[1] LEE G S, CHEONG C, SHIN S H, et al. A case study of localization and identification of noise sources from a pitch and a stall regulated wind turbine[J]. Applied Acoustics, 2012, 73(8): 817-827.
[2] BALLESTEROS J A, SARRADJ E, FERNANDEZ M D, et al. Noise source identification with beamforming in the pass-by of a car[J]. Applied Acoustics, 2015, 93: 106-119.
[3] GRUMIAUX P A, KITIĆ S, GIRIN L, et al. A survey of sound source localization with deeplearning methods[J]. The Journal of the Acoustical Society of America, 2022, 152(1): 107-151.
[4] CHAZAN S E, HAMMER H, HAZAN G, et al. Multi-microphone speaker separation based on deep DOA estimation[C]//2019 27th European Signal Processing Conference (EUSIPCO).IEEE, 2019: 1-5.
[5] LIU G, YUAN S, WU J, et al. A sound source localization method based on microphone array for mobile robot[C]//2018 Chinese Automation Congress (CAC). IEEE, 2018: 1621-1625.
[6] LI X, GIRIN L, BADEIG F, et al. Reverberant sound localization with a robot head based on direct-path relative transfer function[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 2819-2826.
[7] ZOHOURIAN M, ENZNER G, MARTIN R. Binaural speaker localization integrated into anadaptive beamformer for hearing aids[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2017, 26(3): 515-528.
[8] SONGGONG K, CHEN H. Robust indoor speaker localization in the circular harmonic domain[J]. IEEE Transactions on Industrial Electronics, 2020, 68(4): 3413-3422.
[9] NIU H, GONG Z, OZANICH E, et al. Deep-learning source localization using multi-frequency magnitude-only data[J]. The Journal of the Acoustical Society of America, 2019, 146(1): 211-222.
[10] CABADA E C, HAMZAOUI N, LECLERE Q, et al. Acoustic imaging applied to fault detection in rotating machine[C]//Surveillance 8. 2015.
[11] POPPER A N, FAY R R, POPPER A N. Sound source localization: Vol. 25[M]. Springer, 2005.
[12] XU P, ARCONDOULIS E J, LIU Y. Acoustic source imaging using densely connected convolutional networks[J]. Mechanical Systems and Signal Processing, 2021, 151: 107370.
[13] LEE S Y, CHANG J, LEE S. Deep learning-enabled high-resolution and fast sound source localization in spherical microphone array system[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12.
[14] PAWLACZYK-ŁUSZCZYŃSKA M, SZYMCZAK W, DUDAREWICZ A, et al. Proposed criteria for assessing low frequency noise annoyance in occupational settings.[J]. InternationalJournal of Occupational Medicine & Environmental Health, 2006, 19(3).
[15] ALVES J A, SILVA L T, REMOALDO P C. Impacts of low frequency noise exposure onwell-being: A case-study from portugal[J]. Noise & health, 2018, 20(95): 131.
[16] TETI L, DE LEÓN G, DEL PIZZO L G, et al. Modelling the acoustic performance of newlylaid low-noise pavements[J]. Construction and Building Materials, 2020, 247: 118509.
[17] SILVA L T, MAGALHÃES A, SILVA J F, et al. Impacts of low-frequency noise from industrial sources in residential areas[J]. Applied Acoustics, 2021, 182: 108203.
[18] HU H, WANG M, FU M, et al. Sound source localization sensor of robot for tdoa method[C]//2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics:Vol. 2. IEEE, 2011: 19-22.
[19] ROY R, PAULRAJ A, KAILATH T. Estimation of signal parameters via rotational invariance techniques-ESPRIT[C]//MILCOM 1986-IEEE Military Communications Conference:Communications-Computers: Teamed for the 90’s: Vol. 3. IEEE, 1986: 41-6.
[20] HAHN W, TRETTER S. Optimum processing for delay-vector estimation in passive signalarrays[J]. IEEE Transactions on Information Theory, 1973, 19(5): 608-614.
[21] BECHLER D, KROSCHEL K. Reliability criteria evaluation for TDOA estimates in a variety ofreal environments[C]//Proceedings.(ICASSP’05). IEEE International Conference on Acoustics,Speech, and Signal Processing, 2005.: Vol. 4. IEEE, 2005: iv-985.
[22] KNAPP C, CARTER G. The generalized correlation method for estimation of time delay[J].IEEE transactions on acoustics, speech, and signal processing, 1976, 24(4): 320-327.
[23] STOICA P, NEHORAI A. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. IEEETransactions on Acoustics, speech, and signal processing, 1989, 37(5): 720-741.
[24] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE transactionson antennas and propagation, 1986, 34(3): 276-280.
[25] ROY R, KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on acoustics, speech, and signal processing, 1989, 37(7): 984-995.
[26] 白宗龙. 基于稀疏贝叶斯学习的声源方位角估计算法研究[D]. 哈尔滨工业大学, 2021.
[27] CADZOW J A. A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988,36(7): 965-979.
[28] OTTERSTEN B, VIBERG M, STOICA P, et al. Exact and large sample maximum likelihood techniques for parameter estimation and detection in array processing[M]//Radar array processing. Springer, 1993: 99-151.
[29] CARTER G C. Variance bounds for passively locating an acoustic source with a symmetric linearray[J]. The Journal of the Acoustical Society of America, 1977, 62(4): 922-926.
[30] VAN VEEN B D, BUCKLEY K M. Beamforming: A versatile approach to spatial filtering[J].IEEE assp magazine, 1988, 5(2): 4-24.
[31] 许丹. 基于传声器阵列的旋转声源识别方法研究[D]. 合肥工业大学, 2017.
[32] 陈才慧. 基于傅里叶变换的快速迭代收缩阈值反卷积声源识别算法研究[D]. 重庆大学,2018.
[33] DIBIASE J H, SILVERMAN H F, BRANDSTEIN M S. Robust localization in reverberantrooms[M]//Microphone arrays: signal processing techniques and applications. Springer, 2001:157-180.
[34] 王永良. 空间谱估计理论与算法[M]. 清华大学出版社有限公司, 2004.
[35] CHEN X, WANG D, YIN J, et al. A direct position-determination approach for multiple sourcesbased on neural network computation[J]. Sensors, 2018, 18(6): 1925.
[36] VERA-DIAZ J M, PIZARRO D, MACIAS-GUARASA J. Towards end-to-end acoustic localization using deep learning: From audio signals to source position coordinates[J]. Sensors,2018, 18(10): 3418.
[37] KUJAWSKI A, HEROLD G, SARRADJ E. A deep learning method for grid-free localizationand quantification of sound sources[J]. The Journal of the Acoustical Society of America, 2019,146(3): EL225-EL231.
[38] MA W, LIU X. Phased microphone array for sound source localization with deep learning[J].Aerospace Systems, 2019, 2(2): 71-81.
[39] SIJTSMA P. CLEAN based on spatial source coherence[J]. International journal of aeroacoustics, 2007, 6(4): 357-374.
[40] BROOKS T F, HUMPHREYS W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays[J]. Journal of sound andvibration, 2006, 294(4-5): 856-879.
[41] CASTELLINI P, GIULIETTI N, FALCIONELLI N, et al. A neural network based microphonearray approach to grid-less noise source localization[J]. Applied Acoustics, 2021, 177: 107947.
[42] PUJOL H, BAVU E, GARCIA A. BeamLearning: An end-to-end deep learning approach forthe angular localization of sound sources using raw multichannel acoustic pressure data[J]. TheJournal of the Acoustical Society of America, 2021, 149(6): 4248-4263.
[43] LEE S Y, CHANG J, LEE S. Deep learning-based method for multiple sound source localizationwith high resolution and accuracy[J]. Mechanical Systems and Signal Processing, 2021, 161:107959.
[44] 赵书艺. 球面阵波束形成的 CLEAN-SC 反卷积及其高分辨率声源识别算法研究[D]. 重庆大学, 2019.
[45] 马国昊. 基于神经网络的声源定位算法研究[D]. 北方工业大学, 2022.
[46] CHAKRABARTY S, HABETS E A. Multi-speaker DOA estimation using deep convolutionalnetworks trained with noise signals[J]. IEEE Journal of Selected Topics in Signal Processing,2019, 13(1): 8-21.
[47] GRUMIAUX P A, KITIĆ S, SRIVASTAVA P, et al. SALADnet: Self-attentive multisourcelocalization in the Ambisonics domain[C]//2021 IEEE Workshop on Applications of SignalProcessing to Audio and Acoustics (WASPAA). IEEE, 2021: 336-340.
[48] HAO Y, KÜÇÜK A, GANGULY A, et al. Spectral flux-based convolutional neural networkarchitecture for speech source localization and its real-time implementation[J]. IEEE Access,2020, 8: 197047-197058.61
[49] HE W, MOTLICEK P, ODOBEZ J M. Neural network adaptation and data augmentation formulti-speaker direction-of-arrival estimation[J]. IEEE/ACM Transactions on Audio, Speech,and Language Processing, 2021, 29: 1303-1317.
[50] XU P, ARCONDOULIS E J, LIU Y. Acoustic source imaging using densely connected convolutional networks[J/OL]. Mechanical Systems and Signal Processing, 2021, 151: 107370.https://www.sciencedirect.com/science/article/pii/S0888327020307561. DOI: https://doi.org/10.1016/j.ymssp.2020.107370.
[51] ARBERET S, GRIBONVAL R, BIMBOT F. A robust method to count and locate audio sourcesin a multichannel underdetermined mixture[J]. IEEE Transactions on Signal Processing, 2009,58(1): 121-133.
[52] LANDSCHOOT C R, XIANG N. Model-based Bayesian direction of arrival analysis for soundsources using a spherical microphone array[J]. The Journal of the Acoustical Society of America, 2019, 146(6): 4936-4946.
[53] BOLOGNI G, HEUSDENS R, MARTINEZ J. Acoustic reflectors localization from stereorecordings using neural networks[C]//ICASSP 2021-2021 IEEE International Conference onAcoustics, Speech and Signal Processing (ICASSP). IEEE, 2021: 1-5.
[54] LIU N, CHEN H, SONGGONG K, et al. Deep learning assisted sound source localization usingtwo orthogonal first-order differential microphone arrays[J]. The Journal of the AcousticalSociety of America, 2021, 149(2): 1069-1084.
[55] PEROTIN L, SERIZEL R, VINCENT E, et al. CRNN-based joint azimuth and elevation localization with the Ambisonics intensity vector[C]//2018 16th International Workshop on AcousticSignal Enhancement (IWAENC). IEEE, 2018: 241-245.
[56] ANGUERA X, BOZONNET S, EVANS N, et al. Speaker diarization: A review of recentresearch[J]. IEEE Transactions on audio, speech, and language processing, 2012, 20(2): 356-370.
[57] PARK T J, KANDA N, DIMITRIADIS D, et al. A review of speaker diarization: Recentadvances with deep learning[J]. Computer Speech & Language, 2022, 72: 101317.
[58] TRANTER S E, REYNOLDS D A. An overview of automatic speaker diarization systems[J].IEEE Transactions on audio, speech, and language processing, 2006, 14(5): 1557-1565.
[59] BOHLENDER A, SPRIET A, TIRRY W, et al. Exploiting temporal context in CNN basedmultisource DOA estimation[J]. IEEE/ACM Transactions on Audio, Speech, and LanguageProcessing, 2021, 29: 1594-1608.
[60] FAHIM A, SAMARASINGHE P N, ABHAYAPALA T D. Multi-source DOA estimationthrough pattern recognition of the modal coherence of a reverberant soundfield[J]. IEEE/ACMTransactions on Audio, Speech, and Language Processing, 2019, 28: 605-618.
[61] GRUMIAUX P A, KITIĆ S, GIRIN L, et al. High-resolution speaker counting in reverberant rooms using CRNN with ambisonics features[C]//2020 28th European Signal ProcessingConference (EUSIPCO). IEEE, 2021: 71-75.
[62] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[63] 周倩. 基于卷积神经网络的参数选择及可视化研究[D]. 哈尔滨工业大学, 2019.
修改评论