[1] 陈德亮, 张宪洲, 徐柏青,等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 2015, 60(32): 3025-3035.
[2] KUANG X, JIAO J J. Review on climate change on the Tibetan Plateau during the last half century[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(8): 3979-4007.
[3] YAO T, XUE Y, CHEN D, et al. Recent Third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444.
[4] YOU Q, CAI Z, PEPIN N, et al. Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences[J]. Earth-Science Reviews, 2021, 217: 103625.
[5] GAO K, DUAN A, CHEN D. Interdecadal summer warming of the Tibetan Plateau potentially regulated by a sea surface temperature anomaly in the Labrador Sea[J]. International Journal of Climatology, 2020, 41(S1): E2633-E2643.
[6] LIU X, ZHANG M. Contemporary climate change of the Qinghai-Xizang Plateau and its response to greenhouse effect[J]. Scientia Geographica Sinica, 1998, 18: 113-121.
[7] NIU X, TANG J, CHEN D, et al. Elevation‐dependent warming over the tibetan plateau from an ensemble of cordex‐ea regional climate simulations[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(9): e2020JD033997.
[8] NIU X, TANG J, CHEN D, et al. The performance of CORDEX-EA-II simulations in simulating seasonal temperature and elevation-dependent warming over the Tibetan Plateau[J]. Climate Dynamics, 2021, 57(3-4): 1135-1153.
[9] YOU Q, CHEN D, WU F, et al. Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives[J]. Earth-Science Reviews, 2020, 210: 103349.
[10] ZHANG H, IMMERZEEL W W, ZHANG F, et al. Snow cover persistence reverses the altitudinal patterns of warming above and below 5000 m on the Tibetan Plateau[J]. Science of the Total Environment, 2022, 803: 149889.
[11] GAO K, DUAN A, CHEN D, et al. Surface energy budget diagnosis reveals possible mechanism for the different warming rate among Earth's three poles in recent decades[J]. Science Bulletin, 2019, 64(16): 1140-1143.
[12] 罗玉, 秦宁生, 庞轶舒, 等. 气候变暖对长江源径流变化的影响分析——以沱沱河为例[J]. 冰川冻土, 2020, 42(3): 952-964.
[13] 刘光生, 王根绪, 胡宏昌, 等. 长江黄河源区近45年气候变化特征分析[J]. 资源科学, 2010, 32(8): 1486-1492.
[14] 王可丽, 程国栋, 丁永建, 等. 黄河、长江源区降水变化的水汽输送和环流特征[J]. 冰川冻土, 2006, 28(1): 8-14.
[15] 曹建廷, 秦大河, 罗勇, 等. 长江源区1956-2000年径流量变化分析[J]. 水科学进展, 2007, 01: 29-33.
[16] 齐冬梅, 李跃清, 陈永仁, 等. 气候变化背景下长江源区径流变化特征及其成因分析[J]. 冰川冻土, 2015, 37(04): 1075-1086.
[17] 聂宁,张万昌,邓财. 雅鲁藏布江流域1978—2009年气候时空变化及未来趋势研究[J]. 冰川冻土, 2012, 34(01): 64-71.
[18] PERVEZ M S, HENEBRY G M. Projections of the Ganges–Brahmaputra precipitation—downscaled from GCM predictors[J]. Journal of Hydrology, 2014, 517: 120-134.
[19] LI B, ZHOU W, ZHAO Y, et al. Using the SPEI to assess recent climate change in the Yarlung Zangbo River Basin, South Tibet[J]. Water, 2015, 7(10): 5474-5486.
[20] CUO L, LI N, LIU Z, et al. Warming and human activities induced changes in the Yarlung Tsangpo basin of the Tibetan plateau and their influences on streamflow[J]. Journal of Hydrology: Regional Studies, 2019, 25: 100625.
[21] GAO C, LIU L, MA D, et al. Assessing responses of hydrological processes to climate change over the southeastern Tibetan Plateau based on resampling of future climate scenarios[J]. Science of the Total Environment, 2019, 664: 737-752.
[22] LUO X, FAN X, JI X, et al. Evaluation of corrected aphrodite estimates for hydrological simulation in the Yarlung Tsangpo–Brahmaputra River Basin[J]. International Journal of Climatology, 2019, 40(9): 4158-4170.
[23] LI H, LIU L, SHAN B, et al. Spatiotemporal variation of drought and associated multi-scale response to climate change over the Yarlung Zangbo River Basin of Qinghai–Tibet Plateau, China[J]. Remote Sensing, 2019, 11(13): 1596.
[24] FAN J, SUN W, ZHAO Y, et al. Trend analyses of extreme precipitation events in the Yarlung Zangbo River Basin, China using a high-resolution precipitation product[J]. Sustainability, 2018, 10(5): 1396.
[25] HUO J, QU X, ZHU D, et al. Impacts of climate change on blue and green water resources in the middle and upper Yarlung Zangbo River, China[J]. Atmosphere, 2021, 12(10): 1280.
[26] IMMERZEEL W. Historical trends and future predictions of climate variability in the Brahmaputra basin[J]. International Journal of Climatology, 2008, 28(2): 243-254.
[27] MA D, WANG T, GAO C, et al. Potential evapotranspiration changes in Lancang River Basin and Yarlung Zangbo River Basin, southwest China[J]. Hydrological Sciences Journal, 2018, 63(11): 1653-1668.
[28] REN M, PANG B, XU Z, et al. Downscaling of daily extreme temperatures in the Yarlung Zangbo River Basin using machine learning techniques[J]. Theoretical and Applied Climatology, 2018, 136(3-4): 1275-1288.
[29] DENG Y, YAO Y, ZHAO Y, et al. Impact of climate change on the long-term water balance in the Yarlung Zangbo basin[J]. Frontiers in Earth Science, 2023, 11: 1107809.
[30] IMMERZEEL W W, VAN BEEK L P, BIERKENS M F. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984): 1382-1385.
[31] KANG S, XU Y, YOU Q, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters, 2010, 5(1): 015101.
[32] BIBI S, WANG L, LI X, et al. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: A review[J]. International Journal of Climatology, 2018, 38(S1): e1-e17.
[33] YAO T, THOMPSON L, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
[34] GARDELLE J, BERTHIER E, ARNAUD Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011[J]. The Cryosphere, 2013, 7(4): 1263-1286.
[35] HUSS M, HOCK R. Global-scale hydrological response to future glacier mass loss[J]. Nature Climate Change, 2018, 8(2): 135-140.
[36] YI K, MENG J, YANG H, et al. The cascade of global trade to large climate forcing over the Tibetan Plateau glaciers[J]. Nature Communications, 2019, 10(1): 3281.
[37] FARINOTTI D, HUSS M, FÜRST J J, et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth[J]. Nature Geoscience, 2019, 12(3): 168-173.
[38] 李晨毓,井哲帆,何晓波. 1986—2015年长江源各拉丹冬地区冰川退缩遥感监测研究[J]. 冰川冻土, 2021, 43(02): 405-416.
[39] GARDNER A S, MOHOLDT G, COGLEY J G, et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009[J]. Science, 2013, 340(6134): 852-857.
[40] KääB A, TREICHLER D, NUTH C, et al. Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya[J]. The Cryosphere, 2015, 9(2): 557-564.
[41] BRUN F, BERTHIER E, WAGNON P, et al. A spatially resolved estimate of high mountain Asia glacier mass balances, 2000-2016[J]. Nature Geosciience, 2017, 10(9): 668-673.
[42] SHEAN D E, BHUSHAN S, MONTESANO P, et al. A systematic, regional assessment of high mountain Asia glacier mass balance[J]. Frontiers in Earth Science, 2020, 7: 363.
[43] MENG F, SU F, LI Y, et al. Changes in terrestrial water storage during 2003–2014 and possible causes in Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(6): 2909-2931.
[44] YI S, SONG C, HEKI K, et al. Satellite-observed monthly glacier and snow mass changes in southeast Tibet: Implication for substantial meltwater contribution to the Brahmaputra[J]. The Cryosphere, 2020, 14(7): 2267-2281.
[45] QIAO B, NIE B, LIANG C, et al. Spatial difference of terrestrial water storage change and lake water storage change in the Inner Tibetan Plateau[J]. Remote Sensing, 2021, 13(10): 1984.
[46] LUO W, ZHANG G, CHEN W, et al. Response of glacial lakes to glacier and climate changes in the western Nyainqentanglha range[J]. Science of the Total Environment, 2020, 735: 139607.
[47] MCGLYNN B L, MCDONNEL J J, BRAMMER D D. A review of the evolving perceptual model of hillslope flowpaths at the Maimai catchments, New Zealand[J]. Journal of Hydrology, 2002, 257(1-4): 1-26.
[48] SOULSBY C, MALCOLM R, HELLIWELL R, et al. Isotope hydrology of the Allt a' Mharcaidh catchment, Cairngorms, Scotland: Implications for hydrological pathways and residence times[J]. Hydrological Processes, 2000, 14(4): 747-762.
[49] FORSTER C. Groundwater flow systems in mountainous terrain 2. controlling factors[J]. Water Resources Research, 1988, 24(7): 1011-1023.
[50] HUSS M, JOUVET G, FARINOTTI D, et al. Future high-mountain hydrology: A new parameterization of glacier retreat[J]. Hydrology and Earth System Sciences, 2010, 14(5): 815-829.
[51] GAO H, LI H, DUAN Z, et al. Modelling glacier variation and its impact on water resource in the Urumqi Glacier No. 1 in Central Asia[J]. Science of the Total Environment, 2018, 644: 1160-1170.
[52] HE Q, KUANG X, MA E, et al. Reconstructing runoff components and glacier mass balance with climate change: Niyang river basin, southeastern Tibetan plateau[J]. Frontiers in Earth Science, 2023, 11: 1165390.
[53] LEVY A, ROBINSON Z, KRAUSE S, et al. Long-term variability of proglacial groundwater-fed hydrological systems in an area of glacier retreat, Skeiðarársandur, Iceland[J]. Earth Surface Processes and Landforms, 2015, 40(7): 981-994.
[54] LILJEDAHL A K, GÄDEKE A, O'NEEL S, et al. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska[J]. Geophysical Research Letters, 2017, 44(13): 6876-6885.
[55] HE Q, KUANG X, CHEN J, et al. Subglacial meltwater recharge in the Dongkemadi River Basin, Yangtze River Source Region[J]. Groundwater, 2022, 60(3): 434-450.
[56] HE Q, KUANG X, CHEN J, et al. Glacier retreat and its impact on groundwater system evolution in the Yarlung Zangbo source region, Tibetan Plateau[J]. Journal of Hydrology: Regional Studies, 2023, 47: 101368.
[57] HE Q, KUANG X, MA E, et al. Evolution of runoff components and groundwater discharge under rapid climate warming: Lhasa river basin, Tibetan Plateau[J]. Journal of Hydrology, 2024, 628: 130556.
[58] SOMERS L D, MCKENZIE J M, MARK B G, et al. Groundwater buffers decreasing glacier melt in an Andean watershed—but not forever[J]. Geophysical Research Letters, 2019, 46(22): 13016-13026.
[59] SABERI L, MCLAUGHLIN R T, NG G H C, et al. Multi-scale temporal variability in meltwater contributions in a tropical glacierized watershed[J]. Hydrology and Earth System Sciences, 2019, 23(1): 405-425.
[60] LEMIEUX J M, SUDICKY E A, PELTIER W R, et al. Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation[J]. Journal of Geophysical Research, 2008, 113(F1): F01011.
[61] LEMIEUX J M, SUDICKY E A, PELTIER W R, et al. Simulating the impact of glaciations on continental groundwater flow systems: 1. Relevant processes and model formulation[J]. Journal of Geophysical Research, 2008, 113(F3): F03017.
[62] LEMIEUX J M, SUDICKY E A, PELTIER W R, et al. Simulating the impact of glaciations on continental groundwater flow systems: 2. Model application to the Wisconsinian glaciation over the Canadian landscape[J]. Journal of Geophysical Research, 2008, 113(F3): F03018.
[63] MCINTOSH J C, SCHLEGEL M E, PERSON M. Glacial impacts on hydrologic processes in sedimentary basins: Evidence from natural tracer studies[J]. Geofluids, 2012, 12(1): 7-21.
[64] MIKUCKI J A, AUKEN E, TULACZYK S, et al. Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley[J]. Nature Communications, 2015, 6: 6831.
[65] GOOCH B T, YOUNG D A, BLANKENSHIP D D. Potential groundwater and heterogeneous heat source contributions to ice sheet dynamics in critical submarine basins of East Antarctica[J]. Geochemistry Geophysics Geosystems, 2016, 17(2): 395-409.
[66] FLOWERS G E. Sensitivity of Vatnajökull ice cap hydrology and dynamics to climate warming over the next 2 centuries[J]. Journal of Geophysical Research, 2005, 110(F2): F02011.
[67] PIOTROWSKI J A, HERMANOWSKI P, PIECHOTA A M. Meltwater discharge through the subglacial bed and its land-forming consequences from numerical experiments in the Polish lowland during the last glaciation[J]. Earth Surface Processes and Landforms, 2009, 34(4): 481-492.
[68] MCCORMACK F S, ROBERTS J L, DOW C F, et al. Fine‐scale geothermal heat flow in Antarctica can increase simulated subglacial melt estimates[J]. Geophysical Research Letters, 2022, 49(15): e2022GL098539.
[69] HERMANOWSKI P, PIOTROWSKI J A. Groundwater flow under a Paleo‐ice stream of the Scandinavian Ice Sheet and its implications for the formation of Stargard Drumlin Field, NW Poland[J]. Journal of Geophysical Research: Earth Surface, 2019, 124(7): 1720-1741.
[70] PROVOST A M, VOSS C I, NEUZIL C E. Glaciation and regional groundwater flow in the Fennoscandian shield[J]. Geofluids, 2012, 12(1): 79-96.
[71] BREEMER C W, CLARK P U, HAGGERTY R. Modeling the subglacial hydrology of the late Pleistocene Lake Michigan Lobe, Laurentide Ice Sheet[J]. Geological Society of America Bulletin, 2002, 114(6): 665-674.
[72] GRASBY S E, CHEN Z. Subglacial recharge into the Western Canada Sedimentary Basin—impact of Pleistocene glaciation on basin hydrodynamics[J]. Geological Society of America Bulletin, 2005, 117(3-4): 500-514.
[73] CARLSON A E, JENSON J W, CLARK P U. Modeling the subglacial hydrology of the James Lobe of the Laurentide Ice Sheet[J]. Quaternary Science Reviews, 2007, 26(9-10): 1384-1397.
[74] BROCQ A M L, PAYNE A J, SIEGERT M J, et al. A subglacial water-flow model for West Antarctica[J]. Journal of Glaciology, 2009, 55(193): 879-888.
[75] PERSON M, MCINTOSH J, BENSE V, et al. Pleistocene hydrology of North America: The role of ice sheets in reorganizing groundwater flow systems[J]. Reviews of Geophysics, 2007, 45(3): RG3007.
[76] BENSE V F, PERSON M A. Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles[J]. Journal of Geophysical Research, 2008, 113(F4): F04005.
[77] NORMANI S D, SYKES J F. Paleohydrogeologic simulations of Laurentide ice-sheet history on groundwater at the eastern flank of the Michigan Basin[J]. Geofluids, 2012, 12(1): 97-122.
[78] BOULTON G S, CABAN P E, VAN G K. Groundwater flow beneath ice sheets Part I—Large scale patterns[J]. Quatermary Science Reviews, 1995, 14: 545-562.
[79] VAN WEERT F H A, VAN GIJSSEL K, LEIJNSE A, et al. The effects of Pleistocene glaciations on the geohydrological system of Northwest Europe[J]. Journal of Hydrology, 1997, 195(1997): 137-159.
[80] VOLPI G, MAGRI F, FRATTINI P, et al. Groundwater-driven temperature changes at thermal springs in response to recent glaciation: Bormio hydrothermal system, Central Italian Alps[J]. Hydrogeology Journal, 2017, 25(7): 1967-1984.
[81] HARPER J, MEIERBACHTOL T, HUMPHREY N, et al. Generation and fate of basal meltwater during winter, western Greenland Ice Sheet[J]. The Cryosphere, 2021, 15(12): 5409-5421.
[82] GREMAUD V, GOLDSCHEIDER N. Geometry and drainage of a retreating glacier overlying and recharging a karst aquifer, Tsanfleuron-Sanetsch, Swiss Alps[J]. Acta Carsologica, 2010, 39(2): 289-300.
[83] NULL K A, REIDE CORBETT D, CRENSHAW J, et al. Groundwater discharge to the western Antarctic coastal ocean[J]. Polar Research, 2019, 38(0): 3497.
[84] PERSON M, BENSE V, COHEN D, et al. Models of ice-sheet hydrogeologic interactions: A review[J]. Geofluids, 2012, 12(1): 58-78.
[85] ALLEN D M, MACKIE D C, WEI M. Groundwater and climate change: A sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada[J]. Hydrogeology Journal, 2004, 12(3): 270-290.
[86] CHRISTOFFERSEN P, BOUGAMONT M, CARTER S P, et al. Significant groundwater contribution to Antarctic ice streams hydrologic budget[J]. Geophysical Research Letters, 2014, 41(6): 2003-2010.
[87] PIOTROWSKI J A. Subglacial groundwater flow during the last glaciation in northwestern Germany[J]. Sedimentary Geology, 1997, 111(1997): 217-224.
[88] LEMIEUX J-M, SUDICKY E A. Simulation of groundwater age evolution during the Wisconsinian glaciation over the Canadian landscape[J]. Environmental Fluid Mechanics, 2009, 10(1-2): 91-102.
[89] COHEN D, PERSON M, WANG P, et al. Origin and Extent of Fresh Paleowaters on the Atlantic Continental Shelf, USA[J]. Groundwater, 2010, 48(1): 143-158.
[90] ZHANG T, JU L, LENG W, et al. Thermomechanically coupled modelling for land-terminating glaciers: A comparison of two-dimensional, first-order and three-dimensional, full-Stokes approaches[J]. Journal of Glaciology, 2017, 61(228): 702-712.
[91] STERCKX A, LEMIEUX J-M, VAIKMÄE R. Representing glaciations and subglacial processes in hydrogeological models: A numerical investigation[J]. Geofluids, 2017, 2017: 1-12.
[92] STERCKX A, LEMIEUX J-M, VAIKMäE R. Assessment of paleo-recharge under the Fennoscandian Ice Sheet and its impact on regional groundwater flow in the northern Baltic Artesian Basin using a numerical model[J]. Hydrogeology Journal, 2018, 26(8): 2793-2810.
[93] AQUANTY. HydroGeoSphere: A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport[M]. Waterloo, ON, Canada: Aquanty, 2018.
[94] LEMIEUX J-M, FORTIER R, TALBOT-POULIN M-C, et al. Groundwater occurrence in cold environments: examples from Nunavik, Canada[J]. Hydrogeology Journal, 2016, 24(6): 1497-1513.
[95] ZHANG Y, PERSON M, VOLLER V, et al. Hydromechanical impacts of Pleistocene Glaciations on pore fluid pressure evolution, Rock Failure, and Brine Migration Within Sedimentary Basins and the Crystalline Basement[J]. Water Resources Research, 2018, 54(10): 7577-7602.
[96] FORSBERG C F. Possible consequences of glacially induced groundwater flow[J]. Global and Planetary Change, 1996, 12(1996): 387-396.
[97] PERSON M, DUGAN B, SWENSON J B, et al. Pleistocene hydrogeology of the Atlantic continental shelf, New England[J]. Geological Society of America Bulletin, 2003, 115(11): 1324-1343.
[98] GE S, WU Q B, LU N, et al. Groundwater in the Tibet Plateau, western China[J]. Geophysical Research Letters, 2008, 35(18): L18403.
[99] GE S, MCKENZIE J, VOSS C, et al. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation[J]. Geophysical Research Letters, 2011, 38(14): L14402.
[100] YAO Y, ZHENG C, ANDREWS C, et al. What controls the partitioning between baseflow and mountain block recharge in the Qinghai-Tibet Plateau?[J]. Geophysical Research Letters, 2017, 44(16): 8352-8358.
[101] EVANS S G, GE S, LIANG S. Analysis of groundwater flow in mountainous, headwater catchments with permafrost[J]. Water Resources Research, 2015, 51(12): 9564-9576.
[102] YAO Y, ZHENG C, ANDREWS C B, et al. Role of groundwater in sustaining northern Himalayan Rivers[J]. Geophysical Research Letters, 2021, 48(10): e2020GL092354.
[103] HUANG K, DAI J, WANG G, et al. The impact of land surface temperatures on suprapermafrost groundwater on the central Qinghai‐Tibet Plateau[J]. Hydrological Processes, 2019, 34(6): 1475-1488.
[104] CHEN J, KUANG X, LANCIA M, et al. Analysis of the groundwater flow system in a high-altitude headwater region under rapid climate warming: Lhasa River Basin, Tibetan Plateau[J]. Journal of Hydrology: Regional Studies, 2021, 36: 100871.
[105] GAO S, JIN H, WU Q, et al. Analysis of groundwater flow through low-latitude alpine permafrost by model simulation: A case study in the headwater area of Yellow River on the Qinghai-Tibet Plateau, China[J]. Hydrogeology Journal, 2023, 31(3): 789-811.
[106] SECK A, WELTY C. Quantifying groundwater storage dynamics in the Chesapeake Bay watershed (USA) using a large-scale integrated hydrologic model with detailed three-dimensional subsurface representation[J]. Hydrogeology Journal, 2022, 31(1): 127-146.
[107] ZAREMEHRJARDY M, VICTOR J, PARK S, et al. Assessment of snowmelt and groundwater-surface water dynamics in mountains, foothills, and plains regions in northern latitudes[J]. Journal of Hydrology, 2022, 606: 127449.
[108] COCHAND F, THERRIEN R, LEMIEUX J M. Integrated hydrological modeling of climate change impacts in a snow-influenced catchment[J]. Groundwater, 2019, 57(1): 3-20.
[109] PERSAUD E, LEVISON J, MACRITCHIE S, et al. Integrated modelling to assess climate change impacts on groundwater and surface water in the Great Lakes Basin using diverse climate forcing[J]. Journal of Hydrology, 2020, 584: 124682.
[110] NAGARE R M, PARK Y-J, WIRTZ R, et al. Integrated surface-subsurface water and solute modeling of a reclaimed in-pit oil sands mine: Effects of ground freezing and thawing[J]. Journal of Hydrology: Regional Studies, 2022, 39: 100975.
[111] THORNTON J M, THERRIEN R, MARIéTHOZ G, et al. Simulating fully‐integrated hydrological dynamics in complex alpine headwaters: Potential and challenges[J]. Water Resources Research, 2022, 58(4): e2020WR029390.
[112] Ó DOCHARTAIGH B É, MACDONALD A M, BLACK A R, et al. Groundwater–glacier meltwater interaction in proglacial aquifers[J]. Hydrology and Earth System Sciences, 2019, 23(11): 4527-4539.
[113] TARASOV L, PELTIER W R. A geophysically constrained large ensemble analysis of the deglacial history of the North American ice-sheet complex[J]. Quaternary Science Reviews, 2004, 23(3-4): 359-388.
[114] GREMAUD V, GOLDSCHEIDER N, SAVOY L, et al. Geological structure, recharge processes and underground drainage of a glacierised karst aquifer system, Tsanfleuron-Sanetsch, Swiss Alps[J]. Hydrogeology Journal, 2009, 17(8): 1833-1848.
[115] HOCK R. Temperature index melt modelling in mountain areas[J]. Journal of Hydrology, 2003, 282(1-4): 104-115.
[116] GAO H, FENG Z, ZHANG T, et al. Assessing glacier retreat and its impact on water resources in a headwater of Yangtze River based on CMIP6 projections[J]. Science of the Total Environment, 2021, 765: 142774.
[117] GAO H, DONG J, CHEN X, et al. Stepwise modeling and the importance of internal variables validation to test model realism in a data scarce glacier basin[J]. Journal of Hydrology, 2020, 591:125457.
[118] LUBINI TSHUMUKA A, FUAMBA M. A conceptual model to quantify the water balance components of a watershed in a continuous permafrost region[J]. Water, 2023, 16(1): 83.
[119] ALVARADO-MONTERO R, UYSAL G, COLLADOS-LARA A-J, et al. Comparison of sequential and variational assimilation methods to improve hydrological predictions in snow dominated mountainous catchments[J]. Journal of Hydrology, 2022, 612: 127981.
[120] GAO H, HE X, YE B, et al. Modeling the runoff and glacier mass balance in a small watershed on the Central Tibetan Plateau, China, from 1955 to 2008[J]. Hydrological Processes, 2012, 26(11): 1593-1603.
[121] WANG L, ZHANG F, NEPAL S, et al. Response of runoff processes to temperature rise in basins with different glacier ratios in the monsoon-influenced southern Tibetan Plateau[J]. Journal of Hydrology: Regional Studies, 2023, 45: 101299.
[122] WIJNGAARD R R, BIEMANS H, LUTZ A F, et al. Climate change vs. socio-economic development: Understanding the future South Asian water gap[J]. Hydrology and Earth System Sciences, 2018, 22(12): 6297-6321.
[123] 李洪源, 赵求东, 吴锦奎, 等. 疏勒河上游径流组分及其变化特征定量模拟[J]. 冰川冻土, 2019, 41(4): 907-917.
[124] SCHILLING O S, PARK Y J, THERRIEN R, et al. Integrated surface and subsurface hydrological modeling with snowmelt and pore water freeze-thaw[J]. Groundwater, 2019, 57(1): 63-74.
[125] HUSS M, FARINOTTI D, BAUDER A, et al. Modelling runoff from highly glacierized alpine drainage basins in a changing climate[J]. Hydrological Processes, 2008, 22(19): 3888-3902.
[126] LI H, NG F, LI Z, et al. An extended “perfect-plasticity” method for estimating ice thickness along the flow line of mountain glaciers[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F1): F01020.
[127] HUSS M, BAUDER A, FUNK M, et al. Determination of the seasonal mass balance of four Alpine glaciers since 1865[J]. Journal of Geophysical Research, 2008, 113(F1): F01015.
[128] MARZEION B, JAROSCH A H, HOFER M. Past and future sea-level change from the surface mass balance of glaciers[J]. The Cryosphere, 2012, 6(6): 1295-1322.
[129] ZHAO Q, DING Y, WANG J, et al. Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow[J]. Journal of Hydrology, 2019, 573: 60-81.
[130] LI H, BELDRING S, XU C Y, et al. Integrating a glacier retreat model into a hydrological model – case studies of three glacierised catchments in Norway and Himalayan region[J]. Journal of Hydrology, 2015, 527: 656-667.
[131] SEIBERT J, VIS M J P, KOHN I, et al. Technical note: Representing glacier geometry changes in a semi-distributed hydrological model[J]. Hydrology and Earth System Sciences, 2018, 22(4): 2211-2224.
[132] DOLK M, PENTON D J, AHMAD M D. Amplification of hydrological model uncertainties in projected climate simulations of the Upper Indus Basin: Does it matter where the water is coming from?[J]. Hydrological Processes, 2020, 34(10): 2200-2218.
[133] ROUNCE D R, HOCK R, SHEAN D E. Glacier mass change in high mountain Asia through 2100 using the open-source python glacier evolution model (PyGEM)[J]. Frontiers in Earth Science, 2020, 7: 331.
[134] BAIG S, SAYAMA T, TAKARA K. Hydrological modeling of the Astore River Basin, Pakistan, by integrating snow and glacier melt processes and climate scenarios[J]. Journal of Disaster Research, 2021, 16(8): 1197-1206.
[135] HAN P, LONG D, ZHAO F, et al. Response of two glaciers in different climate settings of the Tibetan Plateau to climate change through year 2100 using a hybrid modeling approach[J]. Water Resources Research, 2023, 59(4): e2022WR033618.
[136] 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445-456.
[137] JI F, FAN L, ANDREWS C B, et al. Dynamics of seasonally frozen ground in the Yarlung Zangbo River Basin on the Qinghai-Tibet Plateau: Historical trend and future projection[J]. Environmental Research Letters, 2020, 15(10): 104081.
[138] TIAN P, LU H, FENG W, et al. Large decrease in streamflow and sediment load of Qinghai–Tibetan Plateau driven by future climate change: A case study in Lhasa River Basin[J]. Catena, 2020, 187.
[139] XIANG X, AO T, XIAO Q. Variation of runoff and runoff components of the Lhasa River Basin in the Qinghai-Tibet Plateau under climate change[J]. Atmosphere, 2022, 13(11): 1848.
[140] FUJITA K, OHTA T, AGETA Y. Characteristics and climatic sensitivities of runoff from a cold-type glacier on the Tibetan Plateau[J]. Hydrological Processes, 2007, 21(21): 2882-2891.
[141] PU J, YAO T, YANG M, et al. Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau[J]. Hydrological Processes, 2008, 22(16): 2953-2958.
[142] 姚檀栋, 姚治君. 青藏高原冰川退缩对河水径流的影响[J]. 自然杂志, 2010, 32(1): 4-8.
[143] WU Z, LIU S, ZHANG H, et al. Full-Stokes modeling of a polar continental glacier: The dynamic characteristics response of the XD Glacier to ice thickness[J]. Acta Mechanica, 2018, 229(6): 2393-2411.
[144] SHI P, DUAN K, LIU H, et al. Response of Xiao Dongkemadi Glacier in the central Tibetan Plateau to the current climate change and future scenarios by 2050[J]. Journal of Mountain Science, 2016, 13(1): 13-28.
[145] 何秋乐, 匡星星, 梁四海, 等. 1966~2015年长江源冰川融水变化及其对径流的影响—以冬克玛底河流域为例[J]. 人民长江, 2020, 51(2): 77-85.
[146] 高红凯, 何晓波, 叶柏生, 等. 1955-2008年冬克玛底河流域冰川径流模拟研究[J]. 冰川冻土, 2008, 32(1): 171-181.
[147] 冯紫荆, 何天豪, 汪少勇, 等. 反照率对冬克玛底冰川径流及物质平衡模拟影响研究[J]. 冰川冻土, 2022, 44(3): 1053-1062.
[148] 田富强, 徐冉, 南熠, 等. 基于分布式水文模型的雅鲁藏布江径流水源组成解析[J]. 水科学进展, 2020, 31(3): 324-336.
[149] LIU S, WANG P, WANG C, et al. Anthropogenic disturbances on antibiotic resistome along the Yarlung Tsangpo River on the Tibetan Plateau: Ecological dissemination mechanisms of antibiotic resistance genes to bacterial pathogens[J]. Water Research, 2021, 202: 117447.
[150] 刘晓尘, 效存德. 1974-2010年雅鲁藏布江源头杰玛央宗冰川及冰湖变化初步[J]. 冰川冻土, 2011, 33(3): 488-496.
[151] 拉巴卓玛, 喻薛凝. 1976-2019年西藏杰玛央宗冰川退缩遥感监测[J]. 高原科学研究, 2020, 4(03): 7-29+54.
[152] YAN Z, ZHANG T, WANG Y, et al. Dynamic evolution modeling of a lake-terminating glacier in the Western Himalayas using a two-dimensional higher-order flowline model[J]. Remote Sensing, 2022, 14(24): 6189.
[153] 彭定志, 徐宗学, 巩同梁. 雅鲁藏布江拉萨河流域水文模型应用研究[J]. 北京师范大学学报(自然科学版), 2008, 44(1): 92-95.
[154] 刘俊峰, 杨建平, 陈仁升, 等. SRM融雪径流模型在长江源区冬克玛底河流域的应用[J]. 地理学报, 2006, 61(11): 1149-1159.
[155] 张寅生, 姚檀栋, 蒲健辰, 等. 青藏高原唐古拉山冬克玛底河流域水文过程特征分析[J]. 冰川冻土, 1997, 19(3): 214-222.
[156] 王建, 艾合麦提·阿西木, 丁永建, 等. 唐古拉冬克玛底冰川流域pH值和电导率分析[J]. 环境科学, 2007, 28(10): 2301-2306.
[157] 蒲红铮, 韩添丁, 丁永建, 等. 唐古拉山冬克玛底冰川流域河水总溶解固体和悬移质的变化特征[J]. 冰川冻土, 2018, 40(5): 993-1003.
[158] 谯程骏, 何晓波, 叶柏生. 唐古拉山冬克玛底冰川雪冰度日因子研究[J]. 冰川冻土, 2010, 32(02): 257-264.
[159] 何秋乐. 长江源冬克玛底河流域冰川水文过程影响与模拟[D]. 北京: 中国地质大学(北京), 2019.
[160] 张健, 何晓波, 叶柏生, 等. 近期小冬克玛底冰川物质平衡变化及其影响因素分析[J]. 冰川冻土, 2013, 35(2): 263-271.
[161] 安宝晟, 姚檀栋, 郭燕红, 等. 拉萨河流域典型区域保护、修复、治理技术示范体系[J]. 科学通报, 2021, 66(22): 2775-2784.
[162] 周丹, 黄川友. 拉萨河流域水环境现状及污染防治对策[J]. 四川水利, 2007, 02: 48-51.
[163] 史轩, 陈喜, 高满, 等. 青藏高原拉萨河流域水化学时空变化特征控制因素研[J]. 长江流域资源与环境, 2023, 32(1): 183-193.
[164] 薛宇轩. 基于SWAT模型的拉萨河流域生态服务价值研究. 基于SWAT模型的拉萨河流域生态服务价值研究[D]. 北京: 华北电力大学(北京), 2020.
[165] 何柳. 拉萨河流域水文地球化学特征及其风化指示[D]. 南昌: 东华理工大学, 2019.
[166] 张核真, 卓玛, 向飞, 等. 1981-2013年气候因子变化对西藏拉萨河径流的影响[J]. 冰川冻土, 2015, 37(5): 1304-1311.
[167] 林红, 焦菊英, 陈同德, 等. 西藏拉萨河流域中下游洪积扇植被的物种组成与多样性特征[J]. 水土保持研究, 2021, 28(5): 67-75.
[168] 王旭, 周爱国, FLORIAN S, 等. 念青唐古拉山西段冰川1977-2010年时空变化[J]. 地球科学-中国地质大学学报, 2012, 37(5): 1082-1092.
[169] GUO W, LIU S, XU J, et al. The second Chinese glacier inventory: Data, methods and results[J]. Journal of Glaciology, 2015, 61(226): 357-372.
[170] LIN L, GAO M, LIU J, et al. Understanding the effects of climate warming on streamflow and active groundwater storage in an alpine catchment: The upper Lhasa River[J]. Hydrology and Earth System Sciences, 2020, 24(3): 1145-1157.
[171] 巩同梁, 刘昌明, 刘景时. 拉萨河冬季径流对气候变暖和冻土退化的响应[J]. 地理学报, 2006, 61(5): 519-526.
[172] LIU J, XIE J, GONG T, et al. Impacts of winter warming and permafrost degradation on water variability, upper Lhasa River, Tibet[J]. Quaternary International, 2011, 244(2): 178-184.
[173] ZHANG Y, XU C-Y, HAO Z, et al. Variation of melt water and rainfall runoff and their impacts on streamflow changes during recent decades in two Tibetan Plateau Basins[J]. Water, 2020, 12(11): 3112.
[174] 张勇, 刘时银, 王欣. 高亚洲冰川区度日因子空间分布数据集[J]. 中国科学数据, 2019, 4(3): 141-151.
[175] SORG A, HUSS M, ROHRER M, et al. The days of plenty might soon be over in glacierized Central Asian catchments[J]. Environmental Research Letters, 2014, 9(10): 104018.
[176] KUANG X, JIAO J J. An integrated permeability-depth model for Earth's crust[J]. Geophysical Research Letters, 2014, 41(21): 7539-7545.
[177] FETTER. Applied Hydrogeology[M]. 4th ed. Upper Saddle River, New Jersey: Prentice-Hall., 2001.
[178] CONTOUX C, VIOLETTE S, VIVONA R, et al. How basin model results enable the study of multi-layer aquifer response to pumping: The Paris Basin, France[J]. Hydrogeology Journal, 2013, 21(3): 545-557.
[179] PARADIS D, LEFEBVRE R. Single-well interference slug tests to assess the vertical hydraulic conductivity of unconsolidated aquifers[J]. Journal of Hydrology, 2013, 478: 102-118.
[180] KUANG X, ZHENG C, JIAO J J, et al. An empirical specific storage-depth model for the Earth's crust[J]. Journal of Hydrology, 2021, 592: 125784.
[181] GUDMUNDSSON L, BREMNES J B, HAUGEN J E, et al. Technical note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods[J]. Hydrology and Earth System Sciences, 2012, 16(9): 3383-3390.
[182] GHIMIRE U, SRINIVASAN G, AGARWAL A. Assessment of rainfall bias correction techniques for improved hydrological simulation[J]. International Journal of Climatology, 2018, 39(4): 2386-2399.
[183] IMMERZEEL W W, VAN BEEK L P, KONZ M, et al. Hydrological response to climate change in a glacierized catchment in the Himalayas[J]. Climate Change, 2012, 110(3-4): 721-736.
[184] MCCUEN R H. The role of sensitivity analysis in hydrologic modeling[J]. 1973, 18(1): 37-53.
[185] LIU W, XU Z, LI F, et al. Impacts of climate change on hydrological processes in the Tibetan Plateau: A case study in the Lhasa River basin[J]. Stochastic Environmental Research and Risk Assessment, 2015, 29(7): 1809-1822.
[186] NASH J E, SUTCLIFFE J V. River flow forecasting through conceptual models part IA discussion of principles[J]. Journal of Hydrology, 1970, 10(3): 282-290.
[187] HUSS M, FARINOTTI D. Distributed ice thickness and volume of all glaciers around the globe[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F4): F04010.
[188] FREY H, MACHGUTH H, HUSS M, et al. Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods[J]. The Cryosphere, 2014, 8(6): 2313-2333.
[189] FüRST J J, GILLET-CHAULET F, BENHAM T J, et al. Application of a two-step approach for mapping ice thickness to various glacier types on Svalbard[J]. The Cryosphere, 2017, 11(5): 2003-2032.
[190] RAMSANKARAN R, PANDIT A, AZAM M F. Spatially distributed ice-thickness modelling for Chhota Shigri Glacier in western Himalayas, India[J]. International Journal of Remote Sensing, 2018, 39(10): 3320-3343.
[191] MAUSSION F, BUTENKO A, CHAMPOLLION N, et al. The open global glacier model (OGGM) v1.1[J]. Geoscientific Model Development, 2019, 12(3): 909-931.
[192] FAYE B, WEBBER H, NAAB J B, et al. Impacts of 1.5 versus 2.0 °C on cereal yields in the West African Sudan Savanna[J]. Environmental Research Letters, 2018, 13(3): 034014.
[193] PRASCH M, MAUSER W, WEBER M. Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin[J]. The Cryosphere, 2013, 7(3): 889-904.
[194] LIU J, GAO Z, WANG M, et al. Study on the dynamic characteristics of groundwater in the valley plain of Lhasa City[J]. Environmental Earth Sciences, 2018, 77(18): 646.
[195] ZOU D, ZHAO L, SHENG Y, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527-2542.
[196] 张清华, 孙平安, 何师意, 等. 西藏拉萨河流域河水主要离子化学特征及来源[J]. 环境科学, 2018, 39(3): 1065-1075.
[197] 陈家昌. 拉萨河流域地下水分布特征与演变规律[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[198] SABERI L, CRYSTAL NG G H, NELSON L, et al. Spatiotemporal drivers of hydrochemical variability in a tropical glacierized watershed in the Andes[J]. Water Resources Research, 2021, 57(5): e2020WR028722.
[199] PIOTROWSKI J A. Groundwater under ice sheets and glaciers[M]. John Wiley & Sons, Ltd, 2007.
[200] FAVIER V, COUDRAIN A, CADIER E, et al. Evidence of groundwater flow on Antizana ice-covered volcano, Ecuador[J]. Hydrological Sciences Journal, 2010, 53(1): 278-291.
[201] BARAER M, MCKENZIE J, MARK B G, et al. Contribution of groundwater to the outflow from ungauged glacierized catchments: A multi-site study in the tropical Cordillera Blanca, Peru[J]. Hydrological Processes, 2015, 29(11): 2561-2581.
[202] BARAER M, MCKENZIE J M, MARK B G, et al. Characterizing contributions of glacier melt and groundwater during the dry season in a poorly gauged catchment of the Cordillera Blanca (Peru)[J]. Advances in Geosciences, 22: 41-49.
[203] HARRINGTON J S, MOZIL A, HAYASHI M, et al. Groundwater flow and storage processes in an inactive rock glacier[J]. Hydrological Processes, 2018, 32(20): 3070-3088.
[204] PARKES D, MARZEION B. Twentieth-century contribution to sea-level rise from uncharted glaciers[J]. Nature, 2018, 563(7732): 551-554.
[205] 中国地质调查局. 水文地质手册[M]. 第2版. 北京: 地质出版社, 2012.
[206] TARTAKOVSKY G D, NEUMAN S P. Three‐dimensional saturated‐unsaturated flow with axial symmetry to a partially penetrating well in a compressible unconfined aquifer[J]. Water Resources Research, 2007, 43(1): W01410.
[207] YEH H D, HUANG Y C. Analysis of pumping test data for determining unconfined-aquifer parameters: Composite analysis or not?[J]. Hydrogeology Journal, 2009, 17(5): 1133-1147.
[208] SHUGAR D H, BURR A, HARITASHYA U K, et al. Rapid worldwide growth of glacial lakes since 1990[J]. Nature Climate Change, 2020, 10(10): 939-945.
[209] SCANLON B R, KEESE K E, FLINT A L, et al. Global synthesis of groundwater recharge in semiarid and arid regions[J]. Hydrological Processes, 2006, 20(15): 3335-3370.
[210] SOMERS L D, MCKENZIE J M. A review of groundwater in high mountain environments[J]. WIREs Water, 2020, 7(6): e1475.
[211] BLOXOM L F, BURBEY T J. Determination of the location of the groundwater divide and nature of groundwater flow paths within a region of active stream capture; the New River watershed, Virginia, USA[J]. Environmental Earth Sciences, 2015, 74(3): 2687-2699.
[212] SAKATA Y, BARAN G, SUZUKI T, et al. Estimate of river seepage by conditioning downward groundwater flow in the Toyohira River alluvial fan, Japan[J]. Hydrological Sciences Journal, 2016: 1-11.
[213] FARINOTTI D, IMMERZEEL W W, DE KOK R, et al. Manifestations and mechanisms of the Karakoram glacier Anomaly[J]. Nature Geoscience, 2020, 13(1): 8-16.
[214] ZHANG D, HUANG J, GUAN X, et al. Long-term trends of precipitable water and precipitation over the Tibetan Plateau derived from satellite and surface measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 122: 64-71.
[215] XIE H, ZHU X, YUAN D Y. Pan evaporation modelling and changing attribution analysis on the Tibetan Plateau (1970–2012)[J]. Hydrological Processes, 2014, 29(9): 2164-2177.
[216] YANG J, DING Y, CHEN R. Climatic causes of ecological and environmental variations in the source regions of the Yangtze and Yellow Rivers of China[J]. Environmental Geology, 2007, 53(1): 113-121.
[217] 李珊珊, 张明军, 汪宝龙, 等. 近51年来三江源区降水变化的空间差异[J]. 生态学杂志, 2012, 31(10): 2635-2643.
[218] LU W, WANG W, SHAO Q, et al. Hydrological projections of future climate change over the source region of Yellow River and Yangtze River in the Tibetan Plateau: A comprehensive assessment by coupling RegCM4 and VIC model[J]. Hydrological Processes, 2018, 32(13): 2096-2117.
[219] CHENG G, WU T. Responses of permafrost to climate change and their environmental significance, Qinghai‐Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2): F02S03.
[220] OSTERKAMP T. The recent warming of permafrost in Alaska[J]. Global and Planetary Change, 2005, 49(3-4): 187-202.
[221] SMITH S L, ROMANOVSKY V E, LEWKOWICZ A G, et al. Thermal state of permafrost in North America: A contribution to the international polar year[J]. Permafrost and Periglacial Processes, 2010, 21(2): 117-135.
[222] ȘERBAN R D, JIN H, ȘERBAN M, et al. Shrinking thermokarst lakes and ponds on the northeastern Qinghai‐Tibet Plateau over the past three decades[J]. Permafrost and Periglacial Processes, 2021, 32(4): 601-617.
[223] MICHEL F A. Changes in hydrogeologic regimes in permafrost regions due to climatic change[J]. Permafrost and Periglacial Processes, 1994, 5: 191-195.
[224] QUINTON W L, BALTZER J L. The active-layer hydrology of a peat plateau with thawing permafrost (Scotty Creek, Canada)[J]. Hydrogeology Journal, 2012, 21(1): 201-220.
[225] XU J, LIU S, ZHANG S, et al. Recent changes in glacial area and volume on Tuanjiefeng peak region of Qilian Mountains, China[J]. PLoS One, 2013, 8(8): e70574.
[226] BøGGILD C E, KNUDBY C J, KNUDSEN M B, et al. Snowmelt and runoff modelling of an Arctic hydrological basin in west Greenland[J]. Hydrological Processes, 1999, 13(12-13): 1989-2002.
[227] 康尔泗, OHMURA A. 天山冰川消融参数化能量平衡模型[J]. 地理学报, 49(5): 467-476.
[228] MEEKS J, MOECK C, BRUNNER P, et al. Infiltration under snow cover: Modeling approaches and predictive uncertainty[J]. Journal of Hydrology, 2017, 546: 16-27.
[229] CARLIER C, WIRTH S B, COCHAND F, et al. Exploring geological and topographical controls on low flows with hydrogeological models[J]. Groundwater, 2019, 57(1): 48-62.
[230] CARLIER C, WIRTH S B, COCHAND F, et al. Geology controls streamflow dynamics[J]. Journal of Hydrology, 2018, 566: 756-769.
[231] WIRTH S, CARLIER C, COCHAND F, et al. Lithological and tectonic control on groundwater contribution to stream discharge during low-flow conditions[J]. Water, 2020, 12(3): 821.
[232] ARNOUX M, BRUNNER P, SCHAEFLI B, et al. Low-flow behavior of alpine catchments with varying quaternary cover under current and future climatic conditions[J]. Journal of Hydrology, 2021, 592: 125591.
[233] THORNTON J M, MARIETHOZ G, BRUNNER P. A 3D geological model of a structurally complex alpine region as a basis for interdisciplinary research[J]. Science Data, 2018, 5: 180238.
[234] GORDON R P, LAUTZ L K, MCKENZIE J M, et al. Sources and pathways of stream generation in tropical proglacial valleys of the Cordillera Blanca, Peru[J]. Journal of Hydrology, 2015, 522: 628-644.
[235] MACKAY J D, BARRAND N E, HANNAH D M, et al. Proglacial groundwater storage dynamics under climate change and glacier retreat[J]. Hydrological Processes, 2020, 34(26): 5456-5473.
[236] COOK A J, FOX A J, VAUGHAN D G, et al. Retreating glacier fronts on the Antarctic Peninsula over the past half-century[J]. Science, 2005, 308(5721): 541-544.
[237] SORG A, BOLCH T, STOFFEL M, et al. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)[J]. Nature Climate Change, 2012, 2(10): 725-731.
[238] MILILLO P, RIGNOT E, RIZZOLI P, et al. Rapid glacier retreat rates observed in West Antarctica[J]. Nature Geoscience, 2022, 15(1): 48-53.
[239] LEMIEUX J M. Impact of the Wisconsinian glaciation on Canadian continental groundwater flow[D]. Waterloo: University of Waterloo, 2006.
[240] NEUZIL C E. Hydromechanical effects of continental glaciation on groundwater systems[J]. Geofluids, 2012, 12(1): 22-37.
[241] AALTO J, HARRISON S, LUOTO M. Statistical modelling predicts almost complete loss of major periglacial processes in Northern Europe by 2100[J]. Nature Communications, 2017, 8(1): 515.
[242] LI D, ZHANG R, KNUTSON T R. On the discrepancy between observed and CMIP5 multi-model simulated Barents Sea winter sea ice decline[J]. Nature Communications, 2017, 8: 14991.
[243] HOFER S, LANG C, AMORY C, et al. Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6[J]. Nature Communications, 2020, 11(1): 6289.
[244] HORVAT C. Marginal ice zone fraction benchmarks sea ice and climate model skill[J]. Nature Communications, 2021, 12(1): 2221.
[245] LIU L, LUO D, WANG L, et al. Variability of soil freeze depth in association with climate change from 1901 to 2016 in the upper Brahmaputra River Basin, Tibetan Plateau[J]. Theoretical and Applied Climatology, 2020, 142(1-2): 19-28.
[246] KLEINBERG R L, GRIFFIN D D. NMR measurements of permafrost: unfrozen water assay, pore-scale distribution of ice, and hydraulic permeability of sediments[J]. Cold Regions Science and Technology, 2005, 42(1): 63-77.
[247] NIU L, YE B, LI J, et al. Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in Western China[J]. Science China Earth Sciences, 2010, 54(4): 615-624.
[248] ZHANG T, LI D, LU X. Response of runoff components to climate change in the source‐region of the Yellow River on the Tibetan plateau[J]. Hydrological Processes, 2022, 36(6): e14633.
[249] QIN Y, YANG D, GAO B, et al. Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China[J]. Science of Total Environment, 2017, 605-606: 830-841.
[250] RAVIER E, BUONCRISTIANI J F. Glaciohydrogeology[M]. Past glacial environments. 2018: 431-466.
[251] DUETHMANN D, MENZ C, JIANG T, et al. Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large[J]. Environmental Research Letters, 2016, 11(5): 054024.
[252] FLOWERS G E. Modelling water flow under glaciers and ice sheets[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 2015, 471(2176): 20140907.
[253] VAIKMäE R, VALLNER L, LOOSLI H H, et al. Palaeogroundwater of glacial origin in the Cambrian-Vendian aquifer of northern Estonia[J]. Geological Society, London, Special Publications, 2022, 189(1): 17-27.
[254] PIOTROWSKI J A. Subglacial hydrology in north-western Germany during the last glaciation groundwater flow, tunnel valleys and hydrological cycles[J]. Quaternary Science Reviews, 1997, 16: 169-185.
[255] MOHAMMED A A, CEY E E, HAYASHI M, et al. Simulating preferential flow and snowmelt partitioning in seasonally frozen hillslopes[J]. Hydrological Processes, 2021, 35(8): e14277.
[256] BRUNNER P, SIMMONS C T. HydroGeoSphere: A fully integrated, physically based hydrological model[J]. Groundwater, 2012, 50(2): 170-176.
[257] GLEESON T, SMITH L, MOOSDORF N, et al. Mapping permeability over the surface of the Earth[J]. Geophysical Research Letters, 2011, 38(2): L02401.
[258] TIEL M, STAHL K, FREUDIGER D, et al. Glacio‐hydrological model calibration and evaluation[J]. WIREs Water, 2020, 7(6): e1483.
[259] ALA-AHO P, SOULSBY C, WANG H, et al. Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterisation[J]. Journal of Hydrology, 2017, 547: 664-677.
[260] GODERNIAUX P, BROUYèRE S, FOWLER H J, et al. Large scale surface–subsurface hydrological model to assess climate change impacts on groundwater reserves[J]. Journal of Hydrology, 2009, 373(1-2): 122-138.
[261] SCIUTO G, DIEKKRüGER B. Influence of soil heterogeneity and spatial discretization on catchment water balance modeling[J]. Vadose Zone Journal, 2010, 9(4): 955-969.
[262] CANADELL J, JACKSON R, EHLERINGER J, et al. Maximum rooting depth of vegetation types at the global scale[J]. Oecologia, 1996, 108(4): 583-595.
[263] FAN J, MCCONKEY B, WANG H, et al. Root distribution by depth for temperate agricultural crops[J]. Field Crops Research, 2016, 189: 68-74.
[264] PANDAY S, HUYAKORN P S. A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow[J]. Advances in Water Resources, 2004, 27(4): 361-382.
[265] GLASER B, KLAUS J, FREI S, et al. On the value of surface saturated area dynamics mapped with thermal infrared imagery for modeling the hillslope-riparian-stream continuum[J]. Water Resources Research, 2016, 52(10): 8317-8342.
[266] CORNELISSEN T, DIEKKRüGER B, BOGENA H. Using high-resolution data to test parameter sensitivity of the distributed hydrological model HydroGeoSphere[J]. Water, 2016, 8(5): 202.
[267] BREUER L, ECKHARDT K, FREDE H-G. Plant parameter values for models in temperate climates[J]. Ecological Modelling, 2003, 169(2-3): 237-293.
[268] YU Z, WU G, KEYS L, et al. Seasonal variation of chemical weathering and its controlling factors in two alpine catchments, Nam Co basin, central Tibetan Plateau[J]. Journal of Hydrology, 2019, 576: 381-395.
[269] IMANOV F, ALIYEVA I. Underground flow study of Great Caucasian Rivers within Azerbaijan[J]. Acta Scientiarum Polonorum Formatio Circumiectus, 2020, 19(1): 61-72.
[270] STAHL K, MOORE R D, SHEA J M, et al. Coupled modelling of glacier and streamflow response to future climate scenarios[J]. Water Resources Research, 2008, 44(2): W02422.
[271] IMMERZEEL W W, BIERKENS M F P. Asia's water balance[J]. Nature Geoscience, 2012, 5(12): 841-842.
[272] IMMERZEEL W W, PELLICCIOTTI F, BIERKENS M F P. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds[J]. Nature Geoscience, 2013, 6(9): 742-745.
[273] LUTZ A F, IMMERZEEL W W, SHRESTHA A B, et al. Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation[J]. Nature Climate Change, 2014, 4(7): 587-592.
[274] FRANS C, ISTANBULLUOGLU E, LETTENMAIER D P, et al. Implications of decadal to century scale glacio-hydrological change for water resources of the Hood River basin, OR, USA[J]. Hydrological Processes, 2016, 30(23): 4314-4329.
[275] FARINOTTI D, USSELMANN S, HUSS M, et al. Runoff evolution in the Swiss Alps: Projections for selected high-alpine catchments based on ensembles scenarios[J]. Hydrological Processes, 2012, 26(13): 1909-1924.
[276] EARMAN S, CAMPBELL A R, PHILLIPS F M, et al. Isotopic exchange between snow and atmospheric water vapor: Estimation of the snowmelt component of groundwater recharge in the southwestern United States[J]. Journal of Geophysical Research, 2006, 111(D9): D09302.
[277] LOWRY C S, DEEMS J S, LOHEIDE II S P, et al. Linking snowmelt-derived fluxes and groundwater flow in a high elevation meadow system, Sierra Nevada Mountains, California[J]. Hydrological Processes, 2010, 24(20): 2821-2833.
[278] ZHANG L, SU F, YANG D, et al. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(15): 8500-8518.
[279] CHEN X, LONG D, HONG Y, et al. Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin?[J]. Water Resources Research, 2017, 53(3): 2431-2466.
[280] TAGUE C, GRANT G, FARRELL M, et al. Deep groundwater mediates streamflow response to climate warming in the Oregon Cascades[J]. Climatic Change, 2007, 86(1-2): 189-210.
[281] MARKOVICH K H, MAXWELL R M, FOGG G E. Hydrogeological response to climate change in alpine hillslopes[J]. Hydrological Processes, 2016, 30(18): 3126-3138.
[282] THORNTON J M, BRAUCHLI T, MARIETHOZ G, et al. Efficient multi-objective calibration and uncertainty analysis of distributed snow simulations in rugged alpine terrain[J]. Journal of Hydrology, 2021, 598: 126241.
修改评论