Geophysical Research Letters, 2011, 38(14): L14402.

[100] YAO Y, ZHENG C, ANDREWS C, et al. What controls the partitioning between baseflow and mountain block recharge in the Qinghai-Tibet Plateau?[J]. Geophysical Research Letters, 2017, 44(16): 8352-8358.

[101] EVANS S G, GE S, LIANG S. Analysis of groundwater flow in mountainous, headwater catchments with permafrost[J]. Water Resources Research, 2015, 51(12): 9564-9576.

[102] YAO Y, ZHENG C, ANDREWS C B, et al. Role of groundwater in sustaining northern Himalayan Rivers[J]. Geophysical Research Letters, 2021, 48(10): e2020GL092354.

[103] HUANG K, DAI J, WANG G, et al. The impact of land surface temperatures on suprapermafrost groundwater on the central Qinghai‐Tibet Plateau[J]. Hydrological Processes, 2019, 34(6): 1475-1488.

[104] CHEN J, KUANG X, LANCIA M, et al. Analysis of the groundwater flow system in a high-altitude headwater region under rapid climate warming: Lhasa River Basin, Tibetan Plateau[J]. Journal of Hydrology: Regional Studies, 2021, 36: 100871.

[105] GAO S, JIN H, WU Q, et al. Analysis of groundwater flow through low-latitude alpine permafrost by model simulation: A case study in the headwater area of Yellow River on the Qinghai-Tibet Plateau, China[J]. Hydrogeology Journal, 2023, 31(3): 789-811.

[106] SECK A, WELTY C. Quantifying groundwater storage dynamics in the Chesapeake Bay watershed (USA) using a large-scale integrated hydrologic model with detailed three-dimensional subsurface representation[J]. Hydrogeology Journal, 2022, 31(1): 127-146.

[107] ZAREMEHRJARDY M, VICTOR J, PARK S, et al. Assessment of snowmelt and groundwater-surface water dynamics in mountains, foothills, and plains regions in northern latitudes[J]. Journal of Hydrology, 2022, 606: 127449.

[108] COCHAND F, THERRIEN R, LEMIEUX J M. Integrated hydrological modeling of climate change impacts in a snow-influenced catchment[J]. Groundwater, 2019, 57(1): 3-20.

[109] PERSAUD E, LEVISON J, MACRITCHIE S, et al. Integrated modelling to assess climate change impacts on groundwater and surface water in the Great Lakes Basin using diverse climate forcing[J]. Journal of Hydrology, 2020, 584: 124682.

[110] NAGARE R M, PARK Y-J, WIRTZ R, et al. Integrated surface-subsurface water and solute modeling of a reclaimed in-pit oil sands mine: Effects of ground freezing and thawing[J]. Journal of Hydrology: Regional Studies, 2022, 39: 100975.

[111] THORNTON J M, THERRIEN R, MARIéTHOZ G, et al. Simulating fully‐integrated hydrological dynamics in complex alpine headwaters: Potential and challenges[J]. Water Resources Research, 2022, 58(4): e2020WR029390.

[112] Ó DOCHARTAIGH B É, MACDONALD A M, BLACK A R, et al. Groundwater–glacier meltwater interaction in proglacial aquifers[J]. Hydrology and Earth System Sciences, 2019, 23(11): 4527-4539.

[113] TARASOV L, PELTIER W R. A geophysically constrained large ensemble analysis of the deglacial history of the North American ice-sheet complex[J]. Quaternary Science Reviews, 2004, 23(3-4): 359-388.

[114] GREMAUD V, GOLDSCHEIDER N, SAVOY L, et al. Geological structure, recharge processes and underground drainage of a glacierised karst aquifer system, Tsanfleuron-Sanetsch, Swiss Alps[J]. Hydrogeology Journal, 2009, 17(8): 1833-1848.

[115] HOCK R. Temperature index melt modelling in mountain areas[J]. Journal of Hydrology, 2003, 282(1-4): 104-115.

[116] GAO H, FENG Z, ZHANG T, et al. Assessing glacier retreat and its impact on water resources in a headwater of Yangtze River based on CMIP6 projections[J]. Science of the Total Environment, 2021, 765: 142774.

[117] GAO H, DONG J, CHEN X, et al. Stepwise modeling and the importance of internal variables validation to test model realism in a data scarce glacier basin[J]. Journal of Hydrology, 2020, 591:125457.

[118] LUBINI TSHUMUKA A, FUAMBA M. A conceptual model to quantify the water balance components of a watershed in a continuous permafrost region[J]. Water, 2023, 16(1): 83.

[119] ALVARADO-MONTERO R, UYSAL G, COLLADOS-LARA A-J, et al. Comparison of sequential and variational assimilation methods to improve hydrological predictions in snow dominated mountainous catchments[J]. Journal of Hydrology, 2022, 612: 127981.

[120] GAO H, HE X, YE B, et al. Modeling the runoff and glacier mass balance in a small watershed on the Central Tibetan Plateau, China, from 1955 to 2008[J]. Hydrological Processes, 2012, 26(11): 1593-1603.

[121] WANG L, ZHANG F, NEPAL S, et al. Response of runoff processes to temperature rise in basins with different glacier ratios in the monsoon-influenced southern Tibetan Plateau[J]. Journal of Hydrology: Regional Studies, 2023, 45: 101299.

[122] WIJNGAARD R R, BIEMANS H, LUTZ A F, et al. Climate change vs. socio-economic development: Understanding the future South Asian water gap[J]. Hydrology and Earth System Sciences, 2018, 22(12): 6297-6321.

[123] 李洪源, 赵求东, 吴锦奎, 等. 疏勒河上游径流组分及其变化特征定量模拟[J]. 冰川冻土, 2019, 41(4): 907-917.

[124] SCHILLING O S, PARK Y J, THERRIEN R, et al. Integrated surface and subsurface hydrological modeling with snowmelt and pore water freeze-thaw[J]. Groundwater, 2019, 57(1): 63-74.

[125] HUSS M, FARINOTTI D, BAUDER A, et al. Modelling runoff from highly glacierized alpine drainage basins in a changing climate[J]. Hydrological Processes, 2008, 22(19): 3888-3902.

[126] LI H, NG F, LI Z, et al. An extended “perfect-plasticity” method for estimating ice thickness along the flow line of mountain glaciers[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F1): F01020.

[127] HUSS M, BAUDER A, FUNK M, et al. Determination of the seasonal mass balance of four Alpine glaciers since 1865[J]. Journal of Geophysical Research, 2008, 113(F1): F01015.

[128] MARZEION B, JAROSCH A H, HOFER M. Past and future sea-level change from the surface mass balance of glaciers[J]. The Cryosphere, 2012, 6(6): 1295-1322.

[129] ZHAO Q, DING Y, WANG J, et al. Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow[J]. Journal of Hydrology, 2019, 573: 60-81.

[130] LI H, BELDRING S, XU C Y, et al. Integrating a glacier retreat model into a hydrological model – case studies of three glacierised catchments in Norway and Himalayan region[J]. Journal of Hydrology, 2015, 527: 656-667.

[131] SEIBERT J, VIS M J P, KOHN I, et al. Technical note: Representing glacier geometry changes in a semi-distributed hydrological model[J]. Hydrology and Earth System Sciences, 2018, 22(4): 2211-2224.

[132] DOLK M, PENTON D J, AHMAD M D. Amplification of hydrological model uncertainties in projected climate simulations of the Upper Indus Basin: Does it matter where the water is coming from?[J]. Hydrological Processes, 2020, 34(10): 2200-2218.

[133] ROUNCE D R, HOCK R, SHEAN D E. Glacier mass change in high mountain Asia through 2100 using the open-source python glacier evolution model (PyGEM)[J]. Frontiers in Earth Science, 2020, 7: 331.

[134] BAIG S, SAYAMA T, TAKARA K. Hydrological modeling of the Astore River Basin, Pakistan, by integrating snow and glacier melt processes and climate scenarios[J]. Journal of Disaster Research, 2021, 16(8): 1197-1206.

[135] HAN P, LONG D, ZHAO F, et al. Response of two glaciers in different climate settings of the Tibetan Plateau to climate change through year 2100 using a hybrid modeling approach[J]. Water Resources Research, 2023, 59(4): e2022WR033618.

[136] 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445-456.

[137] JI F, FAN L, ANDREWS C B, et al. Dynamics of seasonally frozen ground in the Yarlung Zangbo River Basin on the Qinghai-Tibet Plateau: Historical trend and future projection[J]. Environmental Research Letters, 2020, 15(10): 104081.

[138] TIAN P, LU H, FENG W, et al. Large decrease in streamflow and sediment load of Qinghai–Tibetan Plateau driven by future climate change: A case study in Lhasa River Basin[J]. Catena, 2020, 187.

[139] XIANG X, AO T, XIAO Q. Variation of runoff and runoff components of the Lhasa River Basin in the Qinghai-Tibet Plateau under climate change[J]. Atmosphere, 2022, 13(11): 1848.

[140] FUJITA K, OHTA T, AGETA Y. Characteristics and climatic sensitivities of runoff from a cold-type glacier on the Tibetan Plateau[J]. Hydrological Processes, 2007, 21(21): 2882-2891.

[141] PU J, YAO T, YANG M, et al. Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau[J]. Hydrological Processes, 2008, 22(16): 2953-2958.

[142] 姚檀栋, 姚治君. 青藏高原冰川退缩对河水径流的影响[J]. 自然杂志, 2010, 32(1): 4-8.

[143] WU Z, LIU S, ZHANG H, et al. Full-Stokes modeling of a polar continental glacier: The dynamic characteristics response of the XD Glacier to ice thickness[J]. Acta Mechanica, 2018, 229(6): 2393-2411.

[144] SHI P, DUAN K, LIU H, et al. Response of Xiao Dongkemadi Glacier in the central Tibetan Plateau to the current climate change and future scenarios by 2050[J]. Journal of Mountain Science, 2016, 13(1): 13-28.

[145] 何秋乐, 匡星星, 梁四海, 等. 1966~2015年长江源冰川融水变化及其对径流的影响—以冬克玛底河流域为例[J]. 人民长江, 2020, 51(2): 77-85.

[146] 高红凯, 何晓波, 叶柏生, 等. 1955-2008年冬克玛底河流域冰川径流模拟研究[J]. 冰川冻土, 2008, 32(1): 171-181.

[147] 冯紫荆, 何天豪, 汪少勇, 等. 反照率对冬克玛底冰川径流及物质平衡模拟影响研究[J]. 冰川冻土, 2022, 44(3): 1053-1062.

[148] 田富强, 徐冉, 南熠, 等. 基于分布式水文模型的雅鲁藏布江径流水源组成解析[J]. 水科学进展, 2020, 31(3): 324-336.

[149] LIU S, WANG P, WANG C, et al. Anthropogenic disturbances on antibiotic resistome along the Yarlung Tsangpo River on the Tibetan Plateau: Ecological dissemination mechanisms of antibiotic resistance genes to bacterial pathogens[J]. Water Research, 2021, 202: 117447.

[150] 刘晓尘, 效存德. 1974-2010年雅鲁藏布江源头杰玛央宗冰川及冰湖变化初步[J]. 冰川冻土, 2011, 33(3): 488-496.

[151] 拉巴卓玛, 喻薛凝. 1976-2019年西藏杰玛央宗冰川退缩遥感监测[J]. 高原科学研究, 2020, 4(03): 7-29+54.

[152] YAN Z, ZHANG T, WANG Y, et al. Dynamic evolution modeling of a lake-terminating glacier in the Western Himalayas using a two-dimensional higher-order flowline model[J]. Remote Sensing, 2022, 14(24): 6189.

[153] 彭定志, 徐宗学, 巩同梁. 雅鲁藏布江拉萨河流域水文模型应用研究[J]. 北京师范大学学报(自然科学版), 2008, 44(1): 92-95.

[154] 刘俊峰, 杨建平, 陈仁升, 等. SRM融雪径流模型在长江源区冬克玛底河流域的应用[J]. 地理学报, 2006, 61(11): 1149-1159.

[155] 张寅生, 姚檀栋, 蒲健辰, 等. 青藏高原唐古拉山冬克玛底河流域水文过程特征分析[J]. 冰川冻土, 1997, 19(3): 214-222.

[156] 王建, 艾合麦提·阿西木, 丁永建, 等. 唐古拉冬克玛底冰川流域pH值和电导率分析[J]. 环境科学, 2007, 28(10): 2301-2306.

[157] 蒲红铮, 韩添丁, 丁永建, 等. 唐古拉山冬克玛底冰川流域河水总溶解固体和悬移质的变化特征[J]. 冰川冻土, 2018, 40(5): 993-1003.

[158] 谯程骏, 何晓波, 叶柏生. 唐古拉山冬克玛底冰川雪冰度日因子研究[J]. 冰川冻土, 2010, 32(02): 257-264.

[159] 何秋乐. 长江源冬克玛底河流域冰川水文过程影响与模拟[D]. 北京: 中国地质大学(北京), 2019.

[160] 张健, 何晓波, 叶柏生, 等. 近期小冬克玛底冰川物质平衡变化及其影响因素分析[J]. 冰川冻土, 2013, 35(2): 263-271.

[161] 安宝晟, 姚檀栋, 郭燕红, 等. 拉萨河流域典型区域保护、修复、治理技术示范体系[J]. 科学通报, 2021, 66(22): 2775-2784.

[162] 周丹, 黄川友. 拉萨河流域水环境现状及污染防治对策[J]. 四川水利, 2007, 02: 48-51.

[163] 史轩, 陈喜, 高满, 等. 青藏高原拉萨河流域水化学时空变化特征控制因素研[J]. 长江流域资源与环境, 2023, 32(1): 183-193.

[164] 薛宇轩. 基于SWAT模型的拉萨河流域生态服务价值研究. 基于SWAT模型的拉萨河流域生态服务价值研究[D]. 北京: 华北电力大学(北京), 2020.

[165] 何柳. 拉萨河流域水文地球化学特征及其风化指示[D]. 南昌: 东华理工大学, 2019.

[166] 张核真, 卓玛, 向飞, 等. 1981-2013年气候因子变化对西藏拉萨河径流的影响[J]. 冰川冻土, 2015, 37(5): 1304-1311.

[167] 林红, 焦菊英, 陈同德, 等. 西藏拉萨河流域中下游洪积扇植被的物种组成与多样性特征[J]. 水土保持研究, 2021, 28(5): 67-75.

[168] 王旭, 周爱国, FLORIAN S, 等. 念青唐古拉山西段冰川1977-2010年时空变化[J]. 地球科学-中国地质大学学报, 2012, 37(5): 1082-1092.

[169] GUO W, LIU S, XU J, et al. The second Chinese glacier inventory: Data, methods and results[J]. Journal of Glaciology, 2015, 61(226): 357-372.

[170] LIN L, GAO M, LIU J, et al. Understanding the effects of climate warming on streamflow and active groundwater storage in an alpine catchment: The upper Lhasa River[J]. Hydrology and Earth System Sciences, 2020, 24(3): 1145-1157.

[171] 巩同梁, 刘昌明, 刘景时. 拉萨河冬季径流对气候变暖和冻土退化的响应[J]. 地理学报, 2006, 61(5): 519-526.

[172] LIU J, XIE J, GONG T, et al. Impacts of winter warming and permafrost degradation on water variability, upper Lhasa River, Tibet[J]. Quaternary International, 2011, 244(2): 178-184.

[173] ZHANG Y, XU C-Y, HAO Z, et al. Variation of melt water and rainfall runoff and their impacts on streamflow changes during recent decades in two Tibetan Plateau Basins[J]. Water, 2020, 12(11): 3112.

[174] 张勇, 刘时银, 王欣. 高亚洲冰川区度日因子空间分布数据集[J]. 中国科学数据, 2019, 4(3): 141-151.

[175] SORG A, HUSS M, ROHRER M, et al. The days of plenty might soon be over in glacierized Central Asian catchments[J]. Environmental Research Letters, 2014, 9(10): 104018.

[176] KUANG X, JIAO J J. An integrated permeability-depth model for Earth's crust[J]. Geophysical Research Letters, 2014, 41(21): 7539-7545.

[177] FETTER. Applied Hydrogeology[M]. 4th ed. Upper Saddle River, New Jersey: Prentice-Hall., 2001.

[178] CONTOUX C, VIOLETTE S, VIVONA R, et al. How basin model results enable the study of multi-layer aquifer response to pumping: The Paris Basin, France[J]. Hydrogeology Journal, 2013, 21(3): 545-557.

[179] PARADIS D, LEFEBVRE R. Single-well interference slug tests to assess the vertical hydraulic conductivity of unconsolidated aquifers[J]. Journal of Hydrology, 2013, 478: 102-118.

[180] KUANG X, ZHENG C, JIAO J J, et al. An empirical specific storage-depth model for the Earth's crust[J]. Journal of Hydrology, 2021, 592: 125784.

[181] GUDMUNDSSON L, BREMNES J B, HAUGEN J E, et al. Technical note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods[J]. Hydrology and Earth System Sciences, 2012, 16(9): 3383-3390.

[182] GHIMIRE U, SRINIVASAN G, AGARWAL A. Assessment of rainfall bias correction techniques for improved hydrological simulation[J]. International Journal of Climatology, 2018, 39(4): 2386-2399.

[183] IMMERZEEL W W, VAN BEEK L P, KONZ M, et al. Hydrological response to climate change in a glacierized catchment in the Himalayas[J]. Climate Change, 2012, 110(3-4): 721-736.

[184] MCCUEN R H. The role of sensitivity analysis in hydrologic modeling[J]. 1973, 18(1): 37-53.

[185] LIU W, XU Z, LI F, et al. Impacts of climate change on hydrological processes in the Tibetan Plateau: A case study in the Lhasa River basin[J]. Stochastic Environmental Research and Risk Assessment, 2015, 29(7): 1809-1822.

[186] NASH J E, SUTCLIFFE J V. River flow forecasting through conceptual models part IA discussion of principles[J]. Journal of Hydrology, 1970, 10(3): 282-290.

[187] HUSS M, FARINOTTI D. Distributed ice thickness and volume of all glaciers around the globe[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F4): F04010.

[188] FREY H, MACHGUTH H, HUSS M, et al. Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods[J]. The Cryosphere, 2014, 8(6): 2313-2333.

[189] FüRST J J, GILLET-CHAULET F, BENHAM T J, et al. Application of a two-step approach for mapping ice thickness to various glacier types on Svalbard[J]. The Cryosphere, 2017, 11(5): 2003-2032.

[190] RAMSANKARAN R, PANDIT A, AZAM M F. Spatially distributed ice-thickness modelling for Chhota Shigri Glacier in western Himalayas, India[J]. International Journal of Remote Sensing, 2018, 39(10): 3320-3343.

[191] MAUSSION F, BUTENKO A, CHAMPOLLION N, et al. The open global glacier model (OGGM) v1.1[J]. Geoscientific Model Development, 2019, 12(3): 909-931.

[192] FAYE B, WEBBER H, NAAB J B, et al. Impacts of 1.5 versus 2.0 °C on cereal yields in the West African Sudan Savanna[J]. Environmental Research Letters, 2018, 13(3): 034014.

[193] PRASCH M, MAUSER W, WEBER M. Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin[J]. The Cryosphere, 2013, 7(3): 889-904.

[194] LIU J, GAO Z, WANG M, et al. Study on the dynamic characteristics of groundwater in the valley plain of Lhasa City[J]. Environmental Earth Sciences, 2018, 77(18): 646.

[195] ZOU D, ZHAO L, SHENG Y, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527-2542.

[196] 张清华, 孙平安, 何师意, 等. 西藏拉萨河流域河水主要离子化学特征及来源[J]. 环境科学, 2018, 39(3): 1065-1075.

[197] 陈家昌. 拉萨河流域地下水分布特征与演变规律[D]. 哈尔滨: 哈尔滨工业大学, 2020.

[198] SABERI L, CRYSTAL NG G H, NELSON L, et al. Spatiotemporal drivers of hydrochemical variability in a tropical glacierized watershed in the Andes[J]. Water Resources Research, 2021, 57(5): e2020WR028722.

[199] PIOTROWSKI J A. Groundwater under ice sheets and glaciers[M]. John Wiley & Sons, Ltd, 2007.

[200] FAVIER V, COUDRAIN A, CADIER E, et al. Evidence of groundwater flow on Antizana ice-covered volcano, Ecuador[J]. Hydrological Sciences Journal, 2010, 53(1): 278-291.

[201] BARAER M, MCKENZIE J, MARK B G, et al. Contribution of groundwater to the outflow from ungauged glacierized catchments: A multi-site study in the tropical Cordillera Blanca, Peru[J]. Hydrological Processes, 2015, 29(11): 2561-2581.

[202] BARAER M, MCKENZIE J M, MARK B G, et al. Characterizing contributions of glacier melt and groundwater during the dry season in a poorly gauged catchment of the Cordillera Blanca (Peru)[J]. Advances in Geosciences, 22: 41-49.

[203] HARRINGTON J S, MOZIL A, HAYASHI M, et al. Groundwater flow and storage processes in an inactive rock glacier[J]. Hydrological Processes, 2018, 32(20): 3070-3088.

[204] PARKES D, MARZEION B. Twentieth-century contribution to sea-level rise from uncharted glaciers[J]. Nature, 2018, 563(7732): 551-554.

[205] 中国地质调查局. 水文地质手册[M]. 第2版. 北京: 地质出版社, 2012.

[206] TARTAKOVSKY G D, NEUMAN S P. Three‐dimensional saturated‐unsaturated flow with axial symmetry to a partially penetrating well in a compressible unconfined aquifer[J]. Water Resources Research, 2007, 43(1): W01410.

[207] YEH H D, HUANG Y C. Analysis of pumping test data for determining unconfined-aquifer parameters: Composite analysis or not?[J]. Hydrogeology Journal, 2009, 17(5): 1133-1147.

[208] SHUGAR D H, BURR A, HARITASHYA U K, et al. Rapid worldwide growth of glacial lakes since 1990[J]. Nature Climate Change, 2020, 10(10): 939-945.

[209] SCANLON B R, KEESE K E, FLINT A L, et al. Global synthesis of groundwater recharge in semiarid and arid regions[J]. Hydrological Processes, 2006, 20(15): 3335-3370.

[210] SOMERS L D, MCKENZIE J M. A review of groundwater in high mountain environments[J]. WIREs Water, 2020, 7(6): e1475.

[211] BLOXOM L F, BURBEY T J. Determination of the location of the groundwater divide and nature of groundwater flow paths within a region of active stream capture; the New River watershed, Virginia, USA[J]. Environmental Earth Sciences, 2015, 74(3): 2687-2699.

[212] SAKATA Y, BARAN G, SUZUKI T, et al. Estimate of river seepage by conditioning downward groundwater flow in the Toyohira River alluvial fan, Japan[J]. Hydrological Sciences Journal, 2016: 1-11.

[213] FARINOTTI D, IMMERZEEL W W, DE KOK R, et al. Manifestations and mechanisms of the Karakoram glacier Anomaly[J]. Nature Geoscience, 2020, 13(1): 8-16.

[214] ZHANG D, HUANG J, GUAN X, et al. Long-term trends of precipitable water and precipitation over the Tibetan Plateau derived from satellite and surface measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 122: 64-71.

[215] XIE H, ZHU X, YUAN D Y. Pan evaporation modelling and changing attribution analysis on the Tibetan Plateau (1970–2012)[J]. Hydrological Processes, 2014, 29(9): 2164-2177.

[216] YANG J, DING Y, CHEN R. Climatic causes of ecological and environmental variations in the source regions of the Yangtze and Yellow Rivers of China[J]. Environmental Geology, 2007, 53(1): 113-121.

[217] 李珊珊, 张明军, 汪宝龙, 等. 近51年来三江源区降水变化的空间差异[J]. 生态学杂志, 2012, 31(10): 2635-2643.

[218] LU W, WANG W, SHAO Q, et al. Hydrological projections of future climate change over the source region of Yellow River and Yangtze River in the Tibetan Plateau: A comprehensive assessment by coupling RegCM4 and VIC model[J]. Hydrological Processes, 2018, 32(13): 2096-2117.

[219] CHENG G, WU T. Responses of permafrost to climate change and their environmental significance, Qinghai‐Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2): F02S03.

[220] OSTERKAMP T. The recent warming of permafrost in Alaska[J]. Global and Planetary Change, 2005, 49(3-4): 187-202.

[221] SMITH S L, ROMANOVSKY V E, LEWKOWICZ A G, et al. Thermal state of permafrost in North America: A contribution to the international polar year[J]. Permafrost and Periglacial Processes, 2010, 21(2): 117-135.

[222] ȘERBAN R D, JIN H, ȘERBAN M, et al. Shrinking thermokarst lakes and ponds on the northeastern Qinghai‐Tibet Plateau over the past three decades[J]. Permafrost and Periglacial Processes, 2021, 32(4): 601-617.

[223] MICHEL F A. Changes in hydrogeologic regimes in permafrost regions due to climatic change[J]. Permafrost and Periglacial Processes, 1994, 5: 191-195.

[224] QUINTON W L, BALTZER J L. The active-layer hydrology of a peat plateau with thawing permafrost (Scotty Creek, Canada)[J]. Hydrogeology Journal, 2012, 21(1): 201-220.

[225] XU J, LIU S, ZHANG S, et al. Recent changes in glacial area and volume on Tuanjiefeng peak region of Qilian Mountains, China[J]. PLoS One, 2013, 8(8): e70574.

[226] BøGGILD C E, KNUDBY C J, KNUDSEN M B, et al. Snowmelt and runoff modelling of an Arctic hydrological basin in west Greenland[J]. Hydrological Processes, 1999, 13(12-13): 1989-2002.

[227] 康尔泗, OHMURA A. 天山冰川消融参数化能量平衡模型[J]. 地理学报, 49(5): 467-476.

[228] MEEKS J, MOECK C, BRUNNER P, et al. Infiltration under snow cover: Modeling approaches and predictive uncertainty[J]. Journal of Hydrology, 2017, 546: 16-27.

[229] CARLIER C, WIRTH S B, COCHAND F, et al. Exploring geological and topographical controls on low flows with hydrogeological models[J]. Groundwater, 2019, 57(1): 48-62.

[230] CARLIER C, WIRTH S B, COCHAND F, et al. Geology controls streamflow dynamics[J]. Journal of Hydrology, 2018, 566: 756-769.

[231] WIRTH S, CARLIER C, COCHAND F, et al. Lithological and tectonic control on groundwater contribution to stream discharge during low-flow conditions[J]. Water, 2020, 12(3): 821.

[232] ARNOUX M, BRUNNER P, SCHAEFLI B, et al. Low-flow behavior of alpine catchments with varying quaternary cover under current and future climatic conditions[J]. Journal of Hydrology, 2021, 592: 125591.

[233] THORNTON J M, MARIETHOZ G, BRUNNER P. A 3D geological model of a structurally complex alpine region as a basis for interdisciplinary research[J]. Science Data, 2018, 5: 180238.

[234] GORDON R P, LAUTZ L K, MCKENZIE J M, et al. Sources and pathways of stream generation in tropical proglacial valleys of the Cordillera Blanca, Peru[J]. Journal of Hydrology, 2015, 522: 628-644.

[235] MACKAY J D, BARRAND N E, HANNAH D M, et al. Proglacial groundwater storage dynamics under climate change and glacier retreat[J]. Hydrological Processes, 2020, 34(26): 5456-5473.

[236] COOK A J, FOX A J, VAUGHAN D G, et al. Retreating glacier fronts on the Antarctic Peninsula over the past half-century[J]. Science, 2005, 308(5721): 541-544.

[237] SORG A, BOLCH T, STOFFEL M, et al. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)[J]. Nature Climate Change, 2012, 2(10): 725-731.

[238] MILILLO P, RIGNOT E, RIZZOLI P, et al. Rapid glacier retreat rates observed in West Antarctica[J]. Nature Geoscience, 2022, 15(1): 48-53.

[239] LEMIEUX J M. Impact of the Wisconsinian glaciation on Canadian continental groundwater flow[D]. Waterloo: University of Waterloo, 2006.

[240] NEUZIL C E. Hydromechanical effects of continental glaciation on groundwater systems[J]. Geofluids, 2012, 12(1): 22-37.

[241] AALTO J, HARRISON S, LUOTO M. Statistical modelling predicts almost complete loss of major periglacial processes in Northern Europe by 2100[J]. Nature Communications, 2017, 8(1): 515.

[242] LI D, ZHANG R, KNUTSON T R. On the discrepancy between observed and CMIP5 multi-model simulated Barents Sea winter sea ice decline[J]. Nature Communications, 2017, 8: 14991.

[243] HOFER S, LANG C, AMORY C, et al. Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6[J]. Nature Communications, 2020, 11(1): 6289.

[244] HORVAT C. Marginal ice zone fraction benchmarks sea ice and climate model skill[J]. Nature Communications, 2021, 12(1): 2221.

[245] LIU L, LUO D, WANG L, et al. Variability of soil freeze depth in association with climate change from 1901 to 2016 in the upper Brahmaputra River Basin, Tibetan Plateau[J]. Theoretical and Applied Climatology, 2020, 142(1-2): 19-28.

[246] KLEINBERG R L, GRIFFIN D D. NMR measurements of permafrost: unfrozen water assay, pore-scale distribution of ice, and hydraulic permeability of sediments[J]. Cold Regions Science and Technology, 2005, 42(1): 63-77.

[247] NIU L, YE B, LI J, et al. Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in Western China[J]. Science China Earth Sciences, 2010, 54(4): 615-624.

[248] ZHANG T, LI D, LU X. Response of runoff components to climate change in the source‐region of the Yellow River on the Tibetan plateau[J]. Hydrological Processes, 2022, 36(6): e14633.

[249] QIN Y, YANG D, GAO B, et al. Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China[J]. Science of Total Environment, 2017, 605-606: 830-841.

[250] RAVIER E, BUONCRISTIANI J F. Glaciohydrogeology[M]. Past glacial environments. 2018: 431-466.

[251] DUETHMANN D, MENZ C, JIANG T, et al. Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large[J]. Environmental Research Letters, 2016, 11(5): 054024.

[252] FLOWERS G E. Modelling water flow under glaciers and ice sheets[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 2015, 471(2176): 20140907.

[253] VAIKMäE R, VALLNER L, LOOSLI H H, et al. Palaeogroundwater of glacial origin in the Cambrian-Vendian aquifer of northern Estonia[J]. Geological Society, London, Special Publications, 2022, 189(1): 17-27.

[254] PIOTROWSKI J A. Subglacial hydrology in north-western Germany during the last glaciation groundwater flow, tunnel valleys and hydrological cycles[J]. Quaternary Science Reviews, 1997, 16: 169-185.

[255] MOHAMMED A A, CEY E E, HAYASHI M, et al. Simulating preferential flow and snowmelt partitioning in seasonally frozen hillslopes[J]. Hydrological Processes, 2021, 35(8): e14277.

[256] BRUNNER P, SIMMONS C T. HydroGeoSphere: A fully integrated, physically based hydrological model[J]. Groundwater, 2012, 50(2): 170-176.

[257] GLEESON T, SMITH L, MOOSDORF N, et al. Mapping permeability over the surface of the Earth[J]. Geophysical Research Letters, 2011, 38(2): L02401.

[258] TIEL M, STAHL K, FREUDIGER D, et al. Glacio‐hydrological model calibration and evaluation[J]. WIREs Water, 2020, 7(6): e1483.

[259] ALA-AHO P, SOULSBY C, WANG H, et al. Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterisation[J]. Journal of Hydrology, 2017, 547: 664-677.

[260] GODERNIAUX P, BROUYèRE S, FOWLER H J, et al. Large scale surface–subsurface hydrological model to assess climate change impacts on groundwater reserves[J]. Journal of Hydrology, 2009, 373(1-2): 122-138.

[261] SCIUTO G, DIEKKRüGER B. Influence of soil heterogeneity and spatial discretization on catchment water balance modeling[J]. Vadose Zone Journal, 2010, 9(4): 955-969.

[262] CANADELL J, JACKSON R, EHLERINGER J, et al. Maximum rooting depth of vegetation types at the global scale[J]. Oecologia, 1996, 108(4): 583-595.

[263] FAN J, MCCONKEY B, WANG H, et al. Root distribution by depth for temperate agricultural crops[J]. Field Crops Research, 2016, 189: 68-74.

[264] PANDAY S, HUYAKORN P S. A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow[J]. Advances in Water Resources, 2004, 27(4): 361-382.

[265] GLASER B, KLAUS J, FREI S, et al. On the value of surface saturated area dynamics mapped with thermal infrared imagery for modeling the hillslope-riparian-stream continuum[J]. Water Resources Research, 2016, 52(10): 8317-8342.

[266] CORNELISSEN T, DIEKKRüGER B, BOGENA H. Using high-resolution data to test parameter sensitivity of the distributed hydrological model HydroGeoSphere[J]. Water, 2016, 8(5): 202.

[267] BREUER L, ECKHARDT K, FREDE H-G. Plant parameter values for models in temperate climates[J]. Ecological Modelling, 2003, 169(2-3): 237-293.

[268] YU Z, WU G, KEYS L, et al. Seasonal variation of chemical weathering and its controlling factors in two alpine catchments, Nam Co basin, central Tibetan Plateau[J]. Journal of Hydrology, 2019, 576: 381-395.

[269] IMANOV F, ALIYEVA I. Underground flow study of Great Caucasian Rivers within Azerbaijan[J]. Acta Scientiarum Polonorum Formatio Circumiectus, 2020, 19(1): 61-72.

[270] STAHL K, MOORE R D, SHEA J M, et al. Coupled modelling of glacier and streamflow response to future climate scenarios[J]. Water Resources Research, 2008, 44(2): W02422.

[271] IMMERZEEL W W, BIERKENS M F P. Asia's water balance[J]. Nature Geoscience, 2012, 5(12): 841-842.

[272] IMMERZEEL W W, PELLICCIOTTI F, BIERKENS M F P. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds[J]. Nature Geoscience, 2013, 6(9): 742-745.

[273] LUTZ A F, IMMERZEEL W W, SHRESTHA A B, et al. Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation[J]. Nature Climate Change, 2014, 4(7): 587-592.

[274] FRANS C, ISTANBULLUOGLU E, LETTENMAIER D P, et al. Implications of decadal to century scale glacio-hydrological change for water resources of the Hood River basin, OR, USA[J]. Hydrological Processes, 2016, 30(23): 4314-4329.

[275] FARINOTTI D, USSELMANN S, HUSS M, et al. Runoff evolution in the Swiss Alps: Projections for selected high-alpine catchments based on ensembles scenarios[J]. Hydrological Processes, 2012, 26(13): 1909-1924.

[276] EARMAN S, CAMPBELL A R, PHILLIPS F M, et al. Isotopic exchange between snow and atmospheric water vapor: Estimation of the snowmelt component of groundwater recharge in the southwestern United States[J]. Journal of Geophysical Research, 2006, 111(D9): D09302.

[277] LOWRY C S, DEEMS J S, LOHEIDE II S P, et al. Linking snowmelt-derived fluxes and groundwater flow in a high elevation meadow system, Sierra Nevada Mountains, California[J]. Hydrological Processes, 2010, 24(20): 2821-2833.

[278] ZHANG L, SU F, YANG D, et al. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(15): 8500-8518.

[279] CHEN X, LONG D, HONG Y, et al. Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin?[J]. Water Resources Research, 2017, 53(3): 2431-2466.

[280] TAGUE C, GRANT G, FARRELL M, et al. Deep groundwater mediates streamflow response to climate warming in the Oregon Cascades[J]. Climatic Change, 2007, 86(1-2): 189-210.

[281] MARKOVICH K H, MAXWELL R M, FOGG G E. Hydrogeological response to climate change in alpine hillslopes[J]. Hydrological Processes, 2016, 30(18): 3126-3138.

[282] THORNTON J M, BRAUCHLI T, MARIETHOZ G, et al. Efficient multi-objective calibration and uncertainty analysis of distributed snow simulations in rugged alpine terrain[J]. Journal of Hydrology, 2021, 598: 126241.

所在学位评定分委会
资源与环境
国内图书分类号
P942
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765950
专题南方科技大学
工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
何秋乐. 青藏高原典型流域冰川退缩及对地下水的影响模拟研究[D]. 哈尔滨. 哈尔滨工业大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12049008-何秋乐-环境科学与工程(11372KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[何秋乐]的文章
百度学术
百度学术中相似的文章
[何秋乐]的文章
必应学术
必应学术中相似的文章
[何秋乐]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。