中文版 | English
题名

尾缘均匀射流对钝尾缘翼型气动噪声和气动特性的影响

其他题名
INFLUENCE OF UNIFORM BLOWING AT TRAILING EDGE ON THE AEROACOUSTIC AND AERODYNAMIC CHARACTERISTICS OF BLUNTEDGE AIRFOILS
姓名
姓名拼音
GUO Jing
学号
12031303
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
刘宇
导师单位
力学与航空航天工程系
论文答辩日期
2024-05-16
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
  本文通过实验的方法研究了尾缘均匀射流对钝尾缘翼型气动噪声和气动特性的影响。设计了满足信噪比的供气系统,并且通过设计模型内的流道,使得气流均匀从钝尾缘翼型的背部小孔均匀射出。
  在带有消声室的风洞开口实验段中对钝尾缘平板和一平背翼型的噪声特性利用自由场麦克风进行了测量,发现尾缘均匀射流可以减小由于涡脱落引起的纯音噪声,并且使纯音噪声所占据的频率带宽变窄,同时其特征频率也发生了变化。对平背翼型和钝尾缘平板的比较发现,持续增大吹气动量系数,可以完全抑制钝尾缘平板产生的纯音噪声,对平背翼型只能部分削弱。
  应用粒子图像测速 (PIV) 技术测量流场发现,尾缘射流使得钝尾缘处的自由 剪切层卷起形成大尺度涡结构的位置发生在更下游的位置,导致脱落涡的强度减弱,回流区拉长。尾缘射流引起的涡脱频率的变化和涡形成位置处的尾迹宽度相关。通过对表面压力脉动和远场噪声的同步测量分析发现,纯音噪声的噪声源是表面压力脉动。对沿流向各点的表面压力脉动在涡脱落频率处的相位差分析发现,尾迹内大尺度涡在形成过程中引起其形成位置上游的速度脉动,这产生了表面压力脉动。尾缘射流使得上游位置的速度脉动减弱,从而表面压力脉动也被削弱,进而减弱了纯音噪声。另外对钝尾缘尾迹内的垂向速度的展向相干性测量发现,尾缘吹气可以增大涡脱频率处的展向相干性,这和平背翼型尾缘表面压力脉动的展向相干性增强的结果一致。对流场的这些影响表明尾缘均匀射流和尾缘使用分流板,多孔材质以及使用等离子控制器等方法的降噪机理一致。研究还发现,尾缘均匀射流通过减弱湍流边界层以及尾迹内的湍流强度来减弱湍流边界层尾缘噪声。
  对平背翼型表面静压分布的测量发现,尾缘均匀射流对吸力面和压力面静压的影响非常有限,但是会显著增大背压,这表明不会引起升力损失,但可以减小背阻。结果还表明,降噪效果最好的吹气强度与减阻效果最明显的的吹气强度的值基本一致,这对具有相似降噪机理的控制方法在工程实践中的应用有指导意义。
关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] LI Y, WANG X, ZHANG D. Control strategies for aircraft airframe noise reduction[J]. Chinese Journal of Aeronautics, 2013, 26(2):249¬260.
[2] BROOKS T F, POPE D S, MARCOLINI M A. Airfoil self¬noise and prediction[R]. [S.l.: s.n.], 1989.
[3] GLEGG S, DEVENPORT W. Aeroacoustics of low mach mumber flows: Fundamentals, analysis, and measurement[M]. [S.l.]: Academic Press, 2017.
[4] LEE S, AYTON L, BERTAGNOLIO F, et al. Turbulent boundary layer trailing¬edge noise: Theory, computation, experiment, and application[J]. Progress in Aerospace Sciences, 2021,126:100737.
[5] AVALLONE F, VAN DER VELDEN W, RAGNI D, et al. Noise reduction mechanisms of sawtooth and combed¬sawtooth trailing¬edge serrations[J]. Journal of Fluid Mechanics, 2018, 848:560¬591.
[6] OERLEMANS S, SIJTSMA P, LÓPEZ B M. Location and quantification of noise sources on a wind turbine[J]. Journal of sound and vibration, 2007, 299(4¬5):869¬883.
[7] BROOKS T F, MARCOLINI M A. Scaling of airfoil self¬noise using measured flow parameters [J]. AIAA Journal, 1985, 23(2):207¬213.
[8] POWELL A. On the aerodynamic noise of a rigid flat plate moving at zero incidence[J]. The Journal of the Acoustical Society of America, 1959, 31(12):1649¬1653.
[9] COLONIUS T, LELE S K. Computational aeroacoustics: progress on nonlinear problems of sound generation[J]. Progress in Aerospace sciences, 2004, 40(6):345¬416.
[10] BLAKE W. Mechanics of flow¬induced sound and vibration, 1986[M]. [S.l.]: Academic Press, New York.
[11] BEARMAN P. The effect of base bleed on the flow behind a two¬dimensional model with a blunt trailing edge[J]. Aeronautical Quarterly, 1967, 18(3):207¬224.
[12] VAN DAM C. Blade aerodynamics–passive and active load control for wind turbine blades[J]. Dept. of Mechanical Engineering, University of California, Davis, Lecture, 2009.
[13] BAKER J P, VAN DAM C, GILBERT B L. Flatback airfoil wind tunnel experiment[M]. [S.l.]: Sandia National Laboratories, 2008.
[14] HOERNER S F. Base drag and thick trailing edges[J]. Journal of the Aeronautical Sciences, 1950, 17(10):622¬628.
[15] BARONE M, BERG D. Aerodynamic and aeroacoustic properties of a flatback airfoil: an update[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. [S.l.: s.n.], 2009: 271.
[16] BARONE M, BERG D. Aerodynamic and aeroacoustic properties of a flatback airfoil: an update[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. [S.l.: s.n.], 2009: 271.
[17] BAKER J, MAYDA E, VAN DAM C. Experimental analysis of thick blunt trailing¬edge wind turbine airfoils[J]. 2006.
[18] XU H Y, QIAO C L, YANG H Q, et al. Active circulation control on the blunt trailing edge wind turbine airfoil[J]. AIAA journal, 2018, 56(2):554¬570.
[19] ANDERSON J. Fundamentals of aerodynamics[M]. [S.l.]: McGraw Hill, 2011.
[20] VON KÁRMÁN T. Aerodynamics: selected topics in the light of their historical development [M]. [S.l.]: Courier Corporation, 2004.
[21] BENARD N, MOREAU E. Role of the electric waveform supplying a dielectric barrier discharge plasma actuator[J]. Applied Physics Letters, 2012, 100(19).
[22] GERRARD J. The mechanics of the formation region of vortices behind bluff bodies[J]. Journal of Fluid Mechanics, 1966, 25(2):401¬413.
[23] ROSHKO A. On the development of turbulent wakes from vortex streets[R]. [S.l.: s.n.], 1954.
[24] PETRUSMA M, GAI S. Bluff body wakes with free, fixed, and discontinuous separation at low Reynolds numbers and low aspect ratio[J]. Experiments in fluids, 1996, 20(3):189¬198.
[25] WILLIAMSON C H. Defining a universal and continuous strouhal–reynolds number relationship for the laminar vortex shedding of a circular cylinder[J]. The Physics of fluids, 1988, 31 (10):2742¬2744.
[26] WILLIAMSON C H. Vortex dynamics in the cylinder wake[J]. Annual review of fluid mechanics, 1996, 28(1):477¬539.
[27] CHOI H, JEON W P, KIM J. Control of flow over a bluff body[J]. Annu. Rev. Fluid Mech., 2008, 40:113¬139.
[28] CHOI C K, KWON D K. Wind tunnel blockage effects on aerodynamic behavior of bluff body [J]. Wind and Structures, An International Journal, 1998, 1(4):351¬364.
[29] PARK H, LEE D, JEON W P, et al. Drag reduction in flow over a two¬dimensional bluff body with a blunt trailing edge using a new passive device[J]. Journal of Fluid Mechanics, 2006, 563: 389¬414.
[30] WOOD C J. The effect of base bleed on a periodic wake[J]. The Aeronautical Journal, 1964, 68(643):477¬482.
[31] BEARMAN P. Investigation of the flow behind a two¬dimensional model with a blunt trailing edge and fitted with splitter plates[J]. Journal of Fluid Mechanics, 1965, 21(2):241¬255.
[32] CASTRO I. Wake characteristics of two¬dimensional perforated plates normal to an air¬stream [J]. Journal of Fluid Mechanics, 1971, 46(3):599¬609.
[33] ALI S A S, AZARPEYVAND M, DA SILVA C R I. Trailing¬edge flow and noise control using porous treatments[J]. Journal of Fluid Mechanics, 2018, 850:83¬119.
[34] NATI G, KOTSONIS M, GHAEMI S, et al. Control of vortex shedding from a blunt trailing edge using plasma actuators[J]. Experimental Thermal and fluid science, 2013, 46:199-210.
[35] PARK W, CIMBALA J. The effect of jet injection geometry on two¬dimensional momentumless wakes[J]. Journal of Fluid Mechanics, 1991, 224:29¬47.
[36] CIMBALA J, PARK W. An experimental investigation of the turbulent structure in a two-dimensional momentumless wake[J]. Journal of Fluid Mechanics, 1990, 213:479¬509.
[37] PARK W. An experimental investigation of the turbulent structure in two¬dimensional momentumless wakes[M]. [S.l.]: The Pennsylvania State University, 1989.
[38] TAKAMI H, MAEKAWA H. Experimental investigation of turbulent structures in a two dimensional momentumless wake; nijigen momentumless wake no ranryu kozo ni kansuru jikkenteki kenkyu[J]. Nippon Kikai Gakkai Ronbunshu. B Hen (Transactions of the Japan Society of Mechanical Engineers. Part B), 1997, 63.
[39] SAHA A K, SHRIVASTAVA A. Suppression of vortex shedding around a square cylinder using blowing[J]. Sadhana, 2015, 40:769¬785.
[40] MATHELIN L, BATAILLE F, LALLEMAND A. Near wake of a circular cylinder submitted to blowing–i: Boundary layers evolution[J]. International journal of heat and mass transfer, 2001, 44(19):3701¬3708.
[41] MATHELIN L, BATAILLE F, LALLEMAND A. Near wake of a circular cylinder submitted to blowing–ii: impact on the dynamics[J]. International journal of heat and mass transfer, 2001, 44(19):3709¬3719.
[42] MARTINEZ¬CAVA A, RODRÍGUEZ D, VALERO E, et al. Characterization of base bleed effects on subsonic trailing edge flows[J]. Aerospace Science and Technology, 2021, 113:106730.
[43] RASHIDI S, HAYATDAVOODI M, ESFAHANI J A. Vortex shedding suppression and wake control: A review[J]. Ocean Engineering, 2016, 126:57¬80.
[44] YOU D, CHOI H, CHOI M R, et al. Control of flow¬induced noise behind a circular cylinder using splitter plates[J]. AIAA journal, 1998, 36(11):1961¬1967.
[45] DUAN F, WANG J. Fluid–structure–sound interaction in noise reduction of a circular cylinder with flexible splitter plate[J]. Journal of Fluid Mechanics, 2021, 920:A6.
[46] SUEKI T, TAKAISHI T, IKEDA M, et al. Application of porous material to reduce aerodynamic sound from bluff bodies[J]. Fluid Dynamics Research, 2010, 42(1):015004.
[47] GEYER T, SARRADJ E, FRITZSCHE C. Measurement of the noise generation at the trailing edge of porous airfoils[J]. Experiments in Fluids, 2010, 48(2):291¬308.
[48] GEYER T F, SARRADJ E, HEROLD G. Flow noise generation of cylinders with soft porous cover[C]//21st AIAA/CEAS Aeroacoustics Conference. [S.l.: s.n.], 2015: 3147.
[49] GEYER T F, SARRADJ E. Circular cylinders with soft porous cover for flow noise reduction [J]. Experiments in Fluids, 2016, 57(3):1¬16.
[50] GEYER T F. Experimental evaluation of cylinder vortex shedding noise reduction using porous material[J]. Experiments in Fluids, 2020, 61(7):1¬21.
[51] ARCONDOULIS E J, GEYER T F, LIU Y. An acoustic investigation of non¬uniformly structured porous coated cylinders in uniform flow[J]. The Journal of the Acoustical Society of America, 2021, 150(2):1231¬1242.
[52] ARCONDOULIS E J, GEYER T F, LIU Y. An investigation of wake flows produced by asymmetrically structured porous coated cylinders[J]. Physics of Fluids, 2021, 33(3):037124.
[53] MARYAMI R, ARCONDOULIS E, YANG C, et al. Application of local blowing to a structured porous¬coated cylinder for flow and noise control[C]//28th AIAA/CEAS Aeroacoustics 2022 Conference. [S.l.: s.n.], 2022: 2921.
[54] KOH S R, MEINKE M, SCHRÖDER W. Numerical analysis of the impact of permeability on trailing¬edge noise[J]. Journal of Sound and Vibration, 2018, 421:348¬376.
[55] NAITO H, FUKAGATA K. Numerical simulation of flow around a circular cylinder having porous surface[J]. Physics of Fluids, 2012, 24(11).
[56] ALI S A S, AZARPEYVAND M, DA SILVA C R I. Trailing edge bluntness noise reduction using porous treatments[J]. Journal of Sound and Vibration, 2020, 474:115257.
[57] SHOWKAT ALI S A, AZARPEYVAND M, SZŐKE M, et al. Boundary layer flow interaction with a permeable wall[J]. Physics of Fluids, 2018, 30(8).
[58] BAE Y, JEONG Y, MOON Y. Effect of porous surface on the flat plate self¬noise[C]//15th AIAA/CEAS aeroacoustics conference (30th AIAA aeroacoustics conference). [S.l.: s.n.], 2009: 3311.
[59] EYDI F, MOJRA A. A numerical study on the benefits of passive¬arc plates on drag and noise reductions of a cylinder in turbulent flow[J]. Physics of Fluids, 2023, 35(8).
[60] MARYAMI R, ARCONDOULIS E J, LIU Y. Flow and aerodynamic noise control of a circular cylinder by local blowing[J]. Journal of Fluid Mechanics, 2024, 980:A56.
[61] GLOERFELT X, PéROT F, BAILLY C, et al. Flow¬induced cylinder noise formulated as a diffraction problem for low mach numbers[J/OL]. Journal of Sound and Vibration, 2005, 287 (1):129¬151. https://www.sciencedirect.com/science/article/pii/S0022460X04009009. DOI: https://doi.org/10.1016/j.jsv.2004.10.047.
[62] RAMIREZ W A, WOLF W. The effects of suction and blowing on tonal noise generation by blunt trailing edges[C]//21st AIAA/CEAS Aeroacoustics Conference. [S.l.: s.n.], 2015: 2364.
[63] APELT C, WEST G. The effects of wake splitter plates on bluff¬body flow in the range 104< r< 5× 104. part 2[J]. Journal of Fluid Mechanics, 1975, 71(1):145¬160.
[64] ANDERSON E, SZEWCZYK A. Effects of a splitter plate on the near wake of a circular cylinder in 2 and 3¬dimensional flow configurations[J]. Experiments in Fluids, 1997, 23(2): 161-174.
[65] OZONO S. Flow control of vortex shedding by a short splitter plate asymmetrically arranged downstream of a cylinder[J]. Physics of Fluids, 1999, 11(10):2928¬2934.
[66] YUCEL S, CETINER O, UNAL M. Interaction of circular cylinder wake with a short asymmetrically located downstream plate[J]. Experiments in fluids, 2010, 49:241¬255.
[67] AKILLI H, KARAKUS C, AKAR A, et al. Control of vortex shedding of circular cylinder in shallow water flow using an attached splitter plate[J]. 2008.
[68] WANG R, BAO Y, ZHOU D, et al. Flow instabilities in the wake of a circular cylinder with parallel dual splitter plates attached[J]. Journal of Fluid Mechanics, 2019, 874:299¬338.
[69] SAHU T R, FURQUAN M, MITTAL S. Numerical study of flow¬induced vibration of a circular cylinder with attached flexible splitter plate at low[J]. Journal of Fluid Mechanics, 2019, 880: 551¬593.
[70] AL¬SADAWI L, CHONG T P, KIM J H. Aerodynamic noise reduction by plasma actuators for a flat plate with blunt trailing edge[J]. Journal of Sound and Vibration, 2019, 439:173¬193.
[71] LIN J, TOWFIGHI J, ROCKWELL D. Near¬wake of a circular cylinder: control, by steady and unsteady surface injection[J]. Journal of Fluids and Structures, 1995, 9(6):659¬669.
[72] GAO D, CHEN G, CHEN W, et al. Active control of circular cylinder flow with windward suction and leeward blowing[J]. Experiments in Fluids, 2019, 60(2):1¬17.
[73] MARYAMI R, ARCONDOULIS E J, GUO J, et al. Experimental investigation of active local blowing on the aerodynamic noise reduction of a circular cylinder[J]. Journal of Sound and Vibration, 2024:118360.
[74] BROUČKOVÁ Z. Synthetic and continuous jets impinging on a circular cylinder: Flow field and heat transfer experimental study[D]. [S.l.]: Czech Technical University, 2018.
[75] ANGLAND D, ZHANG X, GOODYER M. Use of blowing flow control to reduce bluff body interaction noise[J]. AIAA journal, 2012, 50(8):1670¬1684.
[76] WANG C, TANG H, YU S C, et al. Active control of vortex¬induced vibrations of a circular cylinder using windward¬suction¬leeward¬blowing actuation[J]. Physics of Fluids, 2016, 28(5): 053601.
[77] AMIET R K. Noise due to turbulent flow past a trailing edge[J]. Journal of sound and vibration, 1976, 47(3):387¬393.
[78] PARCHEN R. A prediction scheme for trailing edge noise based on detailed boundary layer characteristics[J]. Progress report DRAW, 1998.
[79] IBREN M, ANDAN A D, ASRAR W, et al. A review on generation and mitigation of airfoil self¬induced noise[J]. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2022, 90(1):163¬178.
[80] HERR M, DOBRZYNSKI W. Experimental investigations in low¬noise trailing edge design. [J]. AIAA journal, 2005, 43(6):1167¬1175.
[81] HERR M. Design criteria for low¬noise trailing¬edges[C]//13th AIAA/CEAS aeroacoustics conference (28th AIAA aeroacoustics conference). [S.l.: s.n.], 2007: 3470.
[82] FINEZ A, JACOB M, JONDEAU E, et al. Broadband noise reduction with trailing edge brushes [C]//16th AIAA/CEAS aeroacoustics conference. [S.l.: s.n.], 2010: 3980.
[83] PEREIRA L T L, AVALLONE F, RAGNI D, et al. A physics¬based description and modelling of the wall¬pressure fluctuations on a serrated trailing edge[J]. Journal of Fluid Mechanics, 2022, 938:A28.
[84] LYU B, AZARPEYVAND M, SINAYOKO S. Prediction of noise from serrated trailing edges [J]. Journal of Fluid Mechanics, 2016, 793:556¬588.
[85] WANG Y, ZHAO K, LU X Y, et al. Bio¬inspired aerodynamic noise control: a bibliographic review[J]. Applied Sciences, 2019, 9(11):2224.
[86] AFSHARI A, AZARPEYVAND M, DEHGHAN A A, et al. Trailing¬edge flow manipulation using streamwise finlets[J]. Journal of Fluid Mechanics, 2019, 870:617¬650.
[87] BODLING A, SHARMA A. Numerical investigation of low¬noise airfoils inspired by the down coat of owls[J]. Bioinspiration & Biomimetics, 2018, 14(1):016013.
[88] JAWAHAR H K, AZARPEYVAND M, DA SILVA C R I. Acoustic and flow characteristics of an airfoil fitted with morphed trailing edges[J]. Experimental Thermal and Fluid Science, 2021, 123:110287.
[89] AI Q, AZARPEYVAND M, LACHENAL X, et al. Aerodynamic and aeroacoustic performance of airfoils with morphing structures[J]. Wind Energy, 2016, 19(7):1325¬1339.
[90] DA SILVA G P G, EGUEA J P, CROCE J A G, et al. Slat aerodynamic noise reduction using dielectric barrier discharge plasma actuators[J]. Aerospace Science and Technology, 2020, 97: 105642.
[91] ZHU H, HAO W, LI C, et al. Application of flow control strategy of blowing, synthetic and plasma jet actuators in vertical axis wind turbines[J]. Aerospace Science and Technology, 2019, 88:468¬480.
[92] CHIEKH M B, FERCHICHI M, BÉRA J C. Modified flapping jet for increased jet spreading using synthetic jets[J]. International Journal of Heat and Fluid Flow, 2011, 32(5):865-875.
[93] YOUSEFI K, SALEH R, ZAHEDI P. Numerical study of blowing and suction slot geometry optimization on NACA 0012 airfoil[J]. Journal of Mechanical Science and Technology, 2014, 28(4):1297¬1310.
[94] WINKLER J, MOREAU S, CAROLUS T. Effect of trailing edge blowing geometry on broadband noise sources[C]//17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference). [S.l.: s.n.], 2011: 2783.
[95] GERHARD T, ERBSLOEH S, CAROLUS T. Reduction of airfoil trailing edge noise by trailing edge blowing[C]//Journal of Physics: Conference Series: volume 524. [S.l.]: IOP Publishing, 2014: 012123.
[96] MANEGAR F A, STAHL K, CAROLUS T H, et al. Noise reduction mechanism of trailing edge blowing using the lattice¬boltzmann method: Numerical and experimental analysis[C]// INTER¬NOISE and NOISE¬CON Congress and Conference Proceedings: volume 259. [S.l.]: Institute of Noise Control Engineering, 2019: 3818¬3828.
[97] SZŐKE M, FISCALETTI D, AZARPEYVAND M. Effect of inclined transverse jets on trailing edge noise generation[J]. Physics of Fluids, 2018, 30(8):085110.
[98] SZŐKE M, FISCALETTI D, AZARPEYVAND M. Influence of boundary layer flow suction on trailing edge noise generation[J]. Journal of Sound and Vibration, 2020, 475:115276.
[99] SZŐKE M, FISCALETTI D, AZARPEYVAND M. Uniform flow injection into a turbulent boundary layer for trailing edge noise reduction[J]. Physics of Fluids, 2020, 32(8):085104.
[100] LANGFORD M, MINTON C, NG W, et al. Fan flow control for noise reduction part 2: investigation of wake¬filling techniques[C]//11th AIAA/CEAS Aeroacoustics Conference. [S.l.: s.n.], 2005: 3026.
[101] KOHLHAAS M, BAMBERGER K, CAROLUS T. Acoustic optimization of rotor¬stator interaction noise by trailing¬edge blowing[C]//19th AIAA/CEAS Aeroacoustics Conference. [S.l.: s.n.], 2013: 2294.
[102] HALASZ C. Advanced trailing edge blowing concepts for fan noise control: Experimental validation[D]. [S.l.]: Virginia Tech, 2005
[103] ABBASI S. Effects of blowing location on aeroacoustics of the flow over a circular cylinder [J]. Journal of Applied Fluid Mechanics, 2022, 15(1):231¬243.
[104] DÉDA T C, WOLF W R. Extremum seeking control applied to airfoil trailing¬edge noise suppression[J]. AIAA Journal, 2022, 60(2):823¬843.
[105] WAITZ I, BROOKFIELD J, SELL J, et al. Preliminary assessment of wake management strategies for reduction of turbomachinery fan noise[J]. Journal of propulsion and power, 1996, 12 (5):958¬966.
[106] SELL J. Cascade testing to assess the effectiveness of mass addition/removal wake management strategies for reduction of rotor¬stator interation noise[D]. [S.l.]: Massachusetts Institute of Technology, 1997.
[107] BROOKFIELD J M, WAITZ I A. Trailing¬edge blowing for reduction of turbomachinery fan noise[J]. Journal of Propulsion and Power, 2000, 16(1):57¬64.
[108] SUTLIFF D L, TWEEDT D L, FITE E B, et al. Low¬speed fan noise reduction with trailing edge blowing[J]. International Journal of Aeroacoustics, 2002, 1(3):275¬305.
[109] FITE E, WOODWARD R, PODBOY G. Effect of trailing edge flow injection on fan noise and aerodynamic performance[C]//3rd AIAA flow control conference. [S.l.: s.n.], 2006: 2844.
[110] WANG W, J. THOMAS P. Acoustic improvement of stator–rotor interaction with nonuniform trailing edge blowing[J]. Applied Sciences, 2018, 8(6):994.
[111] HU Z, LIU H. Investigation on vortex shedding and noise control of flow around cylinder by blowing and suction[C]//2020 International Conference on Dynamics and Vibroacoustics of Machines (DVM). [S.l.]: IEEE, 2020: 1¬10.
[112] AMITAY M, GLEZER A. Aerodynamic flow control using synthetic jet actuators[M]//Control of fluid flow. [S.l.]: Springer, 2006: 45¬73.
[113] DONOVAN J, KRAL L, CARY A. Active flow control applied to an airfoil[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. [S.l.: s.n.], 1998: 210.
[114] LABROQUÈRE J, VISONNEAU M. Optimization of a synthetic jet actuator for aerodynamic stall control’[J]. Computers and Fluids, 2006:Vol¬35.
[115] HUANG L, HUANG P, LEBEAU R, et al. Numerical study of blowing and suction control mechanism on naca0012 airfoil[J]. Journal of aircraft, 2004, 41(5):1005¬1013.
[116] KARIM M A, ACHARYA M. Suppression of dynamic¬stall vortices over pitching airfoils by leading¬edge suction[J]. AIAA journal, 1994, 32(8):1647¬1655.
[117] SCHLATTER P, ÖRLÜ R. Assessment of direct numerical simulation data of turbulent boundary layers[J]. Journal of Fluid Mechanics, 2010, 659:116¬126.
[118] SEELE R, TEWES P, WOSZIDLO R, et al. Discrete sweeping jets as tools for improving the performance of the v¬22[J]. Journal of Aircraft, 2009, 46(6):2098¬2106.
[119] YOU D, MOIN P. Active control of flow separation over an airfoil using synthetic jets[J]. Journal of Fluids and structures, 2008, 24(8):1349¬1357.
[120] ZHA G C, CARROLL B F, PAXTON C D, et al. High¬performance airfoil using coflow jet flow control[J]. AIAA journal, 2007, 45(8):2087¬2090.
[121] LUTZ T, ARNOLD B, WOLF A, et al. Numerical studies on a rotor with distributed suction for noise reduction[C]//Journal of Physics: Conference Series: volume 524. [S.l.]: IOP Publishing, 2014: 012122.
[122] WOLF A, LUTZ T, WÜRZ W, et al. Trailing edge noise reduction of wind turbine blades by active flow control[J]. Wind Energy, 2015, 18(5):909¬923.
[123] YANG C, ARCONDOULIS E J, YANG Y, et al. Active control of airfoil turbulent boundary layer noise with trailing¬edge blowing[J]. The Journal of the Acoustical Society of America, 2023, 153(4):2115¬2130.
[124] GALERA L, MARTINEZ¬FILGUEIRA P, FERNÁNDEZ¬GÁMIZ U, et al. A triangular vortex generator modeling on a du97¬w¬300 airfoil by a source term model[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2019, 233(5):635¬ 645.
[125] YANG Y, LIU Y, LIU R, et al. Design, validation, and benchmark tests of the aeroacoustic wind tunnel in sustech[J]. Applied Acoustics, 2021, 175:107847.
[126] MISH P F. An experimental investigation of unsteady surface pressure on single and multiple airfoils[D]. [S.l.]: Virginia Polytechnic Institute and State University, 2003.
[127] ROGER M, MOREAU S, GUÉDEL A. Vortex¬shedding noise and potential¬interaction noise modeling by a reversed sears’ problem[C]//12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). [S.l.: s.n.], 2006: 2607.
[128] BAI H, LU Z, WEI R, et al. Noise reduction of sinusoidal wavy cylinder in subcritical flow regime[J]. Physics of Fluids, 2021, 33(10):105120.
[129] SHANNON D W, MORRIS S C. Experimental investigation of a blunt trailing edge flow field with application to sound generation[J]. Experiments in Fluids, 2006, 41:777¬788.
[130] BLAKE W K. A statistical description of pressure and velocity fields at the trailing edges of a flat strut[R]. [S.l.: s.n.], 1975.
[131] BROOKS T F, HODGSON T. Trailing edge noise prediction from measured surface pressures [J]. Journal of Sound and Vibration, 1981, 78(1):69¬117.
[132] MANOLESOS M, VOUTSINAS S G. Experimental study of drag¬reduction devices on a flatback airfoil[J]. Aiaa Journal, 2016, 54(11):3382¬3396.
[133] FFOWCS WILLIAMS J, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences, 1969:321¬342.
[134] MARYAMI R, ARCONDOULIS E J, LIU Q, et al. Experimental near¬field analysis for flow induced noise of a structured porous¬coated cylinder[J]. Journal of Sound and Vibration, 2023, 551:117611.
[135] GUO J, MARYAMI R, YANG C, et al. Aerodynamic noise reduction of a blunt flat plate by trailing¬edge blowing[J]. Physics of Fluids, 2023, 35(6)

所在学位评定分委会
力学
国内图书分类号
TM301.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765953
专题南方科技大学
工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
郭靖. 尾缘均匀射流对钝尾缘翼型气动噪声和气动特性的影响[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031303-郭靖-力学与航空航天工(15583KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[郭靖]的文章
百度学术
百度学术中相似的文章
[郭靖]的文章
必应学术
必应学术中相似的文章
[郭靖]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。