中文版 | English
题名

大气关键活性物质的水化行为和水促反应机理的理论研究

其他题名
Theoretical Study of Hydration Behaviors and Water-Driven Reaction Mechanisms of Key Active Substances in the Atmosphere
姓名
姓名拼音
LI Bai
学号
12031327
学位类型
博士
学位专业
07 理学
学科门类/专业学位类别
07 理学
导师
李磊
导师单位
材料科学与工程系
论文答辩日期
2024-05-09
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,大气污染已成为全球关注的主要环境问题之一,并引发了酸雨、臭氧层空洞和雾霾等多种污染问题。在大气污染物的生成、转化和消耗等过程中,诸如高活性氧化物、氮氧化物和卤素等物质起着关键作用。从原子尺度深入理解这些关键物质的反应活性和动力学行为,对于全面理解复杂的大气化学反应机制具有重要意义,并可以为缓解大气污染提供新思路。然而,当前对于上述关键物质的物理化学过程及其内在机制的理解尚不充分,尤其是对于水分子和水气界面在这些过程中的作用机制仍有待进一步研究。针对这些问题,本文通过采用过渡态搜索、热力学积分(Thermodynamic Integration, TI)和从头算分子动力学(Ab Initio Molecular Dynamics, AIMD)等方法,深入探究了水分子/水团簇与大气中的Criegee中间体(Criegee Intermediates, CIs)、过氧化羟基自由基(HO2)以及五氧化二氮(N2O5)的反应机制,同时探讨了水气界面对N2O5水解反应和卤素单质溶剂化过程的影响机制。

CIsHO2间的反应对大气中二次有机气溶胶的形成起着至关重要的作用,但目前对该反应体系机制的理解仍然有限。本研究采用基于第一性原理的过渡态搜索方法和AIMD方法,研究了CIsHO2⸱/HO2⸱-H2O络合物之间的反应机制,并探究了温度效应和水分子对该反应的影响。研究结果表明,该反应遵循质子转移机制,而非此前研究所认为的氢原子转移机制。此外,通过比较不同温度下的反应自由能曲线,发现随着温度的上升反应自由能能垒显著升高,这表明熵效应在该反应具有重要作用。同时,水分子的引入会导致反应自由能能垒增大,从而阻碍反应的进行。这与水分子在其他气相反应中的起促进作用的现象显著不同。

N2O5作为氮循环过程中的关键物质,其在大气中的去除直接影响氮氧化物的含量。然而,基于现有理论机制计算得到的N2O5去除反应能垒较高,从而显著低估了其去除速率。本研究采用基于限制性AIMDTI方法,系统性地探究了NH3的甲基化程度以及水分子/水气界面对N2O5水解过程的影响,提出了一种水气界面胺催化的水解机理,其反应能垒显著低于传统水解过程。研究发现,NH3甲基化程度的提高能有效降低N2O5水解反应的能垒,促进反应的进行。同时,与CIs-HO2反应类似,该反应的自由能能垒亦会随温度的升高而显著增大,进一步证明熵减效应不利于大气反应的进行。通过分析反应中心内禀坐标及周围物种相对位置的分布,证实了集合效应(非简谐熵和构型熵)是反应过程中熵效应的主要来源。此外,与CIs-HO2反应不同,水分子的引入会降低该反应的反应能垒,促进反应的进行。

大气中的卤素会显著影响平流层和对流层中的化学组分及其浓度,深入理解其溶剂化行为对揭示相关化学反应机制至关重要,但当前对于卤素单质在纳米水滴及水气界面的溶剂化行为尚不明确。本研究采用限制性AIMDTI方法,探究了水气界面对卤素单质分子(Cl2Br2I2)溶剂化过程的影响。研究结果表明,Cl2I2的自由能在水气界面处达到最低,而Br2的自由能最低点位于液相中。进一步分析揭示了,这种现象主要源于三种分子在卤键稳定性上的差异:Br2在液相中能与水分子形成比界面处更稳定的卤键,因此更倾向于稳定在水滴内部;而Cl2I2则在水气界面处展现出了更强的卤键稳定性。这一结果为实验中观测到的Br2在水中溶解度更大这一反常现象提供了合理解释,并从动力学角度证明了卤键在卤素溶剂化过程中的重要性。

综上,本论文通过理论计算研究了水分子和水团簇对CIsN2O5等物质的化学反应活性和反应机制的影响,以及水气界面在N2O5水解和卤素单质溶剂化过程中的作用,提出了不同于传统认知的新机理,阐明了大气化学反应的温度依赖性,揭示了熵效应对化学反应活性的重要性。此外,本研究还进一步发现水分子和水气界面对大气中物理化学过程起着重要作用,并且具有明显的体系依赖性。这些发现不仅有助于科研人员深入理解大气中关键物质的反应机制,也对解决当前所面临的大气污染问题具有一定的指导意义。

其他摘要

In recent years, air pollution has become one of the major environmental issues, leading to various pollution problems such as acid rain, ozone depletion, and smog. In the atmosphere, substances such as highly reactive oxidants, nitrogen oxides, and halogens play crucial roles in the formation, transformation, and consumption of pollutants. Understanding the reactivity and dynamic behavior of these key substances at the atomic scale is essential for unraveling the complex mechanisms behind atmospheric reactions, which could provide strategies for mitigating air pollution. However, our current understanding of the physicochemical processes and intrinsic mechanisms involving these key substances remains incomplete. Particularly, the role of water molecules and the air-water interface requires further investigation. Therefore, this employs theoretical simulation methods such as transition state search, thermodynamic integration (TI), and ab initio molecular dynamics (AIMD) simulation methods to thoroughly explore in detail the influence of water molecules and clusters on key atmospheric substances such as Criegee intermediates (CIs), hydroperoxyl radicals (HO2⸱), and dinitrogen pentoxide (N2O5) in the gas phase. Additionally, it examines effects of interface on the hydrolysis of N2O5 and the solvation dynamics of the halogen elements.

The reactions between CIs and HO2⸱ are crucial for the formation of secondary organic aerosols in the atmosphere, but the mechanisms underlying these reactions remain unclear. In this study, we used first-principles-based transition state search methods based on first principles and AIMD methods to investigate the reaction mechanisms involving CIs and HO2⸱/HO2⸱-H2O complexes. The results indicate that these reactions follow a proton transfer mechanism, contradicting the previously assumed hydrogen atom transfer mechanism. Further analysis of the reaction free energy profiles at different temperatures shows that the reaction free energy barrier significantly increases with rising temperature, underscoring the entropy effect on the reaction. Additionally, the introduction of water molecules increases the reaction free energy barrier, thereby hindering the progress, which is different from their promoting effect in other gas-phase reactions.

Removal of N2O5, a key substance in the nitrogen cycle, directly affects the concentration of various nitrogen oxides in the atmosphere. However, existing theoretical models suggest a high energy barrier for N2O5 removal, potentially underestimating its actual removal rate. This study employed the TI methods based on constrained AIMD to systematically investigate the effect of NH3 methylation and the water molecules/air-water interface on the hydrolysis of N2O5. An amine-catalyzed hydrolysis mechanism at the air-water interface, with an energy barrier far lower than the traditional hydrolysis process, was proposed. The study found that by increasing the methylation degree of NH3, the reaction energy barrier for the hydrolysis of N2O5 can be significantly reduced, thereby promoting the progress of the reaction. Similarly to the CIs-HO2⸱ reaction, the reaction free energy profiles at different temperatures indicate that the free energy barrier of the reaction also significantly increases with temperature, further proving that the entropy effect is detrimental to the progress of atmospheric reactions. It was confirmed that ensemble effects (including anharmonic and configurational entropy) are the main sources of entropy effect in the reaction by analyzing the distribution of the intrinsic coordinates of the reaction center and the relative positions of surrounding species. Additionally, unlike the CIs-HO2⸱ reaction, the introduction of water molecules reduces the reaction energy barrier, facilitating the progress of the reaction.

Halogen elements play a pivotal role in altering the chemical components of the stratosphere and troposphere, and a thorough understanding of their solvation behavior is essential for elucidating related chemical reaction mechanisms. However, the current understanding of the solvation behavior of elemental halogens in water nanodroplets and at the air-water interface remains unclear. In this study, constrained AIMD and TI methods were applied to explore the effect of the air-water interface on the solvation process of halogen elements (Cl2, Br2, and I2). The results show that the free energy of Cl2 and I2 minimizes at the interface, while the lowest free energy point of Br2 is in the liquid. Further analysis indicates that this phenomenon lies in the differences in halogen bond stability among the three molecules: Br2 can form more stable halogen bonds with water molecules in the liquid than at the interface, stabilizing inside the droplet. Whereas Cl2 and I2 show stronger halogen bond stability at the interface. These results provide reasonable explanations for the anomalous observation in experiments that Br2 has a higher solubility in water and demonstrate from a dynamic perspective the importance of halogen bonding in the solvation process of halogens.

In summary, this thesis systematically studies the effects of water molecules and water clusters on the chemical reactivity and reaction mechanisms of reactive substances such as CIs and N2O5, as well as the influence of the air-water interface on the hydrolysis reaction of N2O5 and the solvation of halogen elements. These studies proposed new mechanisms different from traditional cognition and elucidated the temperature dependence of atmospheric chemical reactions. It also revealed that entropy effect is an important factor affecting chemical reactivity. Furthermore, this study has also discovered that water molecules and the air-water interface play an important role in the physicochemical processes in the atmosphere and exhibit a prominent system dependency. These findings not only aid researchers in deeply understanding the reaction mechanisms of key substances in the atmosphere but also provide some guidance for addressing the current atmospheric pollution issues.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] BRUSSEAU M, MATTHIAS A, COMRIE A, et al. Environmental and pollution science: Atmospheric pollution[M]. Elsevier, 2019: 293-309.
[2] WALLACE J M, HOBBS P V. Atmospheric science: An introductory survey[M]. Elsevier, 2006.
[3] WANG S, WANG L, FAN X, et al. Formation pathway of secondary inorganic aerosol and its influencing factors in Northern China: Comparison between urban and rural sites[J]. Science of The Total Environment, 2022, 840: 156404.
[4] CAO T, WANG H, LI L, et al. Fast spreading of surface ozone in both temporal and spatial scale in Pearl River Delta[J]. Journal of Environmental Sciences, 2024, 137: 540-552.
[5] LIU Y, LIU C, NIE W, et al. Exploring condensable organic vapors and their co-occurrence with PM2.5 and O3 in winter in Eastern China[J]. Environmental Science: Atmospheres, 2023, 3(2): 282-297.
[6] GUO F, BUI A A, SCHULZE B C, et al. Airmass history, night-time particulate organonitrates, and meteorology impact urban SOA formation rate[J]. Atmospheric Environment, 2024, 322: 120362.
[7] WANG Y, ZHAO Y, LIU Y, et al. Sustained emission reductions have restrained the ozone pollution over China[J]. Nature Geoscience, 2023, 16(11): 967-974.
[8] ZHAI S, JACOB D J, WANG X, et al. Control of particulate nitrate air pollution in China[J]. Nature Geoscience, 2021, 14(6): 389-395.
[9] LI K, JACOB D J, LIAO H, et al. A two-pollutant strategy for improving ozone and particulate air quality in China[J]. Nature Geoscience, 2019, 12(11): 906-910.
[10] JIA L, XU Y, DUAN M. Explosive formation of secondary organic aerosol due to aerosol-fog interactions[J]. Science of The Total Environment, 2023, 866: 161338.
[11] GERRITZ L, WEI J, FANG T, et al. Reactive oxygen species formation and peroxide and carbonyl decomposition in aqueous photolysis of secondary organic aerosols[J]. Environmental Science & Technology, 2024, 58(10): 4716-4726.
[12] MA J, UNGEHEUER F, ZHENG F, et al. Nontarget screening exhibits a seasonal cycle of PM2.5 organic aerosol composition in Beijing[J]. Environmental Science & Technology, 2022, 56(11): 7017-7028.
[13] 银燕, 刁一伟, 刘超, 等. 大气物理学[M]. 北京: 气象出版社, 2018.
[14] 盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2013.
[15] LAGZI I, MÉSZÁROS R, GELYBÓ G, et al. Atmospheric chemistry[M]. Eötvös Loránd University, 2013.
[16] CRIEGEE R, WENNER G. Die Ozonisierung des 9, 10–Oktalins[J]. Justus Liebigs Annalen der Chemie, 1949, 564(1): 9-15.
[17] CRIEGEE R. Mechanism of ozonolysis[J]. Angewandte Chemie International Edition, 1975, 14(11): 745-752.
[18] BAILEY P S. The reactions of ozone with organic compounds[J]. Chemical Reviews, 1958, 58(5): 925-1010.
[19] WADT W R, GODDARD III W A. Electronic structure of the Criegee intermediate. Ramifications for the mechanism of ozonolysis[J]. Journal of the American Chemical Society, 1975, 97(11): 3004-3021.
[20] CREMER D, GAUSS J, KRAKA E, et al. A CCSD(T) investigation of carbonyl oxide and dioxirane. Equilibrium geometries, dipole moments, infrared spectra, heats of formation and isomerization energies[J]. Chemical Physics Letters, 1993, 209(5-6): 547-556.
[21] ANGLADA J M, BOFILL J M, OLIVELLA S, et al. Unimolecular isomerizations and oxygen atom loss in formaldehyde and acetaldehyde carbonyl oxides. A theoretical investigation[J]. Journal of the American Chemical Society, 1996, 118(19): 4636-4647.
[22] KALINOWSKI J, RÄSÄNEN M, HEINONEN P, et al. Isomerization and decomposition of a Criegee intermediate in the ozonolysis of alkenes: Dynamics using a multireference potential[J]. Angewandte Chemie International Edition, 2014, 126(1): 269-272.
[23] NGUYEN M T, NGUYEN T L, NGAN V T, et al. Heats of formation of the Criegee formaldehyde oxide and dioxirane[J]. Chemical Physics Letters, 2007, 448(4-6): 183-188.
[24] TAATJES C A, MELONI G, SELBY T M, et al. Direct observation of the gas-phase Criegee intermediate (CH2OO)[J]. Journal of the American Chemical Society, 2008, 130(36): 11883-11885.
[25] WELZ O, SAVEE J D, OSBORN D L, et al. Direct kinetic measurements of Criegee intermediate (CH2OO) formed by reaction of CH2I with O2[J]. Science, 2012, 335(6065): 204-207.
[26] TAATJES C A, WELZ O, ESKOLA A J, et al. Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO[J]. Science, 2013, 340(6129): 177-180.
[27] BEAMES J M, LIU F, LU L, et al. Ultraviolet spectrum and photochemistry of the simplest Criegee intermediate CH2OO[J]. Journal of the American Chemical Society, 2012, 134(49): 20045-20048.
[28] SU Y-T, HUANG Y-H, WITEK H A, et al. Infrared absorption spectrum of the simplest Criegee intermediate CH2OO[J]. Science, 2013, 340(6129): 174-176.
[29] MCCOY J C, MARCHETTI B, THODIKA M, et al. A simple and efficient method for simulating the electronic absorption spectra of Criegee intermediates: Benchmarking on CH2OO and CH3CHOO[J]. The Journal of Physical Chemistry A, 2021, 125(19): 4089-4097.
[30] BEAMES J M, LIU F, LU L, et al. UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH3CHOO[J]. The Journal of Chemical Physics, 2013, 138(24): 244307.
[31] LIN H-Y, HUANG Y-H, WANG X, et al. Infrared identification of the Criegee intermediates syn- and anti-CH3CHOO, and their distinct conformation-dependent reactivity[J]. Nature Communications, 2015, 6(1): 7012.
[32] ZHOU X, LIU Y, DONG W, et al. Unimolecular reaction rate measurement of syn-CH3CHOO[J]. The Journal of Physical Chemistry Letters, 2019, 10(17): 4817-4821.
[33] OSBORN D L, TAATJES C A. The physical chemistry of Criegee intermediates in the gas phase[J]. International Reviews in Physical Chemistry, 2015, 34(3): 309-360.
[34] VEREECKEN L. The reaction of Criegee intermediates with acids and enols[J]. Physical Chemistry Chemical Physics, 2017, 19(42): 28630-28640.
[35] ZOU M, LIU T, VANSCO M F, et al. Bimolecular reaction of methyl-ethyl-substituted Criegee intermediate with SO2[J]. The Journal of Physical Chemistry A, 2023, 127(43): 8994-9002.
[36] PAULSON S E, ORLANDO J J. The reactions of ozone with alkenes: An important source of HOx in the boundary layer[J]. Geophysical Research Letters, 1996, 23(25): 3727-3730.
[37] KROLL J H, HANISCO T F, DONAHUE N M, et al. Accurate, direct measurements of oh yields from gas–phase ozone–alkene reactions using an in situ LIF Instrument[J]. Geophysical Research Letters, 2001, 28(20): 3863-3866.
[38] CARAVAN R L, BANNAN T J, WINIBERG F A F, et al. Observational evidence for Criegee intermediate oligomerization reactions relevant to aerosol formation in the troposphere[J]. Nature Geoscience, 2024, 17: 219-226.
[39] CREHUET R, ANGLADA J M, BOFILL J M. Tropospheric formation of hydroxymethyl hydroperoxide, formic acid, H2O2, and OH from carbonyl oxide in the presence of water vapor: A theoretical study of the reaction mechanism[J]. Chemistry – A European Journal, 2001, 7(10): 2227-2235.
[40] ANGLADA J M, SOLÉ A. Impact of the water dimer on the atmospheric reactivity of carbonyl oxides[J]. Physical Chemistry Chemical Physics, 2016, 18(26): 17698-17712.
[41] CARAVAN R L, VANSCO M F, AU K, et al. Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(18): 9733-9740.
[42] STONE D, BLITZ M, DAUBNEY L, et al. Kinetics of CH2OO reactions with SO2, NO2, NO, H2O and CH3CHO as a function of pressure[J]. Physical Chemistry Chemical Physics, 2014, 16(3): 1139-1149.
[43] WELZ O, ESKOLA A J, SHEPS L, et al. Rate coefficients of C1 and C2 Criegee intermediate reactions with formic and acetic acid near the collision limit: Direct kinetics measurements and atmospheric implications[J]. Angewandte Chemie International Edition, 2014, 53(18): 4547-4550.
[44] RYZHKOV A B, ARIYA P A. The importance of water clusters (H2O)n(n=2,…,4) in the reaction of Criegee intermediate with water in the atmosphere[J]. Chemical Physics Letters, 2006, 419(4-6): 479-485.
[45] LONG B, BAO J L, TRUHLAR D G. Atmospheric chemistry of Criegee intermediates: Unimolecular reactions and reactions with water[J]. Journal of the American Chemical Society, 2016, 138(43): 14409-14422.
[46] RYZHKOV A B, ARIYA P A. A theoretical study of the reactions of parent and substituted Criegee intermediates with water and the water dimer[J]. Physical Chemistry Chemical Physics, 2004, 6(21): 5042-5050.
[47] CHEN L, WANG W, ZHOU L, et al. Role of water clusters in the reaction of the simplest Criegee intermediate CH2OO with water vapour[J]. Theoretical Chemistry Accounts, 2016, 135: 1-12.
[48] CHAO W, YIN C, TAKAHASHI K, et al. Hydrogen-bonding mediated reactions of Criegee intermediates in the gas phase: Competition between bimolecular and termolecular reactions and the catalytic role of water[J]. The Journal of Physical Chemistry A, 2019, 123(39): 8336-8348.
[49] KUMAR M, FRANCISCO J S. Elucidating the molecular mechanisms of Criegee-amine chemistry in the gas phase and aqueous surface environments[J]. Chemical Science, 2019, 10(3): 743-751.
[50] VEREECKEN L, HARDER H, NOVELLI A. The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere[J]. Physical Chemistry Chemical Physics, 2012, 14(42): 14682-14695.
[51] LONG B, TAN X-F, LONG Z-W, et al. Theoretical studies on reactions of the stabilized H2COO with HO2 and the HO2···H2O complex[J]. The Journal of Physical Chemistry A, 2011, 115(24): 6559-6567.
[52] CHEN L, HUANG Y, XUE Y, et al. Competition between HO2 and H2O2 reactions with CH2OO/anti-CH3CHOO in the oligomer formation: A theoretical perspective[J]. The Journal of Physical Chemistry A, 2017, 121(37): 6981-6991.
[53] ZHANG Y-Q, FRANCISCO J S, LONG B. Rapid atmospheric reactions between Criegee intermediates and hypochlorous acid[J]. The Journal of Physical Chemistry A, 2024, 128(5): 909-917.
[54] ZHU C, KUMAR M, ZHONG J, et al. New mechanistic pathways for Criegee–water chemistry at the air/water interface[J]. Journal of the American Chemical Society, 2016, 138(35): 11164-11169.
[55] KUMAR M, ZHONG J, ZENG X C, et al. Reaction of Criegee intermediate with nitric acid at the air–water interface[J]. Journal of the American Chemical Society, 2018, 140(14): 4913-4921.
[56] ZHONG J, KUMAR M, ZHU C Q, et al. Surprising stability of larger Criegee intermediates on aqueous interfaces[J]. Angewandte Chemie International Edition, 2017, 56(27): 7740-7744.
[57] LIANG Q, ZHU C, YANG J. Water charge transfer accelerates Criegee intermediate reaction with H2O–radical anion at the aqueous interface[J]. Journal of the American Chemical Society, 2023, 145(18): 10159-10166.
[58] FINLAYSON-PITTS B J, PITTS JR J N. Chemistry of the upper and lower atmosphere: Theory, experiments, and applications[M]. Elsevier, 2000.
[59] SEINFELD J H, PANDIS S N. Atmospheric chemistry and physics: From air pollution to climate change[M]. New York: John Wiley & Sons, 2016.
[60] LOGAN J A. Nitrogen oxides in the troposphere: Global and regional budgets[J]. Journal of Geophysical Research: Oceans, 1983, 88(C15): 10785-10807.
[61] DENTENER F J, CRUTZEN P J. Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx, O3, and OH[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D4): 7149-7163.
[62] ALEXANDER B, HASTINGS M, ALLMAN D, et al. Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate[J]. Atmospheric Chemistry and Physics, 2009, 9(14): 5043-5056.
[63] KLEFFMANN J, GAVRILOAIEI T, ELSHORBANY Y, et al. Detection of nitric acid (HNO3) in the atmosphere using the LOPAP technique[J]. Journal of Atmospheric Chemistry, 2007, 58: 131-149.
[64] BROWN S S, STUTZ J. Nighttime radical observations and chemistry[J]. Chemical Society Reviews, 2012, 41(19): 6405-6447.
[65] VOEGELE A F, TAUTERMANN C S, LOERTING T, et al. Toward elimination of discrepancies between theory and experiment: The gas-phase reaction of N2O5 with H2O[J]. Physical Chemistry Chemical Physics, 2003, 5(3): 487-495.
[66] CHANG W L, BHAVE P V, BROWN S S, et al. Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2O5: A review[J]. Aerosol Science and Technology, 2011, 45(6): 665-695.
[67] WAHNER A, MENTEL T F, SOHN M. Gas–phase reaction of N2O5 with water vapor: Importance of heterogeneous hydrolysis of N2O5 and surface desorption of HNO3 in a large Teflon chamber[J]. Geophysical Research Letters, 1998, 25(12): 2169-2172.
[68] XIA M, WANG W, WANG Z, et al. Heterogeneous uptake of N2O5 in sand dust and urban aerosols observed during the dry season in Beijing[J]. Atmosphere, 2019, 10(4): 204.
[69] BROWN S S, DUBÉ W P, FUCHS H, et al. Reactive uptake coefficients for N2O5 determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations[J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D00F10.
[70] MCDUFFIE E E, FIBIGER D L, DUBÉ W P, et al. Heterogeneous N2O5 uptake during winter: Aircraft measurements during the 2015 WINTER campaign and critical evaluation of current parameterizations[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(8): 4345-4372.
[71] CHANG W L, BROWN S S, STUTZ J, et al. Evaluating N2O5 heterogeneous hydrolysis parameterizations for CalNex 2010[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(9): 5051-5070.
[72] ALEXANDER B, SHERWEN T, HOLMES C D, et al. Global inorganic nitrate production mechanisms: Comparison of a global model with nitrate isotope observations[J]. Atmospheric Chemistry and Physics, 2020, 20(6): 3859-3877.
[73] MCNAMARA J P, HILLIER I H. Structure and reactivity of dinitrogen pentoxide in small water clusters studied by electronic structure calculations[J]. The Journal of Physical Chemistry A, 2000, 104(22): 5307-5319.
[74] ALECU I, MARSHALL P. Computational study of the thermochemistry of N2O5 and the kinetics of the reaction N2O5+H2O→2HNO3[J]. The Journal of Physical Chemistry A, 2014, 118(48): 11405-11416.
[75] MCNAMARA J P, HILLIER I H. Exploration of the atmospheric reactivity of N2O5 and HCl in small water clusters using electronic structure methods[J]. Physical Chemistry Chemical Physics, 2000, 2(11): 2503-2509.
[76] THAM Y J, WANG Z, LI Q, et al. Significant concentrations of nitryl chloride sustained in the morning: Investigations of the causes and impacts on ozone production in a polluted region of northern China[J]. Atmospheric Chemistry and Physics, 2016, 16(23): 14959-14977.
[77] YU C, WANG Z, XIA M, et al. Heterogeneous N2O5 reactions on atmospheric aerosols at four Chinese sites: Improving model representation of uptake parameters[J]. Atmospheric Chemistry and Physics, 2020, 20(7): 4367-4378.
[78] SNYDER J A, HANWAY D, MENDEZ J, et al. A density functional theory study of the gas-phase hydrolysis of dinitrogen pentoxide[J]. The Journal of Physical Chemistry A, 1999, 103(46): 9355-9358.
[79] CRUZEIRO V W D, GALIB M, LIMMER D T, et al. Uptake of N2O5 by aqueous aerosol unveiled using chemically accurate many-body potentials[J]. Nature Communications, 2022, 13(1): 1266.
[80] ROSSICH MOLINA E A, GERBER R B. Microscopic mechanisms of N2O5 hydrolysis on the surface of water droplets[J]. The Journal of Physical Chemistry A, 2019, 124(1): 224-228.
[81] GALIB M, LIMMER D T. Reactive uptake of N2O5 by atmospheric aerosol is dominated by interfacial processes[J]. Science, 2021, 371(6532): 921-925.
[82] WANG X, WANG H, XUE L, et al. Observations of N2O5 and ClNO2 at a polluted urban surface site in North China: High N2O5 uptake coefficients and low ClNO2 product yields[J]. Atmospheric Environment, 2017, 156: 125-134.
[83] MCNAMARA S M, CHEN Q, EDEBELI J, et al. Observation of N2O5 deposition and ClNO2 production on the saline snowpack[J]. ACS Earth and Space Chemistry, 2021, 5(5): 1020-1031.
[84] ROBINSON G, WORSNOP D, JAYNE J, et al. Heterogeneous uptake of ClONO2 and N2O5 by sulfuric acid solutions[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D3): 3583-3601.
[85] KANE S M, CALOZ F, LEU M-T. Heterogeneous uptake of gaseous N2O5 by (NH4)2SO4, NH4HSO4, and H2SO4 aerosols[J]. The Journal of Physical Chemistry A, 2001, 105(26): 6465-6470.
[86] SARKAR S, BANDYOPADHYAY B. Reaction between N2O5 and NH3 under tropospheric conditions: A quantum chemical and chemical kinetic investigation[J]. The Journal of Physical Chemistry A, 2020, 124(18): 3564-3572.
[87] MOZURKEWICH M, CALVERT J G. Reaction probability of N2O5 on aqueous aerosols[J]. Journal of Geophysical Research: Atmospheres, 1988, 93(D12): 15889-15896.
[88] KREGEL S J, DERRAH T F, MOON S, et al. Weak temperature dependence of the relative rates of chlorination and hydrolysis of N2O5 in NaCl–water solutions[J]. The Journal of Physical Chemistry A, 2023, 127(7): 1675-1685.
[89] HALLQUIST M, STEWART D J, BAKER J, et al. Hydrolysis of N2O5 on submicron sulfuric acid aerosols[J]. The Journal of Physical Chemistry A, 2000, 104(17): 3984-3990.
[90] KAMENS R M, GUO J, GUO Z, et al. Polynuclear aromatic hydrocarbon degradation by heterogeneous reactions with N2O5 on atmospheric particles[J]. Atmospheric Environment, 1990, 24(5): 1161-1173.
[91] SIMPSON W R, BROWN S S, SAIZ-LOPEZ A, et al. Tropospheric halogen chemistry: Sources, cycling, and impacts[J]. Chemical Reviews, 2015, 115(10): 4035-4062.
[92] PLATT U, HöNNINGER G. The role of halogen species in the troposphere[J]. Chemosphere, 2003, 52(2): 325-338.
[93] KNIPPING E, LAKIN M, FOSTER K, et al. Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols[J]. Science, 2000, 288(5464): 301-306.
[94] FINLAYSON-PITTS B. The tropospheric chemistry of sea salt: A molecular-level view of the chemistry of NaCl and NaBr[J]. Chemical Reviews, 2003, 103(12): 4801-4822.
[95] CRUTZEN P. A review of upper atmospheric photochemistry[J]. Canadian Journal of Chemistry, 1974, 52(8): 1569-1581.
[96] MOLINA M J, ROWLAND F S. Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone[J]. Nature, 1974, 249(5460): 810-812.
[97] ZHU C, GAO Y, ZHONG J, et al. Communication: Interaction of BrO radical with the surface of water[J]. The Journal of Chemical Physics, 2016, 145(24): 241102.
[98] MALLICK S, KUMAR P. OH·+HCl reaction at the surface of a water droplet: An ab initio molecular dynamical study[J]. The Journal of Physical Chemistry B, 2020, 124(12): 2465-2472.
[99] ZHONG J, ZHANG W, WU S, et al. Molecular interaction and orientation of HOCl on aqueous and ice surfaces[J]. Journal of the American Chemical Society, 2020, 142(41): 17329-17333.
[100] WAN Z, FANG Y, LIU Z, et al. Mechanistic insights into the reactive uptake of chlorine nitrate at the air–water interface[J]. Journal of the American Chemical Society, 2023, 145(2): 944-952.
[101] KUMAR M, TRABELSI T, GOMEZ MARTIN J C, et al. HIOx–IONO2 dynamics at the air–water interface: Revealing the existence of a halogen bond at the atmospheric aerosol surface[J]. Journal of the American Chemical Society, 2020, 142(28): 12467-12477.
[102] NING A, ZHONG J, LI L, et al. Chemical implications of rapid reactive absorption of I2O4 at the air-water interface[J]. Journal of the American Chemical Society, 2023, 145(19): 10817-10825.
[103] LIANG Y, RONG H, LIU L, et al. Gas-phase catalytic hydration of I2O5 in the polluted coastal regions: Reaction mechanisms and atmospheric implications[J]. Journal of Environmental Sciences, 2022, 114: 412-421.
[104] FINKENZELLER H, IYER S, HE X-C, et al. The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source[J]. Nature Chemistry, 2023, 15(1): 129-135.
[105] NARAYAN S, MULDOON J, FINN M, et al. “On water”: Unique reactivity of organic compounds in aqueous suspension[J]. Angewandte Chemie International Edition, 2005, 117(21): 3339-3343.
[106] RUIZ-LOPEZ M F, FRANCISCO J S, MARTINS-COSTA M T, et al. Molecular reactions at aqueous interfaces[J]. Nature Reviews Chemistry, 2020, 4(9): 459-475.
[107] JUNG Y, MARCUS R. On the theory of organic catalysis “on water”[J]. Journal of the American Chemical Society, 2007, 129(17): 5492-5502.
[108] ADAMSON A. Physical chemistry of surfaces[M]. New York: Johh Wiley & Sons, 1990.
[109] DONALDSON D, VAIDA V. The influence of organic films at the air−aqueous boundary on atmospheric processes[J]. Chemical Reviews, 2006, 106(4): 1445-1461.
[110] JUBB A M, HUA W, ALLEN H C. Environmental chemistry at vapor/water interfaces: Insights from vibrational sum frequency generation spectroscopy[J]. Annual Review of Physical Chemistry, 2012, 63: 107-130.
[111] ZHONG J, KUMAR M, ANGLADA J, et al. Atmospheric spectroscopy and photochemistry at environmental water interfaces[J]. Annual Review of Physical Chemistry, 2019, 70: 45-69.
[112] RUIZ-LOPEZ M F, MARTINS-COSTA M T, ANGLADA J M, et al. A new mechanism of acid rain generation from HOSO at the air–water interface[J]. Journal of the American Chemical Society, 2019, 141(42): 16564-16568.
[113] WILSON M A, POHORILLE A, PRATT L R. Molecular dynamics of the water liquid-vapor interface[J]. The Journal of Physical Chemistry, 1987, 91(19): 4873-4878.
[114] TOWNSEND R M, RICE S A. Molecular dynamics studies of the liquid–vapor interface of water[J]. The Journal of Chemical Physics, 1991, 94(3): 2207-2218.
[115] DU Q, SUPERFINE R, FREYSZ E, et al. Vibrational spectroscopy of water at the vapor/water interface[J]. Physical Review Letters, 1993, 70(15): 2313.
[116] PEZZOTTI S, GALIMBERTI D R, GAIGEOT M-P. 2D H-bond network as the topmost skin to the air–water interface[J]. The Journal of Physical Chemistry Letters, 2017, 8(13): 3133-3141.
[117] KUO I W, MUNDY C J, EGGIMANN B L, et al. Structure and dynamics of the aqueous liquid−vapor interface: A comprehensive particle-based simulation study[J]. The Journal of Physical Chemistry B, 2006, 110(8): 3738-3746.
[118] VÁCHA R, SLAVÍČEK P, MUCHA M, et al. Adsorption of atmospherically relevant gases at the air/water interface: Free energy profiles of aqueous solvation of N2, O2, O3, OH, H2O, HO2, and H2O2[J]. The Journal of Physical Chemistry A, 2004, 108(52): 11573-11579.
[119] TOBIAS D J, STERN A C, BAER M D, et al. Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces[J]. Annual Review of Physical Chemistry, 2013, 64: 339-359.
[120] XIAO S, FIGGE F, STIRNEMANN G, et al. Orientational dynamics of water at an extended hydrophobic interface[J]. Journal of the American Chemical Society, 2016, 138(17): 5551-5560.
[121] HSIEH C-S, CAMPEN R K, VERDE A C V, et al. Ultrafast reorientation of dangling OH groups at the air-water interface using femtosecond vibrational spectroscopy[J]. Physical Review Letters, 2011, 107(11): 116102.
[122] ROSENFELD D, SHERWOOD S, WOOD R, et al. Climate effects of aerosol-cloud interactions[J]. Science, 2014, 343(6169): 379-380.
[123] RAVISHANKARA A. Heterogeneous and multiphase chemistry in the troposphere[J]. Science, 1997, 276(5315): 1058-1065.
[124] ANDREAE M O, CRUTZEN P J. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry[J]. Science, 1997, 276(5315): 1052-1058.
[125] MONOD A, CARLIER P. Impact of clouds on the tropospheric ozone budget: Direct effect of multiphase photochemistry of soluble organic compounds[J]. Atmospheric Environment, 1999, 33(27): 4431-4446.
[126] JACOB D J. Heterogeneous chemistry and tropospheric ozone[J]. Atmospheric Environment, 2000, 34(12-14): 2131-2159.
[127] CALVERT J G, LAZRUS A, KOK G L, et al. Chemical mechanisms of acid generation in the troposphere[J]. Nature, 1985, 317(6032): 27-35.
[128] SOLOMON S, GARCIA R R, ROWLAND F S, et al. On the depletion of Antarctic ozone[J]. Nature, 1986, 321(6072): 755-758.
[129] GEORGE C, AMMANN M, D’ANNA B, et al. Heterogeneous photochemistry in the atmosphere[J]. Chemical Reviews, 2015, 115(10): 4218-4258.
[130] ROSSIGNOL S, TINEL L, BIANCO A, et al. Atmospheric photochemistry at a fatty acid–coated air-water interface[J]. Science, 2016, 353(6300): 699-702.
[131] REICHARDT C, WELTON T. Solvents and solvent effects in organic chemistry[M]. New York: John Wiley & Sons, 2011.
[132] KOLB C, COX R A, ABBATT J, et al. An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds[J]. Atmospheric Chemistry and Physics, 2010, 10(21): 10561-10605.
[133] DONALDSON D, VALSARAJ K T. Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: A critical review[J]. Environmental Science & Technology, 2010, 44(3): 865-873.
[134] ENAMI S, HOFFMANN M R, COLUSSI A J. Extensive H-atom abstraction from benzoate by OH-radicals at the air–water interface[J]. Physical Chemistry Chemical Physics, 2016, 18(46): 31505-31512.
[135] ANGLADA J M, MARTINS-COSTA M T, FRANCISCO J S, et al. Reactivity of undissociated molecular nitric acid at the air–water interface[J]. Journal of the American Chemical Society, 2020, 143(1): 453-462.
[136] LEE J K, WALKER K L, HAN H S, et al. Spontaneous generation of hydrogen peroxide from aqueous microdroplets[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(39): 19294-19298.
[137] XIONG H, LEE J K, ZARE R N, et al. Strong electric field observed at the interface of aqueous microdroplets[J]. The Journal of Physical Chemistry Letters, 2020, 11(17): 7423-7428.
[138] MARTINS-COSTA M T, RUIZ-LÓPEZ M F. Electrostatics and chemical reactivity at the air–water interface[J]. Journal of the American Chemical Society, 2023, 145(2): 1400-1406.
[139] MARTINS-COSTA M T, ANGLADA J M, FRANCISCO J S, et al. The aqueous surface as an efficient transient stop for the reactivity of gaseous NO2 in liquid water[J]. Journal of the American Chemical Society, 2020, 142(50): 20937-20941.
[140] WAN Z, ZHU C, FRANCISCO J S. Molecular insights into the spontaneous generation of Cl2O in the reaction of ClONO2 and HOCl at the air–water interface[J]. Journal of the American Chemical Society, 2023, 145(31): 17478-17484.
[141] ZHONG J, LI L, KUMAR M, et al. Solvation and hydrolysis reaction of isocyanic acid at the air–water interface: A computational study[J]. Journal of the American Chemical Society, 2022, 144(12): 5315-5322.
[142] ZHU C, ZENG X C, FRANCISCO J S, et al. Hydration, solvation, and isomerization of methylglyoxal at the air/water interface: New mechanistic pathways[J]. Journal of the American Chemical Society, 2020, 142(12): 5574-5582.
[143] RAO Z, FANG Y-G, PAN Y, et al. Accelerated photolysis of H2O2 at the air–water interface of a microdroplet[J]. Journal of the American Chemical Society, 2023, 145(45): 24717-24723.
[144] RANA M S, GUZMAN M I. Oxidation of phenolic aldehydes by ozone and hydroxyl radicals at the air–water interface[J]. The Journal of Physical Chemistry A, 2020, 124(42): 8822-8833.
[145] GENG W C, ZHANG D, GONG C, et al. Host–guest complexation of amphiphilic molecules at the air–water interface prevents oxidation by hydroxyl radicals and singlet oxygen[J]. Angewandte Chemie International Edition, 2020, 59(31): 12684-12688.
[146] ZHANG D, WANG J, CHEN H, et al. Fast hydroxyl radical generation at the air–water interface of aerosols mediated by water-soluble PM2.5 under ultraviolet a radiation[J]. Journal of the American Chemical Society, 2023, 145(11): 6462-6470.
[147] LI K, GUO Y, NIZKORODOV S A, et al. Spontaneous dark formation of OH radicals at the interface of aqueous atmospheric droplets[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(15): e2220228120.
[148] SKURSKI P, SIMONS J. Two potential paths for OH radical formation on surfaces of pure water microdroplets[J]. The Journal of Chemical Physics, 2024, 160(3): 034708.
[149] SERRANO-LUGINBÜHL S, RUIZ-MIRAZO K, OSTASZEWSKI R, et al. Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions[J]. Nature Reviews Chemistry, 2018, 2(10): 306-327.
[150] NAM I, NAM H G, ZARE R N. Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(1): 36-40.
[151] YAN X, BAIN R M, COOKS R G. Organic reactions in microdroplets: Reaction acceleration revealed by mass spectrometry[J]. Angewandte Chemie International Edition, 2016, 55(42): 12960-12972.
[152] KÜCHLER A, YOSHIMOTO M, LUGINBÜHL S, et al. Enzymatic reactions in confined environments[J]. Nature Nanotechnology, 2016, 11(5): 409-420.
[153] MARTINS-COSTA M T, ANGLADA J M, FRANCISCO J S, et al. Photochemistry of SO2 at the air–water interface: A source of OH and HOSO radicals[J]. Journal of the American Chemical Society, 2018, 140(39): 12341-12344.
[154] PUENTE M D L, DAVID R, GOMEZ A, et al. Acids at the edge: Why nitric and formic acid dissociations at air–water interfaces depend on depth and on interface specific area[J]. Journal of the American Chemical Society, 2022, 144(23): 10524-10529.
[155] CHENG Y, DING C, ZHANG T, et al. Barrierless reactions of C2 Criegee intermediates with H2SO4 and their implication to oligomers and new particle formation[J]. Journal of Environmental Sciences, 2023, 149: 574-584.
[156] LIU Y, GE Q, WANG T, et al. Strong electric field force at the air/water interface drives fast sulfate production in the atmosphere[J]. Chem, 2024, 10(1): 330-351.
[157] XIA Y, LONG B, LIN S, et al. Large pressure effects caused by internal rotation in the s-cis-syn-acrolein stabilized Criegee intermediate at tropospheric temperature and pressure[J]. Journal of the American Chemical Society, 2022, 144(11): 4828-4838.
[158] WEN M, LI R, ZHANG T, et al. A potential source of tropospheric secondary organic aerosol precursors: The hydrolysis of N2O5 in water dimer and small clusters of sulfuric acid[J]. Atmospheric Environment, 2022, 287: 119245.
[159] ZHANG Y-Q, XIA Y, LONG B. Quantitative kinetics for the atmospheric reactions of Criegee intermediates with acetonitrile[J]. Physical Chemistry Chemical Physics, 2022, 24(40): 24759-24766.
[160] ABDI N, SEIF A, AZIZI K, et al. Insight into 1:1 complexes of H2O with NF3 and CF2Cl2: A quantum chemical approach[J]. Journal of Chemical Sciences 2020, 132: 1-11.
[161] ANGLADA J M, MARTINS-COSTA M, RUIZ-LÓPEZ M F, et al. Spectroscopic signatures of ozone at the air–water interface and photochemistry implications[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(32): 11618-11623.
[162] MARTINS-COSTA M, ANGLADA J, FRANCISCO J, et al. Impacts of cloud water droplets on the OH production rate from peroxide photolysis[J]. Physical Chemistry Chemical Physics, 2017, 19(47): 31621-31627.
[163] OHMINE I, SAITO S. Water dynamics: Fluctuation, relaxation, and chemical reactions in hydrogen bond network rearrangement[J]. Accounts of Chemical Research, 1999, 32(9): 741-749.
[164] MURDACHAEW G, NATHANSON G M, GERBER R B, et al. Deprotonation of formic acid in collisions with a liquid water surface studied by molecular dynamics and metadynamics simulations[J]. Physical Chemistry Chemical Physics, 2016, 18(43): 29756-29770.
[165] MARTINS-COSTA M T, RUIZ-LÓPEZ M F. Highly accurate computation of free energies in complex systems through horsetail QM/MM molecular dynamics combined with free-energy perturbation theory[J]. Theoretical Chemistry Accounts, 2017, 136(50): 1-7.
[166] STRNAD M, MARTINS-COSTA M, MILLOT C, et al. Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. II. Charge separation processes[J]. The Journal of Chemical Physics, 1997, 106(9): 3643-3657.
[167] WOODCOCK III H L, HODOŠČEK M, GILBERT A T, et al. Interfacing Q–Chem and CHARMM to perform QM/MM reaction path calculations[J]. Journal of Computational Chemistry, 2007, 28(9): 1485-1502.
[168] XIA D, CHEN J, XIE H-B, et al. Counterintuitive oxidation of alcohols at air–water interfaces[J]. Journal of the American Chemical Society, 2023, 145(8): 4791-4799.
[169] LIU L, TIAN Y, YANG X, et al. Mechanistic insights into water autoionization through metadynamics simulation enhanced by machine learning[J]. Physical Review Letters, 2023, 131(15): 158001.
[170] SCHRÖDINGER E. Über das verhältnis der Heisenberg–Born–Jordanschen quantenmechanik zu der meinem[J]. Annalen der Physik, 1926, 384(8): 734-756.
[171] BORN M, OPPENHEIMER R. Zur quantentheorie der molekeln[J]. Annalen der Physik, 1927, 84(20): 0457.
[172] BORN M, HUANG K. Dynamical theory of crystal lattices[M]. Oxford university press, 1996.
[173] EPSTEIN S T. Ground–state energy of a molecule in the adiabatic approximation[J]. The Journal of Chemical Physics, 1966, 44(2): 836-837.
[174] HARTREE D R. The wave mechanics of an atom with a non-coulomb central field. Part II. Some results and discussion[C]. Mathematical Proceedings of the Cambridge Philosophical Society, 1928: 111-132.
[175] FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review, 1961, 124(6): 1866.
[176] MØLLER C, PLESSET M S. Note on an approximation treatment for many-electron systems[J]. Physical Review, 1934, 46(7): 618.
[177] CRAMER C J. Essentials of computational chemistry: Theories and models[M]. New York: John Wiley & Sons, 2013.
[178] KÜMMEL H G. A biography of the coupled cluster method[J]. International Journal of Modern Physics B, 2003, 17(28): 5311-5325.
[179] THOMAS L H. The calculation of atomic fields[C]. Mathematical Proceedings of the Cambridge Philosophical Society, 1927: 542-548.
[180] FERMI E. Un metodo statistico per la determinazione di alcune priorieta dell’atome[J]. Rendiconti Academia Dei Lincei, 1927, 6(602-607): 32.
[181] DIRAC P A M. The quantum theory of the electron[J]. Proceedings of the Royal Society A, 1928, 117(778): 610-624.
[182] LATTER R. Atomic energy levels for the Thomas-Fermi and Thomas-Fermi-Dirac potential[J]. Physical Review, 1955, 99(2): 510.
[183] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864.
[184] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133.
[185] PERDEW J P, YUE W. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation[J]. Physical Review B, 1986, 33(12): 8800.
[186] CEPERLEY D M, ALDER B J. Ground state of the electron gas by a stochastic method[J]. Physical Review Letters, 1980, 45(7): 566.
[187] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865.
[188] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23): 13244.
[189] BECKE A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A, 1988, 38(6): 3098-3100.
[190] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785.
[191] SUN J, REMSING R C, ZHANG Y, et al. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional[J]. Nature Chemistry, 2016, 8(9): 831-836.
[192] ZHAO Y, TRUHLAR D G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions[J]. The Journal of Chemical Physics, 2006, 125(19): 194101.
[193] ADAMO C, BARONE V. Toward reliable density functional methods without adjustable parameters: The PBE0 model[J]. The Journal of Chemical Physics, 1999, 110(13): 6158-6170.
[194] PAIER J, MARSMAN M, HUMMER K, et al. Screened hybrid density functionals applied to solids[J]. The Journal of Chemical Physics, 2006, 124(15): 154709.
[195] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The Journal of Physical Chemistry, 1994, 98(45): 11623-11627.
[196] BECKE A D. Density-functional thermochemistry. III. The role of exact exchange[J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652.
[197] ZHAO Y, TRUHLAR D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theoretical Chemistry Accounts, 2008, 120: 215-241.
[198] GRIMME S. Semiempirical hybrid density functional with perturbative second-order correlation[J]. The Journal of Chemical Physics, 2006, 124(3): 034108.
[199] SCHWABE T, GRIMME S. Double-hybrid density functionals with long-range dispersion corrections: Higher accuracy and extended applicability[J]. Physical Chemistry Chemical Physics, 2007, 9(26): 3397-3406.
[200] KOZUCH S, MARTIN J M. DSD-PBEP86: In search of the best double-hybrid DFT with spin-component scaled MP2 and dispersion corrections[J]. Physical Chemistry Chemical Physics, 2011, 13(45): 20104-20107.
[201] CHAI J-D, HEAD-GORDON M. Systematic optimization of long-range corrected hybrid density functionals[J]. The Journal of Chemical Physics, 2008, 128(8): 084106.
[202] KRISHNAN R, BINKLEY J S, SEEGER R, et al. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions[J]. The Journal of Chemical Physics, 1980, 72(1): 650-654.
[203] DUNNING JR T H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen[J]. The Journal of Chemical Physics, 1989, 90(2): 1007-1023.
[204] WEIGEND F. Accurate Coulomb-fitting basis sets for H to Rn[J]. Physical Chemistry Chemical Physics, 2006, 8(9): 1057-1065.
[205] EYRING H. The activated complex in chemical reactions[J]. The Journal of Chemical Physics, 1935, 3(2): 107-115.
[206] EVANS M G, POLANYI M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution[J]. Transactions of the Faraday Society, 1935, 31: 875-894.
[207] JÓNSSON H, MILLS G, JACOBSEN K W. Nudged elastic band method for finding minimum energy paths of transitions[M]. Singapore: World Scientific, 1998: 385-404.
[208] HENKELMAN G, UBERUAGA B P, JÓNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of Chemical Physics, 2000, 113(22): 9901-9904.
[209] CORTÉS-ORTUÑO D, WANG W, BEG M, et al. Thermal stability and topological protection of skyrmions in nanotracks[J]. Scientific Reports, 2017, 7(1): 4060.
[210] HENKELMAN G, JÓNSSON H. Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table[J]. The Journal of Chemical Physics, 2001, 115(21): 9657-9666.
[211] CARTER E A, CICCOTTI G, HYNES J T, et al. Constrained reaction coordinate dynamics for the simulation of rare events[J]. Chemical Physics Letters, 1989, 156(5): 472-477.
[212] SPRIK M, CICCOTTI G. Free energy from constrained molecular dynamics[J]. The Journal of Chemical Physics, 1998, 109(18): 7737-7744.
[213] LAIO A, PARRINELLO M. Escaping free-energy minima[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 12562-12566.
[214] DE VIVO M, MASETTI M, BOTTEGONI G, et al. Role of molecular dynamics and related methods in drug discovery[J]. Journal of Medicinal Chemistry, 2016, 59(9): 4035-4061.
[215] FRISCH M, TRUCKS G, SCHLEGEL H, et al. GAUSSIAN16. Revision C. 01[CP]. Wallingford, CT, USA: Gaussian Inc., 2016.
[216] VANDEVONDELE J, KRACK M, MOHAMED F, et al. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach[J]. Computer Physics Communications, 2005, 167(2): 103-128.
[217] TAATJES C A. Criegee intermediates: What direct production and detection can teach us about reactions of carbonyl oxides[J]. Annual Review of Physical Chemistry, 2017, 68: 183-207.
[218] VEREECKEN L, GLOWACKI D R, PILLING M J. Theoretical chemical kinetics in tropospheric chemistry: Methodologies and applications[J]. Chemical Reviews, 2015, 115(10): 4063-4114.
[219] STONE D, WHALLEY L K, HEARD D E. Tropospheric OH and HO2 radicals: Field measurements and model comparisons[J]. Chemical Society Reviews, 2012, 41(19): 6348-6404.
[220] KUMAR M, FRANCISCO J S. Red-light initiated decomposition of α-hydroxy methylperoxy radical in the presence of organic and inorganic acids: Implications for the HOx formation in the lower stratosphere[J]. The Journal of Physical Chemistry A, 2016, 120(17): 2677-2683.
[221] ANGLADA J M, OLIVELLA S, SOLÉ A. Mechanistic study of the CH3O2·+HO2·→CH3O2H+O2 reaction in the gas phase. Computational evidence for the formation of a hydrogen-bonded diradical complex[J]. The Journal of Physical Chemistry A, 2006, 110(18): 6073-6082.
[222] ANGLADA J M, OLIVELLA S, SOLÉ A. New insight into the gas-phase bimolecular self-reaction of the HOO radical[J]. The Journal of Physical Chemistry A, 2007, 111(9): 1695-1704.
[223] ZHAO Y, WINGEN L M, PERRAUD V, et al. Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air[J]. Physical Chemistry Chemical Physics, 2015, 17(19): 12500-12514.
[224] ALOISIO S, FRANCISCO J S, FRIEDL R R. Experimental evidence for the existence of the HO2−H2O complex[J]. The Journal of Physical Chemistry A, 2000, 104(28): 6597-6601.
[225] GONZALEZ J, TORRENT-SUCARRAT M, ANGLADA J M. The reactions of SO3 with HO2 radical and H2O⋯HO2 radical complex. Theoretical study on the atmospheric formation of HSO5 and H2SO4[J]. Physical Chemistry Chemical Physics, 2010, 12(9): 2116-2125.
[226] LONG B, TAN X-F, REN D-S, et al. Theoretical studies on energetics and mechanisms of the decomposition of CF3OH[J]. Chemical Physics Letters, 2010, 492(4-6): 214-219.
[227] KENDALL R A, DUNNING JR T H, HARRISON R J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions[J]. The Journal of Chemical Physics, 1992, 96(9): 6796-6806.
[228] RAGHAVACHARI K, TRUCKS G W, POPLE J A, et al. A fifth-order perturbation comparison of electron correlation theories[J]. Chemical Physics Letters, 1989, 157(6): 479-483.
[229] GRIMME S. Accurate description of van der Waals complexes by density functional theory including empirical corrections[J]. Journal of Computational Chemistry, 2004, 25(12): 1463-1473.
[230] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799.
[231] NOSÉ S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519.
[232] HOOVER W G. Canonical dynamics: Equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3): 1695.
[233] SMITH M C, TING W-L, CHANG C-H, et al. UV absorption spectrum of the C2 Criegee intermediate CH3CHOO[J]. The Journal of Chemical Physics, 2014, 141(7): 074302.
[234] LIN L-C, CHANG H-T, CHANG C-H, et al. Competition between H2O and (H2O)2 reactions with CH2OO/CH3CHOO[J]. Physical Chemistry Chemical Physics, 2016, 18(6): 4557-4568.
[235] OLIVELLA S, ANGLADA J M, SOLÉ A, et al. Mechanism of the hydrogen transfer from the OH group to oxygen-centered radicals: Proton-coupled electron-transfer versus radical hydrogen abstraction[J]. Chemistry – A European Journal, 2004, 10(14): 3404-3410.
[236] LI L, KUMAR M, ZHU C, et al. Near-barrierless ammonium bisulfate formation via a loop-structure promoted proton-transfer mechanism on the surface of water[J]. Journal of the American Chemical Society, 2016, 138(6): 1816-1819.
[237] LI L, DUAN Z, LI H, et al. Formation of HONO from the NH3-promoted hydrolysis of NO2 dimers in the atmosphere[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(28): 7236-7241.
[238] RUSSELL A G, CASS G R, SEINFELD J H. On some aspects of nighttime atmospheric chemistry[J]. Environmental Science & Technology, 1986, 20(11): 1167-1172.
[239] ROBERTS J M, OSTHOFF H D, BROWN S S, et al. Laboratory studies of products of N2O5 uptake on Cl− containing substrates[J]. Geophysical Research Letters, 2009, 36(20).
[240] FENTER F F, CALOZ F, ROSSI M J. Heterogeneous kinetics of N2O5 uptake on salt, with a systematic study of the role of surface presentation (for N2O5 and HNO3)[J]. The Journal of Physical Chemistry, 1996, 100(3): 1008-1019.
[241] HE X, WU J-J, MA Z-C, et al. NH3-promoted heterogeneous reaction of SO2 to sulfate on α-Fe2O3 particles with coexistence of NO2 under different relative humidities[J]. Atmospheric Environment, 2021, 262: 118622.
[242] WANG S, ZENG X C, LI H, et al. A possible unaccounted source of atmospheric sulfate formation: Amine-promoted hydrolysis and non-radical oxidation of sulfur dioxide[J]. Chemical Science, 2020, 11(8): 2093-2102.
[243] WANG S, LI H. NO3·-initiated gas-phase formation of nitrated phenolic compounds in polluted atmosphere[J]. Environmental Science & Technology, 2021, 55(5): 2899-2907.
[244] ALMEIDA J, SCHOBESBERGER S, KÜRTEN A, et al. Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere[J]. Nature, 2013, 502(7471): 359-363.
[245] YAO L, GARMASH O, BIANCHI F, et al. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity[J]. Science, 2018, 361(6399): 278-281.
[246] GRABOW L, MAVRIKAKIS M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation[J]. ACS Catalysis, 2011, 1(4): 365-384.
[247] MCEWEN J-S, ANGGARA T, SCHNEIDER W, et al. Integrated operando X-ray absorption and DFT characterization of Cu–SSZ-13 exchange sites during the selective catalytic reduction of NOx with NH3[J]. Catalysis Today, 2012, 184(1): 129-144.
[248] CAMPBELL C T, SPROWL L H, ÁRNADÓTTIR L. Equilibrium constants and rate constants for adsorbates: Two-dimensional (2D) ideal gas, 2D ideal lattice gas, and ideal hindered translator models[J]. The Journal of Physical Chemistry C, 2016, 120(19): 10283-10297.
[249] JØRGENSEN M, GRONBECK H. Adsorbate entropies with complete potential energy sampling in microkinetic modeling[J]. The Journal of Physical Chemistry C, 2017, 121(13): 7199-7207.
[250] COLLINGE G, YUK S F, NGUYEN M-T, et al. Effect of collective dynamics and anharmonicity on entropy in heterogenous catalysis: Building the case for advanced molecular simulations[J]. ACS Catalysis, 2020, 10(16): 9236-9260.
[251] TORRIE G M, VALLEAU J P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling[J]. Journal of Computational Physics, 1977, 23(2): 187-199.
[252] REY J, RAYBAUD P, CHIZALLET C, et al. Competition of secondary versus tertiary carbenium routes for the type B isomerization of alkenes over acid zeolites quantified by ab initio molecular dynamics simulations[J]. ACS Catalysis, 2019, 9(11): 9813-9828.
[253] GOEDECKER S, TETER M, HUTTER J. Separable dual-space Gaussian pseudopotentials[J]. Physical Review B, 1996, 54(3): 1703.
[254] HARTWIGSEN C, GŒDECKER S, HUTTER J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn[J]. Physical Review B, 1998, 58(7): 3641.
[255] ZHONG J, ZHAO Y, LI L, et al. Interaction of the NH2 radical with the surface of a water droplet[J]. Journal of the American Chemical Society, 2015, 137(37): 12070-12078.
[256] LARSEN A H, MORTENSEN J J, BLOMQVIST J, et al. The atomic simulation environment—a Python library for working with atoms[J]. Journal of Physics: Condensed Matter, 2017, 29(27): 273002.
[257] ANGLADA J M, HOFFMAN G J, SLIPCHENKO L V, et al. Atmospheric significance of water clusters and ozone–water complexes[J]. The Journal of Physical Chemistry A, 2013, 117(40): 10381-10396.
[258] GONZALEZ J, CABALLERO M, AGUILAR-MOGAS A, et al. The reaction between HO and (H2O)n(n=1, 3) clusters: Reaction mechanisms and tunneling effects[J]. Theoretical Chemistry Accounts, 2011, 128: 579-592.
[259] WIGNER E. On the quantum correction for thermodynamic equilibrium[J]. Physical Review, 1932, 40(5): 749.
[260] JEN C N, MCMURRY P H, HANSON D R. Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(12): 7502-7514.
[261] MCQUARRIE D A, SIMON J D. Molecular thermodynamics[M]. Sterling Publishing Company, 1999.
[262] TOBIAS D J, JUNGWIRTH P, PARRINELLO M. Surface solvation of halogen anions in water clusters: An ab initio molecular dynamics study of the Cl−(H2O)6 complex[J]. The Journal of Chemical Physics, 2001, 114(16): 7036-7044.
[263] RAMONDO F, SODEAU J R, RODDIS T B, et al. An ab initio and experimental study of bromine on low-temperature water clusters and ice surfaces[J]. Physical Chemistry Chemical Physics, 2000, 2(10): 2309-2318.
[264] FRANKLIN-MERGAREJO R, RUBAYO-SONEIRA J, HALBERSTADT N, et al. A theoretical simulation of the resonant Raman spectroscopy of the H2O⋯Cl2 and H2O⋯Br2 halogen-bonded complexes[J]. The Journal of Chemical Physics, 2016, 144(5): 054307.
[265] YANG Q, LIU Y, ZHANG Z, et al. Probing the halogen bond donation ability of multivalent At-center in AtXn (X=Cl, Br, I; n=1, 3, 5)⋯H2O/H2S complexes[J]. Computational and Theoretical Chemistry, 2021, 1195: 113090.
[266] REMSING R C, KLEIN M L. Lone pair rotational dynamics in solids[J]. Physical Review Letters, 2020, 124(6): 066001.
[267] WANG H, QIU Y, CZAKÓ G B, et al. Pathways for the OH+Cl2→HOCl+Cl and HOCl+Cl→HCl+ClO Reactions[J]. The Journal of Physical Chemistry A, 2015, 119(28): 7802-7809.
[268] SHALLCROSS D E, LEATHER K E, BACAK A, et al. Reaction between CH3O2 and BrO radicals: A new source of upper troposphere lower stratosphere hydroxyl radicals[J]. The Journal of Physical Chemistry A, 2015, 119(19): 4618-4632.
[269] CHURCH J R, SKODJE R T. Reaction kinetics of HBr with HO2: A new channel for isotope scrambling reactions[J]. The Journal of Physical Chemistry A, 2016, 120(43): 8503-8511.
[270] KUMAR M, SAIZ-LOPEZ A, FRANCISCO J S. Single-molecule catalysis revealed: Elucidating the mechanistic framework for the formation and growth of atmospheric iodine oxide aerosols in gas-phase and aqueous surface environments[J]. Journal of the American Chemical Society, 2018, 140(44): 14704-14716.
[271] ZHANG Y, YANG W. Comment on “Generalized gradient approximation made simple”[J]. Physical Review Letters, 1998, 80(4): 890.
[272] KLIMEŠ J, BOWLER D R, MICHAELIDES A. Chemical accuracy for the van der Waals density functional[J]. Journal of Physics: Condensed Matter, 2009, 22(2): 022201.
[273] GODBOUT N, SALAHUB D R, ANDZELM J, et al. Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation[J]. Canadian Journal of Chemistry, 1992, 70(2): 560-571.
[274] ADLER T B, KNIZIA G, WERNER H-J. A simple and efficient CCSD(T)-F12 approximation[J]. The Journal of Chemical Physics, 2007, 127(22): 221106.
[275] JORGENSEN W L, CHANDRASEKHAR J, MADURA J D, et al. Comparison of simple potential functions for simulating liquid water[J]. The Journal of Chemical Physics, 1983, 79(2): 926-935.
[276] CAVALLO G, METRANGOLO P, MILANI R, et al. The halogen bond[J]. Chemical Reviews, 2016, 116(4): 2478-2601.
[277] RAPAPORT D. Hydrogen bonds in water: Network organization and lifetimes[J]. Molecular Physics, 1983, 50(5): 1151-1162.

所在学位评定分委会
物理学
国内图书分类号
O643
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765955
专题南方科技大学
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
李白. 大气关键活性物质的水化行为和水促反应机理的理论研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031327-李白-材料科学与工程系(9290KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李白]的文章
百度学术
百度学术中相似的文章
[李白]的文章
必应学术
必应学术中相似的文章
[李白]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。