[1] BRUSSEAU M, MATTHIAS A, COMRIE A, et al. Environmental and pollution science: Atmospheric pollution[M]. Elsevier, 2019: 293-309.
[2] WALLACE J M, HOBBS P V. Atmospheric science: An introductory survey[M]. Elsevier, 2006.
[3] WANG S, WANG L, FAN X, et al. Formation pathway of secondary inorganic aerosol and its influencing factors in Northern China: Comparison between urban and rural sites[J]. Science of The Total Environment, 2022, 840: 156404.
[4] CAO T, WANG H, LI L, et al. Fast spreading of surface ozone in both temporal and spatial scale in Pearl River Delta[J]. Journal of Environmental Sciences, 2024, 137: 540-552.
[5] LIU Y, LIU C, NIE W, et al. Exploring condensable organic vapors and their co-occurrence with PM2.5 and O3 in winter in Eastern China[J]. Environmental Science: Atmospheres, 2023, 3(2): 282-297.
[6] GUO F, BUI A A, SCHULZE B C, et al. Airmass history, night-time particulate organonitrates, and meteorology impact urban SOA formation rate[J]. Atmospheric Environment, 2024, 322: 120362.
[7] WANG Y, ZHAO Y, LIU Y, et al. Sustained emission reductions have restrained the ozone pollution over China[J]. Nature Geoscience, 2023, 16(11): 967-974.
[8] ZHAI S, JACOB D J, WANG X, et al. Control of particulate nitrate air pollution in China[J]. Nature Geoscience, 2021, 14(6): 389-395.
[9] LI K, JACOB D J, LIAO H, et al. A two-pollutant strategy for improving ozone and particulate air quality in China[J]. Nature Geoscience, 2019, 12(11): 906-910.
[10] JIA L, XU Y, DUAN M. Explosive formation of secondary organic aerosol due to aerosol-fog interactions[J]. Science of The Total Environment, 2023, 866: 161338.
[11] GERRITZ L, WEI J, FANG T, et al. Reactive oxygen species formation and peroxide and carbonyl decomposition in aqueous photolysis of secondary organic aerosols[J]. Environmental Science & Technology, 2024, 58(10): 4716-4726.
[12] MA J, UNGEHEUER F, ZHENG F, et al. Nontarget screening exhibits a seasonal cycle of PM2.5 organic aerosol composition in Beijing[J]. Environmental Science & Technology, 2022, 56(11): 7017-7028.
[13] 银燕, 刁一伟, 刘超, 等. 大气物理学[M]. 北京: 气象出版社, 2018.
[14] 盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2013.
[15] LAGZI I, MÉSZÁROS R, GELYBÓ G, et al. Atmospheric chemistry[M]. Eötvös Loránd University, 2013.
[16] CRIEGEE R, WENNER G. Die Ozonisierung des 9, 10–Oktalins[J]. Justus Liebigs Annalen der Chemie, 1949, 564(1): 9-15.
[17] CRIEGEE R. Mechanism of ozonolysis[J]. Angewandte Chemie International Edition, 1975, 14(11): 745-752.
[18] BAILEY P S. The reactions of ozone with organic compounds[J]. Chemical Reviews, 1958, 58(5): 925-1010.
[19] WADT W R, GODDARD III W A. Electronic structure of the Criegee intermediate. Ramifications for the mechanism of ozonolysis[J]. Journal of the American Chemical Society, 1975, 97(11): 3004-3021.
[20] CREMER D, GAUSS J, KRAKA E, et al. A CCSD(T) investigation of carbonyl oxide and dioxirane. Equilibrium geometries, dipole moments, infrared spectra, heats of formation and isomerization energies[J]. Chemical Physics Letters, 1993, 209(5-6): 547-556.
[21] ANGLADA J M, BOFILL J M, OLIVELLA S, et al. Unimolecular isomerizations and oxygen atom loss in formaldehyde and acetaldehyde carbonyl oxides. A theoretical investigation[J]. Journal of the American Chemical Society, 1996, 118(19): 4636-4647.
[22] KALINOWSKI J, RÄSÄNEN M, HEINONEN P, et al. Isomerization and decomposition of a Criegee intermediate in the ozonolysis of alkenes: Dynamics using a multireference potential[J]. Angewandte Chemie International Edition, 2014, 126(1): 269-272.
[23] NGUYEN M T, NGUYEN T L, NGAN V T, et al. Heats of formation of the Criegee formaldehyde oxide and dioxirane[J]. Chemical Physics Letters, 2007, 448(4-6): 183-188.
[24] TAATJES C A, MELONI G, SELBY T M, et al. Direct observation of the gas-phase Criegee intermediate (CH2OO)[J]. Journal of the American Chemical Society, 2008, 130(36): 11883-11885.
[25] WELZ O, SAVEE J D, OSBORN D L, et al. Direct kinetic measurements of Criegee intermediate (CH2OO) formed by reaction of CH2I with O2[J]. Science, 2012, 335(6065): 204-207.
[26] TAATJES C A, WELZ O, ESKOLA A J, et al. Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO[J]. Science, 2013, 340(6129): 177-180.
[27] BEAMES J M, LIU F, LU L, et al. Ultraviolet spectrum and photochemistry of the simplest Criegee intermediate CH2OO[J]. Journal of the American Chemical Society, 2012, 134(49): 20045-20048.
[28] SU Y-T, HUANG Y-H, WITEK H A, et al. Infrared absorption spectrum of the simplest Criegee intermediate CH2OO[J]. Science, 2013, 340(6129): 174-176.
[29] MCCOY J C, MARCHETTI B, THODIKA M, et al. A simple and efficient method for simulating the electronic absorption spectra of Criegee intermediates: Benchmarking on CH2OO and CH3CHOO[J]. The Journal of Physical Chemistry A, 2021, 125(19): 4089-4097.
[30] BEAMES J M, LIU F, LU L, et al. UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH3CHOO[J]. The Journal of Chemical Physics, 2013, 138(24): 244307.
[31] LIN H-Y, HUANG Y-H, WANG X, et al. Infrared identification of the Criegee intermediates syn- and anti-CH3CHOO, and their distinct conformation-dependent reactivity[J]. Nature Communications, 2015, 6(1): 7012.
[32] ZHOU X, LIU Y, DONG W, et al. Unimolecular reaction rate measurement of syn-CH3CHOO[J]. The Journal of Physical Chemistry Letters, 2019, 10(17): 4817-4821.
[33] OSBORN D L, TAATJES C A. The physical chemistry of Criegee intermediates in the gas phase[J]. International Reviews in Physical Chemistry, 2015, 34(3): 309-360.
[34] VEREECKEN L. The reaction of Criegee intermediates with acids and enols[J]. Physical Chemistry Chemical Physics, 2017, 19(42): 28630-28640.
[35] ZOU M, LIU T, VANSCO M F, et al. Bimolecular reaction of methyl-ethyl-substituted Criegee intermediate with SO2[J]. The Journal of Physical Chemistry A, 2023, 127(43): 8994-9002.
[36] PAULSON S E, ORLANDO J J. The reactions of ozone with alkenes: An important source of HOx in the boundary layer[J]. Geophysical Research Letters, 1996, 23(25): 3727-3730.
[37] KROLL J H, HANISCO T F, DONAHUE N M, et al. Accurate, direct measurements of oh yields from gas–phase ozone–alkene reactions using an in situ LIF Instrument[J]. Geophysical Research Letters, 2001, 28(20): 3863-3866.
[38] CARAVAN R L, BANNAN T J, WINIBERG F A F, et al. Observational evidence for Criegee intermediate oligomerization reactions relevant to aerosol formation in the troposphere[J]. Nature Geoscience, 2024, 17: 219-226.
[39] CREHUET R, ANGLADA J M, BOFILL J M. Tropospheric formation of hydroxymethyl hydroperoxide, formic acid, H2O2, and OH from carbonyl oxide in the presence of water vapor: A theoretical study of the reaction mechanism[J]. Chemistry – A European Journal, 2001, 7(10): 2227-2235.
[40] ANGLADA J M, SOLÉ A. Impact of the water dimer on the atmospheric reactivity of carbonyl oxides[J]. Physical Chemistry Chemical Physics, 2016, 18(26): 17698-17712.
[41] CARAVAN R L, VANSCO M F, AU K, et al. Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(18): 9733-9740.
[42] STONE D, BLITZ M, DAUBNEY L, et al. Kinetics of CH2OO reactions with SO2, NO2, NO, H2O and CH3CHO as a function of pressure[J]. Physical Chemistry Chemical Physics, 2014, 16(3): 1139-1149.
[43] WELZ O, ESKOLA A J, SHEPS L, et al. Rate coefficients of C1 and C2 Criegee intermediate reactions with formic and acetic acid near the collision limit: Direct kinetics measurements and atmospheric implications[J]. Angewandte Chemie International Edition, 2014, 53(18): 4547-4550.
[44] RYZHKOV A B, ARIYA P A. The importance of water clusters (H2O)n(n=2,…,4) in the reaction of Criegee intermediate with water in the atmosphere[J]. Chemical Physics Letters, 2006, 419(4-6): 479-485.
[45] LONG B, BAO J L, TRUHLAR D G. Atmospheric chemistry of Criegee intermediates: Unimolecular reactions and reactions with water[J]. Journal of the American Chemical Society, 2016, 138(43): 14409-14422.
[46] RYZHKOV A B, ARIYA P A. A theoretical study of the reactions of parent and substituted Criegee intermediates with water and the water dimer[J]. Physical Chemistry Chemical Physics, 2004, 6(21): 5042-5050.
[47] CHEN L, WANG W, ZHOU L, et al. Role of water clusters in the reaction of the simplest Criegee intermediate CH2OO with water vapour[J]. Theoretical Chemistry Accounts, 2016, 135: 1-12.
[48] CHAO W, YIN C, TAKAHASHI K, et al. Hydrogen-bonding mediated reactions of Criegee intermediates in the gas phase: Competition between bimolecular and termolecular reactions and the catalytic role of water[J]. The Journal of Physical Chemistry A, 2019, 123(39): 8336-8348.
[49] KUMAR M, FRANCISCO J S. Elucidating the molecular mechanisms of Criegee-amine chemistry in the gas phase and aqueous surface environments[J]. Chemical Science, 2019, 10(3): 743-751.
[50] VEREECKEN L, HARDER H, NOVELLI A. The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere[J]. Physical Chemistry Chemical Physics, 2012, 14(42): 14682-14695.
[51] LONG B, TAN X-F, LONG Z-W, et al. Theoretical studies on reactions of the stabilized H2COO with HO2 and the HO2···H2O complex[J]. The Journal of Physical Chemistry A, 2011, 115(24): 6559-6567.
[52] CHEN L, HUANG Y, XUE Y, et al. Competition between HO2 and H2O2 reactions with CH2OO/anti-CH3CHOO in the oligomer formation: A theoretical perspective[J]. The Journal of Physical Chemistry A, 2017, 121(37): 6981-6991.
[53] ZHANG Y-Q, FRANCISCO J S, LONG B. Rapid atmospheric reactions between Criegee intermediates and hypochlorous acid[J]. The Journal of Physical Chemistry A, 2024, 128(5): 909-917.
[54] ZHU C, KUMAR M, ZHONG J, et al. New mechanistic pathways for Criegee–water chemistry at the air/water interface[J]. Journal of the American Chemical Society, 2016, 138(35): 11164-11169.
[55] KUMAR M, ZHONG J, ZENG X C, et al. Reaction of Criegee intermediate with nitric acid at the air–water interface[J]. Journal of the American Chemical Society, 2018, 140(14): 4913-4921.
[56] ZHONG J, KUMAR M, ZHU C Q, et al. Surprising stability of larger Criegee intermediates on aqueous interfaces[J]. Angewandte Chemie International Edition, 2017, 56(27): 7740-7744.
[57] LIANG Q, ZHU C, YANG J. Water charge transfer accelerates Criegee intermediate reaction with H2O–radical anion at the aqueous interface[J]. Journal of the American Chemical Society, 2023, 145(18): 10159-10166.
[58] FINLAYSON-PITTS B J, PITTS JR J N. Chemistry of the upper and lower atmosphere: Theory, experiments, and applications[M]. Elsevier, 2000.
[59] SEINFELD J H, PANDIS S N. Atmospheric chemistry and physics: From air pollution to climate change[M]. New York: John Wiley & Sons, 2016.
[60] LOGAN J A. Nitrogen oxides in the troposphere: Global and regional budgets[J]. Journal of Geophysical Research: Oceans, 1983, 88(C15): 10785-10807.
[61] DENTENER F J, CRUTZEN P J. Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx, O3, and OH[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D4): 7149-7163.
[62] ALEXANDER B, HASTINGS M, ALLMAN D, et al. Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate[J]. Atmospheric Chemistry and Physics, 2009, 9(14): 5043-5056.
[63] KLEFFMANN J, GAVRILOAIEI T, ELSHORBANY Y, et al. Detection of nitric acid (HNO3) in the atmosphere using the LOPAP technique[J]. Journal of Atmospheric Chemistry, 2007, 58: 131-149.
[64] BROWN S S, STUTZ J. Nighttime radical observations and chemistry[J]. Chemical Society Reviews, 2012, 41(19): 6405-6447.
[65] VOEGELE A F, TAUTERMANN C S, LOERTING T, et al. Toward elimination of discrepancies between theory and experiment: The gas-phase reaction of N2O5 with H2O[J]. Physical Chemistry Chemical Physics, 2003, 5(3): 487-495.
[66] CHANG W L, BHAVE P V, BROWN S S, et al. Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2O5: A review[J]. Aerosol Science and Technology, 2011, 45(6): 665-695.
[67] WAHNER A, MENTEL T F, SOHN M. Gas–phase reaction of N2O5 with water vapor: Importance of heterogeneous hydrolysis of N2O5 and surface desorption of HNO3 in a large Teflon chamber[J]. Geophysical Research Letters, 1998, 25(12): 2169-2172.
[68] XIA M, WANG W, WANG Z, et al. Heterogeneous uptake of N2O5 in sand dust and urban aerosols observed during the dry season in Beijing[J]. Atmosphere, 2019, 10(4): 204.
[69] BROWN S S, DUBÉ W P, FUCHS H, et al. Reactive uptake coefficients for N2O5 determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations[J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D00F10.
[70] MCDUFFIE E E, FIBIGER D L, DUBÉ W P, et al. Heterogeneous N2O5 uptake during winter: Aircraft measurements during the 2015 WINTER campaign and critical evaluation of current parameterizations[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(8): 4345-4372.
[71] CHANG W L, BROWN S S, STUTZ J, et al. Evaluating N2O5 heterogeneous hydrolysis parameterizations for CalNex 2010[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(9): 5051-5070.
[72] ALEXANDER B, SHERWEN T, HOLMES C D, et al. Global inorganic nitrate production mechanisms: Comparison of a global model with nitrate isotope observations[J]. Atmospheric Chemistry and Physics, 2020, 20(6): 3859-3877.
[73] MCNAMARA J P, HILLIER I H. Structure and reactivity of dinitrogen pentoxide in small water clusters studied by electronic structure calculations[J]. The Journal of Physical Chemistry A, 2000, 104(22): 5307-5319.
[74] ALECU I, MARSHALL P. Computational study of the thermochemistry of N2O5 and the kinetics of the reaction N2O5+H2O→2HNO3[J]. The Journal of Physical Chemistry A, 2014, 118(48): 11405-11416.
[75] MCNAMARA J P, HILLIER I H. Exploration of the atmospheric reactivity of N2O5 and HCl in small water clusters using electronic structure methods[J]. Physical Chemistry Chemical Physics, 2000, 2(11): 2503-2509.
[76] THAM Y J, WANG Z, LI Q, et al. Significant concentrations of nitryl chloride sustained in the morning: Investigations of the causes and impacts on ozone production in a polluted region of northern China[J]. Atmospheric Chemistry and Physics, 2016, 16(23): 14959-14977.
[77] YU C, WANG Z, XIA M, et al. Heterogeneous N2O5 reactions on atmospheric aerosols at four Chinese sites: Improving model representation of uptake parameters[J]. Atmospheric Chemistry and Physics, 2020, 20(7): 4367-4378.
[78] SNYDER J A, HANWAY D, MENDEZ J, et al. A density functional theory study of the gas-phase hydrolysis of dinitrogen pentoxide[J]. The Journal of Physical Chemistry A, 1999, 103(46): 9355-9358.
[79] CRUZEIRO V W D, GALIB M, LIMMER D T, et al. Uptake of N2O5 by aqueous aerosol unveiled using chemically accurate many-body potentials[J]. Nature Communications, 2022, 13(1): 1266.
[80] ROSSICH MOLINA E A, GERBER R B. Microscopic mechanisms of N2O5 hydrolysis on the surface of water droplets[J]. The Journal of Physical Chemistry A, 2019, 124(1): 224-228.
[81] GALIB M, LIMMER D T. Reactive uptake of N2O5 by atmospheric aerosol is dominated by interfacial processes[J]. Science, 2021, 371(6532): 921-925.
[82] WANG X, WANG H, XUE L, et al. Observations of N2O5 and ClNO2 at a polluted urban surface site in North China: High N2O5 uptake coefficients and low ClNO2 product yields[J]. Atmospheric Environment, 2017, 156: 125-134.
[83] MCNAMARA S M, CHEN Q, EDEBELI J, et al. Observation of N2O5 deposition and ClNO2 production on the saline snowpack[J]. ACS Earth and Space Chemistry, 2021, 5(5): 1020-1031.
[84] ROBINSON G, WORSNOP D, JAYNE J, et al. Heterogeneous uptake of ClONO2 and N2O5 by sulfuric acid solutions[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D3): 3583-3601.
[85] KANE S M, CALOZ F, LEU M-T. Heterogeneous uptake of gaseous N2O5 by (NH4)2SO4, NH4HSO4, and H2SO4 aerosols[J]. The Journal of Physical Chemistry A, 2001, 105(26): 6465-6470.
[86] SARKAR S, BANDYOPADHYAY B. Reaction between N2O5 and NH3 under tropospheric conditions: A quantum chemical and chemical kinetic investigation[J]. The Journal of Physical Chemistry A, 2020, 124(18): 3564-3572.
[87] MOZURKEWICH M, CALVERT J G. Reaction probability of N2O5 on aqueous aerosols[J]. Journal of Geophysical Research: Atmospheres, 1988, 93(D12): 15889-15896.
[88] KREGEL S J, DERRAH T F, MOON S, et al. Weak temperature dependence of the relative rates of chlorination and hydrolysis of N2O5 in NaCl–water solutions[J]. The Journal of Physical Chemistry A, 2023, 127(7): 1675-1685.
[89] HALLQUIST M, STEWART D J, BAKER J, et al. Hydrolysis of N2O5 on submicron sulfuric acid aerosols[J]. The Journal of Physical Chemistry A, 2000, 104(17): 3984-3990.
[90] KAMENS R M, GUO J, GUO Z, et al. Polynuclear aromatic hydrocarbon degradation by heterogeneous reactions with N2O5 on atmospheric particles[J]. Atmospheric Environment, 1990, 24(5): 1161-1173.
[91] SIMPSON W R, BROWN S S, SAIZ-LOPEZ A, et al. Tropospheric halogen chemistry: Sources, cycling, and impacts[J]. Chemical Reviews, 2015, 115(10): 4035-4062.
[92] PLATT U, HöNNINGER G. The role of halogen species in the troposphere[J]. Chemosphere, 2003, 52(2): 325-338.
[93] KNIPPING E, LAKIN M, FOSTER K, et al. Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols[J]. Science, 2000, 288(5464): 301-306.
[94] FINLAYSON-PITTS B. The tropospheric chemistry of sea salt: A molecular-level view of the chemistry of NaCl and NaBr[J]. Chemical Reviews, 2003, 103(12): 4801-4822.
[95] CRUTZEN P. A review of upper atmospheric photochemistry[J]. Canadian Journal of Chemistry, 1974, 52(8): 1569-1581.
[96] MOLINA M J, ROWLAND F S. Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone[J]. Nature, 1974, 249(5460): 810-812.
[97] ZHU C, GAO Y, ZHONG J, et al. Communication: Interaction of BrO radical with the surface of water[J]. The Journal of Chemical Physics, 2016, 145(24): 241102.
[98] MALLICK S, KUMAR P. OH·+HCl reaction at the surface of a water droplet: An ab initio molecular dynamical study[J]. The Journal of Physical Chemistry B, 2020, 124(12): 2465-2472.
[99] ZHONG J, ZHANG W, WU S, et al. Molecular interaction and orientation of HOCl on aqueous and ice surfaces[J]. Journal of the American Chemical Society, 2020, 142(41): 17329-17333.
[100] WAN Z, FANG Y, LIU Z, et al. Mechanistic insights into the reactive uptake of chlorine nitrate at the air–water interface[J]. Journal of the American Chemical Society, 2023, 145(2): 944-952.
[101] KUMAR M, TRABELSI T, GOMEZ MARTIN J C, et al. HIOx–IONO2 dynamics at the air–water interface: Revealing the existence of a halogen bond at the atmospheric aerosol surface[J]. Journal of the American Chemical Society, 2020, 142(28): 12467-12477.
[102] NING A, ZHONG J, LI L, et al. Chemical implications of rapid reactive absorption of I2O4 at the air-water interface[J]. Journal of the American Chemical Society, 2023, 145(19): 10817-10825.
[103] LIANG Y, RONG H, LIU L, et al. Gas-phase catalytic hydration of I2O5 in the polluted coastal regions: Reaction mechanisms and atmospheric implications[J]. Journal of Environmental Sciences, 2022, 114: 412-421.
[104] FINKENZELLER H, IYER S, HE X-C, et al. The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source[J]. Nature Chemistry, 2023, 15(1): 129-135.
[105] NARAYAN S, MULDOON J, FINN M, et al. “On water”: Unique reactivity of organic compounds in aqueous suspension[J]. Angewandte Chemie International Edition, 2005, 117(21): 3339-3343.
[106] RUIZ-LOPEZ M F, FRANCISCO J S, MARTINS-COSTA M T, et al. Molecular reactions at aqueous interfaces[J]. Nature Reviews Chemistry, 2020, 4(9): 459-475.
[107] JUNG Y, MARCUS R. On the theory of organic catalysis “on water”[J]. Journal of the American Chemical Society, 2007, 129(17): 5492-5502.
[108] ADAMSON A. Physical chemistry of surfaces[M]. New York: Johh Wiley & Sons, 1990.
[109] DONALDSON D, VAIDA V. The influence of organic films at the air−aqueous boundary on atmospheric processes[J]. Chemical Reviews, 2006, 106(4): 1445-1461.
[110] JUBB A M, HUA W, ALLEN H C. Environmental chemistry at vapor/water interfaces: Insights from vibrational sum frequency generation spectroscopy[J]. Annual Review of Physical Chemistry, 2012, 63: 107-130.
[111] ZHONG J, KUMAR M, ANGLADA J, et al. Atmospheric spectroscopy and photochemistry at environmental water interfaces[J]. Annual Review of Physical Chemistry, 2019, 70: 45-69.
[112] RUIZ-LOPEZ M F, MARTINS-COSTA M T, ANGLADA J M, et al. A new mechanism of acid rain generation from HOSO at the air–water interface[J]. Journal of the American Chemical Society, 2019, 141(42): 16564-16568.
[113] WILSON M A, POHORILLE A, PRATT L R. Molecular dynamics of the water liquid-vapor interface[J]. The Journal of Physical Chemistry, 1987, 91(19): 4873-4878.
[114] TOWNSEND R M, RICE S A. Molecular dynamics studies of the liquid–vapor interface of water[J]. The Journal of Chemical Physics, 1991, 94(3): 2207-2218.
[115] DU Q, SUPERFINE R, FREYSZ E, et al. Vibrational spectroscopy of water at the vapor/water interface[J]. Physical Review Letters, 1993, 70(15): 2313.
[116] PEZZOTTI S, GALIMBERTI D R, GAIGEOT M-P. 2D H-bond network as the topmost skin to the air–water interface[J]. The Journal of Physical Chemistry Letters, 2017, 8(13): 3133-3141.
[117] KUO I W, MUNDY C J, EGGIMANN B L, et al. Structure and dynamics of the aqueous liquid−vapor interface: A comprehensive particle-based simulation study[J]. The Journal of Physical Chemistry B, 2006, 110(8): 3738-3746.
[118] VÁCHA R, SLAVÍČEK P, MUCHA M, et al. Adsorption of atmospherically relevant gases at the air/water interface: Free energy profiles of aqueous solvation of N2, O2, O3, OH, H2O, HO2, and H2O2[J]. The Journal of Physical Chemistry A, 2004, 108(52): 11573-11579.
[119] TOBIAS D J, STERN A C, BAER M D, et al. Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces[J]. Annual Review of Physical Chemistry, 2013, 64: 339-359.
[120] XIAO S, FIGGE F, STIRNEMANN G, et al. Orientational dynamics of water at an extended hydrophobic interface[J]. Journal of the American Chemical Society, 2016, 138(17): 5551-5560.
[121] HSIEH C-S, CAMPEN R K, VERDE A C V, et al. Ultrafast reorientation of dangling OH groups at the air-water interface using femtosecond vibrational spectroscopy[J]. Physical Review Letters, 2011, 107(11): 116102.
[122] ROSENFELD D, SHERWOOD S, WOOD R, et al. Climate effects of aerosol-cloud interactions[J]. Science, 2014, 343(6169): 379-380.
[123] RAVISHANKARA A. Heterogeneous and multiphase chemistry in the troposphere[J]. Science, 1997, 276(5315): 1058-1065.
[124] ANDREAE M O, CRUTZEN P J. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry[J]. Science, 1997, 276(5315): 1052-1058.
[125] MONOD A, CARLIER P. Impact of clouds on the tropospheric ozone budget: Direct effect of multiphase photochemistry of soluble organic compounds[J]. Atmospheric Environment, 1999, 33(27): 4431-4446.
[126] JACOB D J. Heterogeneous chemistry and tropospheric ozone[J]. Atmospheric Environment, 2000, 34(12-14): 2131-2159.
[127] CALVERT J G, LAZRUS A, KOK G L, et al. Chemical mechanisms of acid generation in the troposphere[J]. Nature, 1985, 317(6032): 27-35.
[128] SOLOMON S, GARCIA R R, ROWLAND F S, et al. On the depletion of Antarctic ozone[J]. Nature, 1986, 321(6072): 755-758.
[129] GEORGE C, AMMANN M, D’ANNA B, et al. Heterogeneous photochemistry in the atmosphere[J]. Chemical Reviews, 2015, 115(10): 4218-4258.
[130] ROSSIGNOL S, TINEL L, BIANCO A, et al. Atmospheric photochemistry at a fatty acid–coated air-water interface[J]. Science, 2016, 353(6300): 699-702.
[131] REICHARDT C, WELTON T. Solvents and solvent effects in organic chemistry[M]. New York: John Wiley & Sons, 2011.
[132] KOLB C, COX R A, ABBATT J, et al. An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds[J]. Atmospheric Chemistry and Physics, 2010, 10(21): 10561-10605.
[133] DONALDSON D, VALSARAJ K T. Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: A critical review[J]. Environmental Science & Technology, 2010, 44(3): 865-873.
[134] ENAMI S, HOFFMANN M R, COLUSSI A J. Extensive H-atom abstraction from benzoate by OH-radicals at the air–water interface[J]. Physical Chemistry Chemical Physics, 2016, 18(46): 31505-31512.
[135] ANGLADA J M, MARTINS-COSTA M T, FRANCISCO J S, et al. Reactivity of undissociated molecular nitric acid at the air–water interface[J]. Journal of the American Chemical Society, 2020, 143(1): 453-462.
[136] LEE J K, WALKER K L, HAN H S, et al. Spontaneous generation of hydrogen peroxide from aqueous microdroplets[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(39): 19294-19298.
[137] XIONG H, LEE J K, ZARE R N, et al. Strong electric field observed at the interface of aqueous microdroplets[J]. The Journal of Physical Chemistry Letters, 2020, 11(17): 7423-7428.
[138] MARTINS-COSTA M T, RUIZ-LÓPEZ M F. Electrostatics and chemical reactivity at the air–water interface[J]. Journal of the American Chemical Society, 2023, 145(2): 1400-1406.
[139] MARTINS-COSTA M T, ANGLADA J M, FRANCISCO J S, et al. The aqueous surface as an efficient transient stop for the reactivity of gaseous NO2 in liquid water[J]. Journal of the American Chemical Society, 2020, 142(50): 20937-20941.
[140] WAN Z, ZHU C, FRANCISCO J S. Molecular insights into the spontaneous generation of Cl2O in the reaction of ClONO2 and HOCl at the air–water interface[J]. Journal of the American Chemical Society, 2023, 145(31): 17478-17484.
[141] ZHONG J, LI L, KUMAR M, et al. Solvation and hydrolysis reaction of isocyanic acid at the air–water interface: A computational study[J]. Journal of the American Chemical Society, 2022, 144(12): 5315-5322.
[142] ZHU C, ZENG X C, FRANCISCO J S, et al. Hydration, solvation, and isomerization of methylglyoxal at the air/water interface: New mechanistic pathways[J]. Journal of the American Chemical Society, 2020, 142(12): 5574-5582.
[143] RAO Z, FANG Y-G, PAN Y, et al. Accelerated photolysis of H2O2 at the air–water interface of a microdroplet[J]. Journal of the American Chemical Society, 2023, 145(45): 24717-24723.
[144] RANA M S, GUZMAN M I. Oxidation of phenolic aldehydes by ozone and hydroxyl radicals at the air–water interface[J]. The Journal of Physical Chemistry A, 2020, 124(42): 8822-8833.
[145] GENG W C, ZHANG D, GONG C, et al. Host–guest complexation of amphiphilic molecules at the air–water interface prevents oxidation by hydroxyl radicals and singlet oxygen[J]. Angewandte Chemie International Edition, 2020, 59(31): 12684-12688.
[146] ZHANG D, WANG J, CHEN H, et al. Fast hydroxyl radical generation at the air–water interface of aerosols mediated by water-soluble PM2.5 under ultraviolet a radiation[J]. Journal of the American Chemical Society, 2023, 145(11): 6462-6470.
[147] LI K, GUO Y, NIZKORODOV S A, et al. Spontaneous dark formation of OH radicals at the interface of aqueous atmospheric droplets[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(15): e2220228120.
[148] SKURSKI P, SIMONS J. Two potential paths for OH radical formation on surfaces of pure water microdroplets[J]. The Journal of Chemical Physics, 2024, 160(3): 034708.
[149] SERRANO-LUGINBÜHL S, RUIZ-MIRAZO K, OSTASZEWSKI R, et al. Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions[J]. Nature Reviews Chemistry, 2018, 2(10): 306-327.
[150] NAM I, NAM H G, ZARE R N. Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(1): 36-40.
[151] YAN X, BAIN R M, COOKS R G. Organic reactions in microdroplets: Reaction acceleration revealed by mass spectrometry[J]. Angewandte Chemie International Edition, 2016, 55(42): 12960-12972.
[152] KÜCHLER A, YOSHIMOTO M, LUGINBÜHL S, et al. Enzymatic reactions in confined environments[J]. Nature Nanotechnology, 2016, 11(5): 409-420.
[153] MARTINS-COSTA M T, ANGLADA J M, FRANCISCO J S, et al. Photochemistry of SO2 at the air–water interface: A source of OH and HOSO radicals[J]. Journal of the American Chemical Society, 2018, 140(39): 12341-12344.
[154] PUENTE M D L, DAVID R, GOMEZ A, et al. Acids at the edge: Why nitric and formic acid dissociations at air–water interfaces depend on depth and on interface specific area[J]. Journal of the American Chemical Society, 2022, 144(23): 10524-10529.
[155] CHENG Y, DING C, ZHANG T, et al. Barrierless reactions of C2 Criegee intermediates with H2SO4 and their implication to oligomers and new particle formation[J]. Journal of Environmental Sciences, 2023, 149: 574-584.
[156] LIU Y, GE Q, WANG T, et al. Strong electric field force at the air/water interface drives fast sulfate production in the atmosphere[J]. Chem, 2024, 10(1): 330-351.
[157] XIA Y, LONG B, LIN S, et al. Large pressure effects caused by internal rotation in the s-cis-syn-acrolein stabilized Criegee intermediate at tropospheric temperature and pressure[J]. Journal of the American Chemical Society, 2022, 144(11): 4828-4838.
[158] WEN M, LI R, ZHANG T, et al. A potential source of tropospheric secondary organic aerosol precursors: The hydrolysis of N2O5 in water dimer and small clusters of sulfuric acid[J]. Atmospheric Environment, 2022, 287: 119245.
[159] ZHANG Y-Q, XIA Y, LONG B. Quantitative kinetics for the atmospheric reactions of Criegee intermediates with acetonitrile[J]. Physical Chemistry Chemical Physics, 2022, 24(40): 24759-24766.
[160] ABDI N, SEIF A, AZIZI K, et al. Insight into 1:1 complexes of H2O with NF3 and CF2Cl2: A quantum chemical approach[J]. Journal of Chemical Sciences 2020, 132: 1-11.
[161] ANGLADA J M, MARTINS-COSTA M, RUIZ-LÓPEZ M F, et al. Spectroscopic signatures of ozone at the air–water interface and photochemistry implications[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(32): 11618-11623.
[162] MARTINS-COSTA M, ANGLADA J, FRANCISCO J, et al. Impacts of cloud water droplets on the OH production rate from peroxide photolysis[J]. Physical Chemistry Chemical Physics, 2017, 19(47): 31621-31627.
[163] OHMINE I, SAITO S. Water dynamics: Fluctuation, relaxation, and chemical reactions in hydrogen bond network rearrangement[J]. Accounts of Chemical Research, 1999, 32(9): 741-749.
[164] MURDACHAEW G, NATHANSON G M, GERBER R B, et al. Deprotonation of formic acid in collisions with a liquid water surface studied by molecular dynamics and metadynamics simulations[J]. Physical Chemistry Chemical Physics, 2016, 18(43): 29756-29770.
[165] MARTINS-COSTA M T, RUIZ-LÓPEZ M F. Highly accurate computation of free energies in complex systems through horsetail QM/MM molecular dynamics combined with free-energy perturbation theory[J]. Theoretical Chemistry Accounts, 2017, 136(50): 1-7.
[166] STRNAD M, MARTINS-COSTA M, MILLOT C, et al. Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. II. Charge separation processes[J]. The Journal of Chemical Physics, 1997, 106(9): 3643-3657.
[167] WOODCOCK III H L, HODOŠČEK M, GILBERT A T, et al. Interfacing Q–Chem and CHARMM to perform QM/MM reaction path calculations[J]. Journal of Computational Chemistry, 2007, 28(9): 1485-1502.
[168] XIA D, CHEN J, XIE H-B, et al. Counterintuitive oxidation of alcohols at air–water interfaces[J]. Journal of the American Chemical Society, 2023, 145(8): 4791-4799.
[169] LIU L, TIAN Y, YANG X, et al. Mechanistic insights into water autoionization through metadynamics simulation enhanced by machine learning[J]. Physical Review Letters, 2023, 131(15): 158001.
[170] SCHRÖDINGER E. Über das verhältnis der Heisenberg–Born–Jordanschen quantenmechanik zu der meinem[J]. Annalen der Physik, 1926, 384(8): 734-756.
[171] BORN M, OPPENHEIMER R. Zur quantentheorie der molekeln[J]. Annalen der Physik, 1927, 84(20): 0457.
[172] BORN M, HUANG K. Dynamical theory of crystal lattices[M]. Oxford university press, 1996.
[173] EPSTEIN S T. Ground–state energy of a molecule in the adiabatic approximation[J]. The Journal of Chemical Physics, 1966, 44(2): 836-837.
[174] HARTREE D R. The wave mechanics of an atom with a non-coulomb central field. Part II. Some results and discussion[C]. Mathematical Proceedings of the Cambridge Philosophical Society, 1928: 111-132.
[175] FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review, 1961, 124(6): 1866.
[176] MØLLER C, PLESSET M S. Note on an approximation treatment for many-electron systems[J]. Physical Review, 1934, 46(7): 618.
[177] CRAMER C J. Essentials of computational chemistry: Theories and models[M]. New York: John Wiley & Sons, 2013.
[178] KÜMMEL H G. A biography of the coupled cluster method[J]. International Journal of Modern Physics B, 2003, 17(28): 5311-5325.
[179] THOMAS L H. The calculation of atomic fields[C]. Mathematical Proceedings of the Cambridge Philosophical Society, 1927: 542-548.
[180] FERMI E. Un metodo statistico per la determinazione di alcune priorieta dell’atome[J]. Rendiconti Academia Dei Lincei, 1927, 6(602-607): 32.
[181] DIRAC P A M. The quantum theory of the electron[J]. Proceedings of the Royal Society A, 1928, 117(778): 610-624.
[182] LATTER R. Atomic energy levels for the Thomas-Fermi and Thomas-Fermi-Dirac potential[J]. Physical Review, 1955, 99(2): 510.
[183] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864.
[184] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133.
[185] PERDEW J P, YUE W. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation[J]. Physical Review B, 1986, 33(12): 8800.
[186] CEPERLEY D M, ALDER B J. Ground state of the electron gas by a stochastic method[J]. Physical Review Letters, 1980, 45(7): 566.
[187] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865.
[188] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23): 13244.
[189] BECKE A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A, 1988, 38(6): 3098-3100.
[190] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785.
[191] SUN J, REMSING R C, ZHANG Y, et al. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional[J]. Nature Chemistry, 2016, 8(9): 831-836.
[192] ZHAO Y, TRUHLAR D G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions[J]. The Journal of Chemical Physics, 2006, 125(19): 194101.
[193] ADAMO C, BARONE V. Toward reliable density functional methods without adjustable parameters: The PBE0 model[J]. The Journal of Chemical Physics, 1999, 110(13): 6158-6170.
[194] PAIER J, MARSMAN M, HUMMER K, et al. Screened hybrid density functionals applied to solids[J]. The Journal of Chemical Physics, 2006, 124(15): 154709.
[195] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The Journal of Physical Chemistry, 1994, 98(45): 11623-11627.
[196] BECKE A D. Density-functional thermochemistry. III. The role of exact exchange[J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652.
[197] ZHAO Y, TRUHLAR D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theoretical Chemistry Accounts, 2008, 120: 215-241.
[198] GRIMME S. Semiempirical hybrid density functional with perturbative second-order correlation[J]. The Journal of Chemical Physics, 2006, 124(3): 034108.
[199] SCHWABE T, GRIMME S. Double-hybrid density functionals with long-range dispersion corrections: Higher accuracy and extended applicability[J]. Physical Chemistry Chemical Physics, 2007, 9(26): 3397-3406.
[200] KOZUCH S, MARTIN J M. DSD-PBEP86: In search of the best double-hybrid DFT with spin-component scaled MP2 and dispersion corrections[J]. Physical Chemistry Chemical Physics, 2011, 13(45): 20104-20107.
[201] CHAI J-D, HEAD-GORDON M. Systematic optimization of long-range corrected hybrid density functionals[J]. The Journal of Chemical Physics, 2008, 128(8): 084106.
[202] KRISHNAN R, BINKLEY J S, SEEGER R, et al. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions[J]. The Journal of Chemical Physics, 1980, 72(1): 650-654.
[203] DUNNING JR T H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen[J]. The Journal of Chemical Physics, 1989, 90(2): 1007-1023.
[204] WEIGEND F. Accurate Coulomb-fitting basis sets for H to Rn[J]. Physical Chemistry Chemical Physics, 2006, 8(9): 1057-1065.
[205] EYRING H. The activated complex in chemical reactions[J]. The Journal of Chemical Physics, 1935, 3(2): 107-115.
[206] EVANS M G, POLANYI M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution[J]. Transactions of the Faraday Society, 1935, 31: 875-894.
[207] JÓNSSON H, MILLS G, JACOBSEN K W. Nudged elastic band method for finding minimum energy paths of transitions[M]. Singapore: World Scientific, 1998: 385-404.
[208] HENKELMAN G, UBERUAGA B P, JÓNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of Chemical Physics, 2000, 113(22): 9901-9904.
[209] CORTÉS-ORTUÑO D, WANG W, BEG M, et al. Thermal stability and topological protection of skyrmions in nanotracks[J]. Scientific Reports, 2017, 7(1): 4060.
[210] HENKELMAN G, JÓNSSON H. Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table[J]. The Journal of Chemical Physics, 2001, 115(21): 9657-9666.
[211] CARTER E A, CICCOTTI G, HYNES J T, et al. Constrained reaction coordinate dynamics for the simulation of rare events[J]. Chemical Physics Letters, 1989, 156(5): 472-477.
[212] SPRIK M, CICCOTTI G. Free energy from constrained molecular dynamics[J]. The Journal of Chemical Physics, 1998, 109(18): 7737-7744.
[213] LAIO A, PARRINELLO M. Escaping free-energy minima[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 12562-12566.
[214] DE VIVO M, MASETTI M, BOTTEGONI G, et al. Role of molecular dynamics and related methods in drug discovery[J]. Journal of Medicinal Chemistry, 2016, 59(9): 4035-4061.
[215] FRISCH M, TRUCKS G, SCHLEGEL H, et al. GAUSSIAN16. Revision C. 01[CP]. Wallingford, CT, USA: Gaussian Inc., 2016.
[216] VANDEVONDELE J, KRACK M, MOHAMED F, et al. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach[J]. Computer Physics Communications, 2005, 167(2): 103-128.
[217] TAATJES C A. Criegee intermediates: What direct production and detection can teach us about reactions of carbonyl oxides[J]. Annual Review of Physical Chemistry, 2017, 68: 183-207.
[218] VEREECKEN L, GLOWACKI D R, PILLING M J. Theoretical chemical kinetics in tropospheric chemistry: Methodologies and applications[J]. Chemical Reviews, 2015, 115(10): 4063-4114.
[219] STONE D, WHALLEY L K, HEARD D E. Tropospheric OH and HO2 radicals: Field measurements and model comparisons[J]. Chemical Society Reviews, 2012, 41(19): 6348-6404.
[220] KUMAR M, FRANCISCO J S. Red-light initiated decomposition of α-hydroxy methylperoxy radical in the presence of organic and inorganic acids: Implications for the HOx formation in the lower stratosphere[J]. The Journal of Physical Chemistry A, 2016, 120(17): 2677-2683.
[221] ANGLADA J M, OLIVELLA S, SOLÉ A. Mechanistic study of the CH3O2·+HO2·→CH3O2H+O2 reaction in the gas phase. Computational evidence for the formation of a hydrogen-bonded diradical complex[J]. The Journal of Physical Chemistry A, 2006, 110(18): 6073-6082.
[222] ANGLADA J M, OLIVELLA S, SOLÉ A. New insight into the gas-phase bimolecular self-reaction of the HOO radical[J]. The Journal of Physical Chemistry A, 2007, 111(9): 1695-1704.
[223] ZHAO Y, WINGEN L M, PERRAUD V, et al. Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air[J]. Physical Chemistry Chemical Physics, 2015, 17(19): 12500-12514.
[224] ALOISIO S, FRANCISCO J S, FRIEDL R R. Experimental evidence for the existence of the HO2−H2O complex[J]. The Journal of Physical Chemistry A, 2000, 104(28): 6597-6601.
[225] GONZALEZ J, TORRENT-SUCARRAT M, ANGLADA J M. The reactions of SO3 with HO2 radical and H2O⋯HO2 radical complex. Theoretical study on the atmospheric formation of HSO5 and H2SO4[J]. Physical Chemistry Chemical Physics, 2010, 12(9): 2116-2125.
[226] LONG B, TAN X-F, REN D-S, et al. Theoretical studies on energetics and mechanisms of the decomposition of CF3OH[J]. Chemical Physics Letters, 2010, 492(4-6): 214-219.
[227] KENDALL R A, DUNNING JR T H, HARRISON R J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions[J]. The Journal of Chemical Physics, 1992, 96(9): 6796-6806.
[228] RAGHAVACHARI K, TRUCKS G W, POPLE J A, et al. A fifth-order perturbation comparison of electron correlation theories[J]. Chemical Physics Letters, 1989, 157(6): 479-483.
[229] GRIMME S. Accurate description of van der Waals complexes by density functional theory including empirical corrections[J]. Journal of Computational Chemistry, 2004, 25(12): 1463-1473.
[230] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799.
[231] NOSÉ S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519.
[232] HOOVER W G. Canonical dynamics: Equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3): 1695.
[233] SMITH M C, TING W-L, CHANG C-H, et al. UV absorption spectrum of the C2 Criegee intermediate CH3CHOO[J]. The Journal of Chemical Physics, 2014, 141(7): 074302.
[234] LIN L-C, CHANG H-T, CHANG C-H, et al. Competition between H2O and (H2O)2 reactions with CH2OO/CH3CHOO[J]. Physical Chemistry Chemical Physics, 2016, 18(6): 4557-4568.
[235] OLIVELLA S, ANGLADA J M, SOLÉ A, et al. Mechanism of the hydrogen transfer from the OH group to oxygen-centered radicals: Proton-coupled electron-transfer versus radical hydrogen abstraction[J]. Chemistry – A European Journal, 2004, 10(14): 3404-3410.
[236] LI L, KUMAR M, ZHU C, et al. Near-barrierless ammonium bisulfate formation via a loop-structure promoted proton-transfer mechanism on the surface of water[J]. Journal of the American Chemical Society, 2016, 138(6): 1816-1819.
[237] LI L, DUAN Z, LI H, et al. Formation of HONO from the NH3-promoted hydrolysis of NO2 dimers in the atmosphere[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(28): 7236-7241.
[238] RUSSELL A G, CASS G R, SEINFELD J H. On some aspects of nighttime atmospheric chemistry[J]. Environmental Science & Technology, 1986, 20(11): 1167-1172.
[239] ROBERTS J M, OSTHOFF H D, BROWN S S, et al. Laboratory studies of products of N2O5 uptake on Cl− containing substrates[J]. Geophysical Research Letters, 2009, 36(20).
[240] FENTER F F, CALOZ F, ROSSI M J. Heterogeneous kinetics of N2O5 uptake on salt, with a systematic study of the role of surface presentation (for N2O5 and HNO3)[J]. The Journal of Physical Chemistry, 1996, 100(3): 1008-1019.
[241] HE X, WU J-J, MA Z-C, et al. NH3-promoted heterogeneous reaction of SO2 to sulfate on α-Fe2O3 particles with coexistence of NO2 under different relative humidities[J]. Atmospheric Environment, 2021, 262: 118622.
[242] WANG S, ZENG X C, LI H, et al. A possible unaccounted source of atmospheric sulfate formation: Amine-promoted hydrolysis and non-radical oxidation of sulfur dioxide[J]. Chemical Science, 2020, 11(8): 2093-2102.
[243] WANG S, LI H. NO3·-initiated gas-phase formation of nitrated phenolic compounds in polluted atmosphere[J]. Environmental Science & Technology, 2021, 55(5): 2899-2907.
[244] ALMEIDA J, SCHOBESBERGER S, KÜRTEN A, et al. Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere[J]. Nature, 2013, 502(7471): 359-363.
[245] YAO L, GARMASH O, BIANCHI F, et al. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity[J]. Science, 2018, 361(6399): 278-281.
[246] GRABOW L, MAVRIKAKIS M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation[J]. ACS Catalysis, 2011, 1(4): 365-384.
[247] MCEWEN J-S, ANGGARA T, SCHNEIDER W, et al. Integrated operando X-ray absorption and DFT characterization of Cu–SSZ-13 exchange sites during the selective catalytic reduction of NOx with NH3[J]. Catalysis Today, 2012, 184(1): 129-144.
[248] CAMPBELL C T, SPROWL L H, ÁRNADÓTTIR L. Equilibrium constants and rate constants for adsorbates: Two-dimensional (2D) ideal gas, 2D ideal lattice gas, and ideal hindered translator models[J]. The Journal of Physical Chemistry C, 2016, 120(19): 10283-10297.
[249] JØRGENSEN M, GRONBECK H. Adsorbate entropies with complete potential energy sampling in microkinetic modeling[J]. The Journal of Physical Chemistry C, 2017, 121(13): 7199-7207.
[250] COLLINGE G, YUK S F, NGUYEN M-T, et al. Effect of collective dynamics and anharmonicity on entropy in heterogenous catalysis: Building the case for advanced molecular simulations[J]. ACS Catalysis, 2020, 10(16): 9236-9260.
[251] TORRIE G M, VALLEAU J P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling[J]. Journal of Computational Physics, 1977, 23(2): 187-199.
[252] REY J, RAYBAUD P, CHIZALLET C, et al. Competition of secondary versus tertiary carbenium routes for the type B isomerization of alkenes over acid zeolites quantified by ab initio molecular dynamics simulations[J]. ACS Catalysis, 2019, 9(11): 9813-9828.
[253] GOEDECKER S, TETER M, HUTTER J. Separable dual-space Gaussian pseudopotentials[J]. Physical Review B, 1996, 54(3): 1703.
[254] HARTWIGSEN C, GŒDECKER S, HUTTER J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn[J]. Physical Review B, 1998, 58(7): 3641.
[255] ZHONG J, ZHAO Y, LI L, et al. Interaction of the NH2 radical with the surface of a water droplet[J]. Journal of the American Chemical Society, 2015, 137(37): 12070-12078.
[256] LARSEN A H, MORTENSEN J J, BLOMQVIST J, et al. The atomic simulation environment—a Python library for working with atoms[J]. Journal of Physics: Condensed Matter, 2017, 29(27): 273002.
[257] ANGLADA J M, HOFFMAN G J, SLIPCHENKO L V, et al. Atmospheric significance of water clusters and ozone–water complexes[J]. The Journal of Physical Chemistry A, 2013, 117(40): 10381-10396.
[258] GONZALEZ J, CABALLERO M, AGUILAR-MOGAS A, et al. The reaction between HO and (H2O)n(n=1, 3) clusters: Reaction mechanisms and tunneling effects[J]. Theoretical Chemistry Accounts, 2011, 128: 579-592.
[259] WIGNER E. On the quantum correction for thermodynamic equilibrium[J]. Physical Review, 1932, 40(5): 749.
[260] JEN C N, MCMURRY P H, HANSON D R. Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(12): 7502-7514.
[261] MCQUARRIE D A, SIMON J D. Molecular thermodynamics[M]. Sterling Publishing Company, 1999.
[262] TOBIAS D J, JUNGWIRTH P, PARRINELLO M. Surface solvation of halogen anions in water clusters: An ab initio molecular dynamics study of the Cl−(H2O)6 complex[J]. The Journal of Chemical Physics, 2001, 114(16): 7036-7044.
[263] RAMONDO F, SODEAU J R, RODDIS T B, et al. An ab initio and experimental study of bromine on low-temperature water clusters and ice surfaces[J]. Physical Chemistry Chemical Physics, 2000, 2(10): 2309-2318.
[264] FRANKLIN-MERGAREJO R, RUBAYO-SONEIRA J, HALBERSTADT N, et al. A theoretical simulation of the resonant Raman spectroscopy of the H2O⋯Cl2 and H2O⋯Br2 halogen-bonded complexes[J]. The Journal of Chemical Physics, 2016, 144(5): 054307.
[265] YANG Q, LIU Y, ZHANG Z, et al. Probing the halogen bond donation ability of multivalent At-center in AtXn (X=Cl, Br, I; n=1, 3, 5)⋯H2O/H2S complexes[J]. Computational and Theoretical Chemistry, 2021, 1195: 113090.
[266] REMSING R C, KLEIN M L. Lone pair rotational dynamics in solids[J]. Physical Review Letters, 2020, 124(6): 066001.
[267] WANG H, QIU Y, CZAKÓ G B, et al. Pathways for the OH+Cl2→HOCl+Cl and HOCl+Cl→HCl+ClO Reactions[J]. The Journal of Physical Chemistry A, 2015, 119(28): 7802-7809.
[268] SHALLCROSS D E, LEATHER K E, BACAK A, et al. Reaction between CH3O2 and BrO radicals: A new source of upper troposphere lower stratosphere hydroxyl radicals[J]. The Journal of Physical Chemistry A, 2015, 119(19): 4618-4632.
[269] CHURCH J R, SKODJE R T. Reaction kinetics of HBr with HO2: A new channel for isotope scrambling reactions[J]. The Journal of Physical Chemistry A, 2016, 120(43): 8503-8511.
[270] KUMAR M, SAIZ-LOPEZ A, FRANCISCO J S. Single-molecule catalysis revealed: Elucidating the mechanistic framework for the formation and growth of atmospheric iodine oxide aerosols in gas-phase and aqueous surface environments[J]. Journal of the American Chemical Society, 2018, 140(44): 14704-14716.
[271] ZHANG Y, YANG W. Comment on “Generalized gradient approximation made simple”[J]. Physical Review Letters, 1998, 80(4): 890.
[272] KLIMEŠ J, BOWLER D R, MICHAELIDES A. Chemical accuracy for the van der Waals density functional[J]. Journal of Physics: Condensed Matter, 2009, 22(2): 022201.
[273] GODBOUT N, SALAHUB D R, ANDZELM J, et al. Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation[J]. Canadian Journal of Chemistry, 1992, 70(2): 560-571.
[274] ADLER T B, KNIZIA G, WERNER H-J. A simple and efficient CCSD(T)-F12 approximation[J]. The Journal of Chemical Physics, 2007, 127(22): 221106.
[275] JORGENSEN W L, CHANDRASEKHAR J, MADURA J D, et al. Comparison of simple potential functions for simulating liquid water[J]. The Journal of Chemical Physics, 1983, 79(2): 926-935.
[276] CAVALLO G, METRANGOLO P, MILANI R, et al. The halogen bond[J]. Chemical Reviews, 2016, 116(4): 2478-2601.
[277] RAPAPORT D. Hydrogen bonds in water: Network organization and lifetimes[J]. Molecular Physics, 1983, 50(5): 1151-1162.
修改评论