[1] LI Y, WANG X, ZHANG D. Control strategies for aircraft airframe noise reduction[J]. Chinese Journal of Aeronautics, 2013, 26(2):249¬260.
[2] BROOKS T F, POPE D S, MARCOLINI M A. Airfoil self¬noise and prediction[R]. [S.l.: s.n.], 1989.
[3] GLEGG S, DEVENPORT W. Aeroacoustics of low mach mumber flows: Fundamentals, analysis, and measurement[M]. [S.l.]: Academic Press, 2017.
[4] LEE S, AYTON L, BERTAGNOLIO F, et al. Turbulent boundary layer trailing¬edge noise: Theory, computation, experiment, and application[J]. Progress in Aerospace Sciences, 2021,126:100737.
[5] AVALLONE F, VAN DER VELDEN W, RAGNI D, et al. Noise reduction mechanisms of sawtooth and combed¬sawtooth trailing¬edge serrations[J]. Journal of Fluid Mechanics, 2018, 848:560¬591.
[6] OERLEMANS S, SIJTSMA P, LÓPEZ B M. Location and quantification of noise sources on a wind turbine[J]. Journal of sound and vibration, 2007, 299(4¬5):869¬883.
[7] BROOKS T F, MARCOLINI M A. Scaling of airfoil self¬noise using measured flow parameters [J]. AIAA Journal, 1985, 23(2):207¬213.
[8] POWELL A. On the aerodynamic noise of a rigid flat plate moving at zero incidence[J]. The Journal of the Acoustical Society of America, 1959, 31(12):1649¬1653.
[9] COLONIUS T, LELE S K. Computational aeroacoustics: progress on nonlinear problems of sound generation[J]. Progress in Aerospace sciences, 2004, 40(6):345¬416.
[10] BLAKE W. Mechanics of flow¬induced sound and vibration, 1986[M]. [S.l.]: Academic Press, New York.
[11] BEARMAN P. The effect of base bleed on the flow behind a two¬dimensional model with a blunt trailing edge[J]. Aeronautical Quarterly, 1967, 18(3):207¬224.
[12] VAN DAM C. Blade aerodynamics–passive and active load control for wind turbine blades[J]. Dept. of Mechanical Engineering, University of California, Davis, Lecture, 2009.
[13] BAKER J P, VAN DAM C, GILBERT B L. Flatback airfoil wind tunnel experiment[M]. [S.l.]: Sandia National Laboratories, 2008.
[14] HOERNER S F. Base drag and thick trailing edges[J]. Journal of the Aeronautical Sciences, 1950, 17(10):622¬628.
[15] BARONE M, BERG D. Aerodynamic and aeroacoustic properties of a flatback airfoil: an update[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. [S.l.: s.n.], 2009: 271.
[16] BARONE M, BERG D. Aerodynamic and aeroacoustic properties of a flatback airfoil: an update[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. [S.l.: s.n.], 2009: 271.
[17] BAKER J, MAYDA E, VAN DAM C. Experimental analysis of thick blunt trailing¬edge wind turbine airfoils[J]. 2006.
[18] XU H Y, QIAO C L, YANG H Q, et al. Active circulation control on the blunt trailing edge wind turbine airfoil[J]. AIAA journal, 2018, 56(2):554¬570.
[19] ANDERSON J. Fundamentals of aerodynamics[M]. [S.l.]: McGraw Hill, 2011.
[20] VON KÁRMÁN T. Aerodynamics: selected topics in the light of their historical development [M]. [S.l.]: Courier Corporation, 2004.
[21] BENARD N, MOREAU E. Role of the electric waveform supplying a dielectric barrier discharge plasma actuator[J]. Applied Physics Letters, 2012, 100(19).
[22] GERRARD J. The mechanics of the formation region of vortices behind bluff bodies[J]. Journal of Fluid Mechanics, 1966, 25(2):401¬413.
[23] ROSHKO A. On the development of turbulent wakes from vortex streets[R]. [S.l.: s.n.], 1954.
[24] PETRUSMA M, GAI S. Bluff body wakes with free, fixed, and discontinuous separation at low Reynolds numbers and low aspect ratio[J]. Experiments in fluids, 1996, 20(3):189¬198.
[25] WILLIAMSON C H. Defining a universal and continuous strouhal–reynolds number relationship for the laminar vortex shedding of a circular cylinder[J]. The Physics of fluids, 1988, 31 (10):2742¬2744.
[26] WILLIAMSON C H. Vortex dynamics in the cylinder wake[J]. Annual review of fluid mechanics, 1996, 28(1):477¬539.
[27] CHOI H, JEON W P, KIM J. Control of flow over a bluff body[J]. Annu. Rev. Fluid Mech., 2008, 40:113¬139.
[28] CHOI C K, KWON D K. Wind tunnel blockage effects on aerodynamic behavior of bluff body [J]. Wind and Structures, An International Journal, 1998, 1(4):351¬364.
[29] PARK H, LEE D, JEON W P, et al. Drag reduction in flow over a two¬dimensional bluff body with a blunt trailing edge using a new passive device[J]. Journal of Fluid Mechanics, 2006, 563: 389¬414.
[30] WOOD C J. The effect of base bleed on a periodic wake[J]. The Aeronautical Journal, 1964, 68(643):477¬482.
[31] BEARMAN P. Investigation of the flow behind a two¬dimensional model with a blunt trailing edge and fitted with splitter plates[J]. Journal of Fluid Mechanics, 1965, 21(2):241¬255.
[32] CASTRO I. Wake characteristics of two¬dimensional perforated plates normal to an air¬stream [J]. Journal of Fluid Mechanics, 1971, 46(3):599¬609.
[33] ALI S A S, AZARPEYVAND M, DA SILVA C R I. Trailing¬edge flow and noise control using porous treatments[J]. Journal of Fluid Mechanics, 2018, 850:83¬119.
[34] NATI G, KOTSONIS M, GHAEMI S, et al. Control of vortex shedding from a blunt trailing edge using plasma actuators[J]. Experimental Thermal and fluid science, 2013, 46:199-210.
[35] PARK W, CIMBALA J. The effect of jet injection geometry on two¬dimensional momentumless wakes[J]. Journal of Fluid Mechanics, 1991, 224:29¬47.
[36] CIMBALA J, PARK W. An experimental investigation of the turbulent structure in a two-dimensional momentumless wake[J]. Journal of Fluid Mechanics, 1990, 213:479¬509.
[37] PARK W. An experimental investigation of the turbulent structure in two¬dimensional momentumless wakes[M]. [S.l.]: The Pennsylvania State University, 1989.
[38] TAKAMI H, MAEKAWA H. Experimental investigation of turbulent structures in a two dimensional momentumless wake; nijigen momentumless wake no ranryu kozo ni kansuru jikkenteki kenkyu[J]. Nippon Kikai Gakkai Ronbunshu. B Hen (Transactions of the Japan Society of Mechanical Engineers. Part B), 1997, 63.
[39] SAHA A K, SHRIVASTAVA A. Suppression of vortex shedding around a square cylinder using blowing[J]. Sadhana, 2015, 40:769¬785.
[40] MATHELIN L, BATAILLE F, LALLEMAND A. Near wake of a circular cylinder submitted to blowing–i: Boundary layers evolution[J]. International journal of heat and mass transfer, 2001, 44(19):3701¬3708.
[41] MATHELIN L, BATAILLE F, LALLEMAND A. Near wake of a circular cylinder submitted to blowing–ii: impact on the dynamics[J]. International journal of heat and mass transfer, 2001, 44(19):3709¬3719.
[42] MARTINEZ¬CAVA A, RODRÍGUEZ D, VALERO E, et al. Characterization of base bleed effects on subsonic trailing edge flows[J]. Aerospace Science and Technology, 2021, 113:106730.
[43] RASHIDI S, HAYATDAVOODI M, ESFAHANI J A. Vortex shedding suppression and wake control: A review[J]. Ocean Engineering, 2016, 126:57¬80.
[44] YOU D, CHOI H, CHOI M R, et al. Control of flow¬induced noise behind a circular cylinder using splitter plates[J]. AIAA journal, 1998, 36(11):1961¬1967.
[45] DUAN F, WANG J. Fluid–structure–sound interaction in noise reduction of a circular cylinder with flexible splitter plate[J]. Journal of Fluid Mechanics, 2021, 920:A6.
[46] SUEKI T, TAKAISHI T, IKEDA M, et al. Application of porous material to reduce aerodynamic sound from bluff bodies[J]. Fluid Dynamics Research, 2010, 42(1):015004.
[47] GEYER T, SARRADJ E, FRITZSCHE C. Measurement of the noise generation at the trailing edge of porous airfoils[J]. Experiments in Fluids, 2010, 48(2):291¬308.
[48] GEYER T F, SARRADJ E, HEROLD G. Flow noise generation of cylinders with soft porous cover[C]//21st AIAA/CEAS Aeroacoustics Conference. [S.l.: s.n.], 2015: 3147.
[49] GEYER T F, SARRADJ E. Circular cylinders with soft porous cover for flow noise reduction [J]. Experiments in Fluids, 2016, 57(3):1¬16.
[50] GEYER T F. Experimental evaluation of cylinder vortex shedding noise reduction using porous material[J]. Experiments in Fluids, 2020, 61(7):1¬21.
[51] ARCONDOULIS E J, GEYER T F, LIU Y. An acoustic investigation of non¬uniformly structured porous coated cylinders in uniform flow[J]. The Journal of the Acoustical Society of America, 2021, 150(2):1231¬1242.
[52] ARCONDOULIS E J, GEYER T F, LIU Y. An investigation of wake flows produced by asymmetrically structured porous coated cylinders[J]. Physics of Fluids, 2021, 33(3):037124.
[53] MARYAMI R, ARCONDOULIS E, YANG C, et al. Application of local blowing to a structured porous¬coated cylinder for flow and noise control[C]//28th AIAA/CEAS Aeroacoustics 2022 Conference. [S.l.: s.n.], 2022: 2921.
[54] KOH S R, MEINKE M, SCHRÖDER W. Numerical analysis of the impact of permeability on trailing¬edge noise[J]. Journal of Sound and Vibration, 2018, 421:348¬376.
[55] NAITO H, FUKAGATA K. Numerical simulation of flow around a circular cylinder having porous surface[J]. Physics of Fluids, 2012, 24(11).
[56] ALI S A S, AZARPEYVAND M, DA SILVA C R I. Trailing edge bluntness noise reduction using porous treatments[J]. Journal of Sound and Vibration, 2020, 474:115257.
[57] SHOWKAT ALI S A, AZARPEYVAND M, SZŐKE M, et al. Boundary layer flow interaction with a permeable wall[J]. Physics of Fluids, 2018, 30(8).
[58] BAE Y, JEONG Y, MOON Y. Effect of porous surface on the flat plate self¬noise[C]//15th AIAA/CEAS aeroacoustics conference (30th AIAA aeroacoustics conference). [S.l.: s.n.], 2009: 3311.
[59] EYDI F, MOJRA A. A numerical study on the benefits of passive¬arc plates on drag and noise reductions of a cylinder in turbulent flow[J]. Physics of Fluids, 2023, 35(8).
[60] MARYAMI R, ARCONDOULIS E J, LIU Y. Flow and aerodynamic noise control of a circular cylinder by local blowing[J]. Journal of Fluid Mechanics, 2024, 980:A56.
[61] GLOERFELT X, PéROT F, BAILLY C, et al. Flow¬induced cylinder noise formulated as a diffraction problem for low mach numbers[J/OL]. Journal of Sound and Vibration, 2005, 287 (1):129¬151. https://www.sciencedirect.com/science/article/pii/S0022460X04009009. DOI: https://doi.org/10.1016/j.jsv.2004.10.047.
[62] RAMIREZ W A, WOLF W. The effects of suction and blowing on tonal noise generation by blunt trailing edges[C]//21st AIAA/CEAS Aeroacoustics Conference. [S.l.: s.n.], 2015: 2364.
[63] APELT C, WEST G. The effects of wake splitter plates on bluff¬body flow in the range 104< r< 5× 104. part 2[J]. Journal of Fluid Mechanics, 1975, 71(1):145¬160.
[64] ANDERSON E, SZEWCZYK A. Effects of a splitter plate on the near wake of a circular cylinder in 2 and 3¬dimensional flow configurations[J]. Experiments in Fluids, 1997, 23(2): 161-174.
[65] OZONO S. Flow control of vortex shedding by a short splitter plate asymmetrically arranged downstream of a cylinder[J]. Physics of Fluids, 1999, 11(10):2928¬2934.
[66] YUCEL S, CETINER O, UNAL M. Interaction of circular cylinder wake with a short asymmetrically located downstream plate[J]. Experiments in fluids, 2010, 49:241¬255.
[67] AKILLI H, KARAKUS C, AKAR A, et al. Control of vortex shedding of circular cylinder in shallow water flow using an attached splitter plate[J]. 2008.
[68] WANG R, BAO Y, ZHOU D, et al. Flow instabilities in the wake of a circular cylinder with parallel dual splitter plates attached[J]. Journal of Fluid Mechanics, 2019, 874:299¬338.
[69] SAHU T R, FURQUAN M, MITTAL S. Numerical study of flow¬induced vibration of a circular cylinder with attached flexible splitter plate at low[J]. Journal of Fluid Mechanics, 2019, 880: 551¬593.
[70] AL¬SADAWI L, CHONG T P, KIM J H. Aerodynamic noise reduction by plasma actuators for a flat plate with blunt trailing edge[J]. Journal of Sound and Vibration, 2019, 439:173¬193.
[71] LIN J, TOWFIGHI J, ROCKWELL D. Near¬wake of a circular cylinder: control, by steady and unsteady surface injection[J]. Journal of Fluids and Structures, 1995, 9(6):659¬669.
[72] GAO D, CHEN G, CHEN W, et al. Active control of circular cylinder flow with windward suction and leeward blowing[J]. Experiments in Fluids, 2019, 60(2):1¬17.
[73] MARYAMI R, ARCONDOULIS E J, GUO J, et al. Experimental investigation of active local blowing on the aerodynamic noise reduction of a circular cylinder[J]. Journal of Sound and Vibration, 2024:118360.
[74] BROUČKOVÁ Z. Synthetic and continuous jets impinging on a circular cylinder: Flow field and heat transfer experimental study[D]. [S.l.]: Czech Technical University, 2018.
[75] ANGLAND D, ZHANG X, GOODYER M. Use of blowing flow control to reduce bluff body interaction noise[J]. AIAA journal, 2012, 50(8):1670¬1684.
[76] WANG C, TANG H, YU S C, et al. Active control of vortex¬induced vibrations of a circular cylinder using windward¬suction¬leeward¬blowing actuation[J]. Physics of Fluids, 2016, 28(5): 053601.
[77] AMIET R K. Noise due to turbulent flow past a trailing edge[J]. Journal of sound and vibration, 1976, 47(3):387¬393.
[78] PARCHEN R. A prediction scheme for trailing edge noise based on detailed boundary layer characteristics[J]. Progress report DRAW, 1998.
[79] IBREN M, ANDAN A D, ASRAR W, et al. A review on generation and mitigation of airfoil self¬induced noise[J]. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2022, 90(1):163¬178.
[80] HERR M, DOBRZYNSKI W. Experimental investigations in low¬noise trailing edge design. [J]. AIAA journal, 2005, 43(6):1167¬1175.
[81] HERR M. Design criteria for low¬noise trailing¬edges[C]//13th AIAA/CEAS aeroacoustics conference (28th AIAA aeroacoustics conference). [S.l.: s.n.], 2007: 3470.
[82] FINEZ A, JACOB M, JONDEAU E, et al. Broadband noise reduction with trailing edge brushes [C]//16th AIAA/CEAS aeroacoustics conference. [S.l.: s.n.], 2010: 3980.
[83] PEREIRA L T L, AVALLONE F, RAGNI D, et al. A physics¬based description and modelling of the wall¬pressure fluctuations on a serrated trailing edge[J]. Journal of Fluid Mechanics, 2022, 938:A28.
[84] LYU B, AZARPEYVAND M, SINAYOKO S. Prediction of noise from serrated trailing edges [J]. Journal of Fluid Mechanics, 2016, 793:556¬588.
[85] WANG Y, ZHAO K, LU X Y, et al. Bio¬inspired aerodynamic noise control: a bibliographic review[J]. Applied Sciences, 2019, 9(11):2224.
[86] AFSHARI A, AZARPEYVAND M, DEHGHAN A A, et al. Trailing¬edge flow manipulation using streamwise finlets[J]. Journal of Fluid Mechanics, 2019, 870:617¬650.
[87] BODLING A, SHARMA A. Numerical investigation of low¬noise airfoils inspired by the down coat of owls[J]. Bioinspiration & Biomimetics, 2018, 14(1):016013.
[88] JAWAHAR H K, AZARPEYVAND M, DA SILVA C R I. Acoustic and flow characteristics of an airfoil fitted with morphed trailing edges[J]. Experimental Thermal and Fluid Science, 2021, 123:110287.
[89] AI Q, AZARPEYVAND M, LACHENAL X, et al. Aerodynamic and aeroacoustic performance of airfoils with morphing structures[J]. Wind Energy, 2016, 19(7):1325¬1339.
[90] DA SILVA G P G, EGUEA J P, CROCE J A G, et al. Slat aerodynamic noise reduction using dielectric barrier discharge plasma actuators[J]. Aerospace Science and Technology, 2020, 97: 105642.
[91] ZHU H, HAO W, LI C, et al. Application of flow control strategy of blowing, synthetic and plasma jet actuators in vertical axis wind turbines[J]. Aerospace Science and Technology, 2019, 88:468¬480.
[92] CHIEKH M B, FERCHICHI M, BÉRA J C. Modified flapping jet for increased jet spreading using synthetic jets[J]. International Journal of Heat and Fluid Flow, 2011, 32(5):865-875.
[93] YOUSEFI K, SALEH R, ZAHEDI P. Numerical study of blowing and suction slot geometry optimization on NACA 0012 airfoil[J]. Journal of Mechanical Science and Technology, 2014, 28(4):1297¬1310.
[94] WINKLER J, MOREAU S, CAROLUS T. Effect of trailing edge blowing geometry on broadband noise sources[C]//17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference). [S.l.: s.n.], 2011: 2783.
[95] GERHARD T, ERBSLOEH S, CAROLUS T. Reduction of airfoil trailing edge noise by trailing edge blowing[C]//Journal of Physics: Conference Series: volume 524. [S.l.]: IOP Publishing, 2014: 012123.
[96] MANEGAR F A, STAHL K, CAROLUS T H, et al. Noise reduction mechanism of trailing edge blowing using the lattice¬boltzmann method: Numerical and experimental analysis[C]// INTER¬NOISE and NOISE¬CON Congress and Conference Proceedings: volume 259. [S.l.]: Institute of Noise Control Engineering, 2019: 3818¬3828.
[97] SZŐKE M, FISCALETTI D, AZARPEYVAND M. Effect of inclined transverse jets on trailing edge noise generation[J]. Physics of Fluids, 2018, 30(8):085110.
[98] SZŐKE M, FISCALETTI D, AZARPEYVAND M. Influence of boundary layer flow suction on trailing edge noise generation[J]. Journal of Sound and Vibration, 2020, 475:115276.
[99] SZŐKE M, FISCALETTI D, AZARPEYVAND M. Uniform flow injection into a turbulent boundary layer for trailing edge noise reduction[J]. Physics of Fluids, 2020, 32(8):085104.
[100] LANGFORD M, MINTON C, NG W, et al. Fan flow control for noise reduction part 2: investigation of wake¬filling techniques[C]//11th AIAA/CEAS Aeroacoustics Conference. [S.l.: s.n.], 2005: 3026.
[101] KOHLHAAS M, BAMBERGER K, CAROLUS T. Acoustic optimization of rotor¬stator interaction noise by trailing¬edge blowing[C]//19th AIAA/CEAS Aeroacoustics Conference. [S.l.: s.n.], 2013: 2294.
[102] HALASZ C. Advanced trailing edge blowing concepts for fan noise control: Experimental validation[D]. [S.l.]: Virginia Tech, 2005
[103] ABBASI S. Effects of blowing location on aeroacoustics of the flow over a circular cylinder [J]. Journal of Applied Fluid Mechanics, 2022, 15(1):231¬243.
[104] DÉDA T C, WOLF W R. Extremum seeking control applied to airfoil trailing¬edge noise suppression[J]. AIAA Journal, 2022, 60(2):823¬843.
[105] WAITZ I, BROOKFIELD J, SELL J, et al. Preliminary assessment of wake management strategies for reduction of turbomachinery fan noise[J]. Journal of propulsion and power, 1996, 12 (5):958¬966.
[106] SELL J. Cascade testing to assess the effectiveness of mass addition/removal wake management strategies for reduction of rotor¬stator interation noise[D]. [S.l.]: Massachusetts Institute of Technology, 1997.
[107] BROOKFIELD J M, WAITZ I A. Trailing¬edge blowing for reduction of turbomachinery fan noise[J]. Journal of Propulsion and Power, 2000, 16(1):57¬64.
[108] SUTLIFF D L, TWEEDT D L, FITE E B, et al. Low¬speed fan noise reduction with trailing edge blowing[J]. International Journal of Aeroacoustics, 2002, 1(3):275¬305.
[109] FITE E, WOODWARD R, PODBOY G. Effect of trailing edge flow injection on fan noise and aerodynamic performance[C]//3rd AIAA flow control conference. [S.l.: s.n.], 2006: 2844.
[110] WANG W, J. THOMAS P. Acoustic improvement of stator–rotor interaction with nonuniform trailing edge blowing[J]. Applied Sciences, 2018, 8(6):994.
[111] HU Z, LIU H. Investigation on vortex shedding and noise control of flow around cylinder by blowing and suction[C]//2020 International Conference on Dynamics and Vibroacoustics of Machines (DVM). [S.l.]: IEEE, 2020: 1¬10.
[112] AMITAY M, GLEZER A. Aerodynamic flow control using synthetic jet actuators[M]//Control of fluid flow. [S.l.]: Springer, 2006: 45¬73.
[113] DONOVAN J, KRAL L, CARY A. Active flow control applied to an airfoil[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. [S.l.: s.n.], 1998: 210.
[114] LABROQUÈRE J, VISONNEAU M. Optimization of a synthetic jet actuator for aerodynamic stall control’[J]. Computers and Fluids, 2006:Vol¬35.
[115] HUANG L, HUANG P, LEBEAU R, et al. Numerical study of blowing and suction control mechanism on naca0012 airfoil[J]. Journal of aircraft, 2004, 41(5):1005¬1013.
[116] KARIM M A, ACHARYA M. Suppression of dynamic¬stall vortices over pitching airfoils by leading¬edge suction[J]. AIAA journal, 1994, 32(8):1647¬1655.
[117] SCHLATTER P, ÖRLÜ R. Assessment of direct numerical simulation data of turbulent boundary layers[J]. Journal of Fluid Mechanics, 2010, 659:116¬126.
[118] SEELE R, TEWES P, WOSZIDLO R, et al. Discrete sweeping jets as tools for improving the performance of the v¬22[J]. Journal of Aircraft, 2009, 46(6):2098¬2106.
[119] YOU D, MOIN P. Active control of flow separation over an airfoil using synthetic jets[J]. Journal of Fluids and structures, 2008, 24(8):1349¬1357.
[120] ZHA G C, CARROLL B F, PAXTON C D, et al. High¬performance airfoil using coflow jet flow control[J]. AIAA journal, 2007, 45(8):2087¬2090.
[121] LUTZ T, ARNOLD B, WOLF A, et al. Numerical studies on a rotor with distributed suction for noise reduction[C]//Journal of Physics: Conference Series: volume 524. [S.l.]: IOP Publishing, 2014: 012122.
[122] WOLF A, LUTZ T, WÜRZ W, et al. Trailing edge noise reduction of wind turbine blades by active flow control[J]. Wind Energy, 2015, 18(5):909¬923.
[123] YANG C, ARCONDOULIS E J, YANG Y, et al. Active control of airfoil turbulent boundary layer noise with trailing¬edge blowing[J]. The Journal of the Acoustical Society of America, 2023, 153(4):2115¬2130.
[124] GALERA L, MARTINEZ¬FILGUEIRA P, FERNÁNDEZ¬GÁMIZ U, et al. A triangular vortex generator modeling on a du97¬w¬300 airfoil by a source term model[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2019, 233(5):635¬ 645.
[125] YANG Y, LIU Y, LIU R, et al. Design, validation, and benchmark tests of the aeroacoustic wind tunnel in sustech[J]. Applied Acoustics, 2021, 175:107847.
[126] MISH P F. An experimental investigation of unsteady surface pressure on single and multiple airfoils[D]. [S.l.]: Virginia Polytechnic Institute and State University, 2003.
[127] ROGER M, MOREAU S, GUÉDEL A. Vortex¬shedding noise and potential¬interaction noise modeling by a reversed sears’ problem[C]//12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). [S.l.: s.n.], 2006: 2607.
[128] BAI H, LU Z, WEI R, et al. Noise reduction of sinusoidal wavy cylinder in subcritical flow regime[J]. Physics of Fluids, 2021, 33(10):105120.
[129] SHANNON D W, MORRIS S C. Experimental investigation of a blunt trailing edge flow field with application to sound generation[J]. Experiments in Fluids, 2006, 41:777¬788.
[130] BLAKE W K. A statistical description of pressure and velocity fields at the trailing edges of a flat strut[R]. [S.l.: s.n.], 1975.
[131] BROOKS T F, HODGSON T. Trailing edge noise prediction from measured surface pressures [J]. Journal of Sound and Vibration, 1981, 78(1):69¬117.
[132] MANOLESOS M, VOUTSINAS S G. Experimental study of drag¬reduction devices on a flatback airfoil[J]. Aiaa Journal, 2016, 54(11):3382¬3396.
[133] FFOWCS WILLIAMS J, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences, 1969:321¬342.
[134] MARYAMI R, ARCONDOULIS E J, LIU Q, et al. Experimental near¬field analysis for flow induced noise of a structured porous¬coated cylinder[J]. Journal of Sound and Vibration, 2023, 551:117611.
[135] GUO J, MARYAMI R, YANG C, et al. Aerodynamic noise reduction of a blunt flat plate by trailing¬edge blowing[J]. Physics of Fluids, 2023, 35(6)
修改评论