中文版 | English
题名

集成式压电传感单元作用机理及其在混凝 土全寿命健康监测的应用研究

其他题名
FUNCTIONAL MECHANISM OF INTEGRATED PIEZOELECTRIC SENSING ELEMENTS AND APPLICATIONS IN LIFE CYCLE HEALTH MONITORING OF CONCRETE
姓名
姓名拼音
DING Weijian
学号
11930711
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
王泉
导师单位
力学与航空航天工程系
外机构导师
Tomoki Shiotani (CSC公派联合培养导师)
外机构导师单位
Department of Civil and Earth Resources Engineering, Graduate School of Engineering, Kyoto University
论文答辩日期
2024-04-09
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

混凝土在荷载和恶劣环境的共同作用下,其薄弱区域不可避免地会产生局部变形、剥落,甚至导致整体结构倒塌。由于混凝土基础设施的重要性,预防和减少其因质量问题造成的重大灾害成为有待解决的难点。开发新型传感体系和监测模式,以获取稳定可靠的工程结构原位质量演变信息是从根本上实现混凝土质量控制的重要方向之一,也是结构健康监测的迫切需求,从而进一步推动混凝土全寿命健康监测系统的发展。本研究基于全寿命监测的理念设计了一种集成式结构的压电传感单元,并基于该传感单元开展了混凝土全寿命周期不同阶段的原位监测研究,实现了相应监测参数量化同时建立了局部材料结构性能演变追踪以及对比的方法;此外,该传感单元的自评价功能也在本研究中被提出并用于传感单元的长期稳定性自评价研究。本研究的创新性工作具体如下:

  1. 本研究基于提出的集成式传感单元,实现了嵌入式传感器自我评价以及基于尾波的混凝土全寿命监测功能。在本研究中,集成式传感单元的特点在于激励器与接收器封装在同一结构中,使得单个传感器能够同时实现信号激发与接收的功能。通过提出的传感单元,内部的接收器在主动超声监测过程所获得首波可不受监测目标的干扰而响应传感单元自身的性能状态实现自我评价;此外,基于该传感单元的提出,基于尾波的分析方法被引入混凝土早龄期阶段质量监测过程的研究,将传感器获得的时域信号尾部波形演变与混凝土的水化过程以及强度增长建立关联,丰富了尾波干涉技术在混凝土全寿命周期的监测内容。
  2. 基于有限元模型解析集成式传感单元作用机理。通过实验获取材料基础参数,包括密度以及声速,用于有限元模型进行数值模拟研究;通过位移场云图结果分析波场特征,解析激励器作用机制以及信号信息来源。基于介质密度与波速差异对不同水灰比水泥基介质执行监测模拟,证明介质对信号尾部波形的影响,为后续信号演化与解析提供方向。基于随机骨料模型,建立混凝土内嵌入集成传感单元的有限元模型,并解析骨料、水灰比、水泥龄期以及局部损伤对时域信号的影响,论证传感单元能够在混凝土中得到统一稳定的首波以及对介质变化敏感的尾部波形。基于二维模型模拟所得时域信号对比实际传感器所获得信号,论证数值模拟的对实际信号的可解析性。
  3. 建立集成式传感单元长期运行稳定性的自评价方法。基于集成式传感单元自我评价功能,对不同介质(空气、模拟侵蚀性溶液、水泥)中获得的信号进行280天的长期跟踪,根据时域信号首部波形的一致性以及能量分析传感器获取的信号长期稳定性。为了探究传感单元在建造过程中获得的超声信号可靠性,对比传感器混凝土浆体在震动过程中捕获的信号波形用于说明信号在建造过程中抗干扰能力。为探究传感单元在混凝土加载损坏后的工作性能,在混凝土试样执行单轴抗压前后初步分析传感器的监测功能,论证传感器后续服役阶段以及损伤阶段实现稳定监测功能的可行性。
  4. 建立基于集成式传感单元信号的水泥基材料水化阶段以及强度增长阶段的量化评估方法。在施工期间,水化延迟和强度增长不达标会严重影响施工进度甚至导致后期结构倒塌。基于信号的能量参数,实现了对水化进程与强度演变的量化与对比。基于小波变换结果实现对水化阶段性区分以及强度增长演变的定性追踪。此外,本研究将早龄期进程监测转变为传感器的封装层与混凝土材料界面的透射和反射行为解析,并引入尾波干涉技术执行水泥材料水化过程的追踪以及强度增长阶段的量化监测。结果表明,相对波速变化与强度随时间的变化具有高度相似的趋势,且两者能够建立线性量化模型;而不同时间信号波形的相关系数被作为分析参数追踪水化进程,使得尾波干涉技术可应用于混凝土结构早龄期质量监控与量化。
  5. 基于集成式传感单元执行应力监测和结构损伤监测的可行性研究,实现集成式传感单元进行全寿命不同阶段监测方法的建立。集成式传感单元可以被视为激励器和接收器,同步地与其他传感器配合。集成式传感单元与传统外贴式传感器基于整体信号分析获得的相对速度变化(Δv/v)几乎相同,并且集成式传感单元获得信号去相关系数增幅极低,揭示了粘接界面对信号存在影响,说明嵌入式集成传感单元能够减少外界扰动,实现稳定的应力监测。此外,传感器在混凝土开裂前后得到的信号也展示了稳定的首波以及差异巨大的尾波,说明传感器在损伤阶段也能完成监测功能并保持完整的内部结构。基于该研究,本文实现了嵌入式集成传感单元混凝土在建造、服役与损伤阶段的监测研究,为混凝土基础设施原位长期监测提供新方案。

 

 

关键词
语种
中文
培养类别
独立培养
入学年份
2019-09
学位授予年份
2024-06
参考文献列表

[1] Chen S, Lu L, Xiang Y, et al. A data heterogeneity modeling and quantification approach for field pre-assessment of chloride-induced corrosion in aging infrastructures[J]. Reliability Engineering & System Safety, 2018, 171: 123-135.
[2] 冯乃谦, 邢锋. 混凝土与混凝土结构的耐久性[J]. 混凝土与水泥制品, 2009 (2): 4-4.
[3] Smith S H, Qiao C, Suraneni P, et al. Service-life of concrete in freeze-thaw environments: Critical degree of saturation and calcium oxychloride formation[J]. Cement and Concrete Research, 2019, 122: 93-106.
[4] Teng F, Qiu W L, Pan S S, et al. Experimental study on seismic performance of precast segmental concrete columns after seawater freeze-thaw cycles[J]. Construction and Building Materials, 2020, 260: 120482.
[5] Qu F, Li W, Dong W, et al. Durability deterioration of concrete under marine environment from material to structure: A critical review[J]. Journal of Building Engineering, 2021, 35: 102074.
[6] Zeiml M, Lackner R, Leithner D, et al. Identification of residual gas-transport properties of concrete subjected to high temperatures[J]. Cement and concrete research, 2008, 38(5): 699-716.
[7] Mehta P K, Monteiro P J M. Concrete: microstructure, properties, and materials[M]. McGraw-Hill Education, 2014.
[8] Lin F, Li Y, Gu X, et al. Prediction of ground vibration due to the collapse of a 235 m high cooling tower under accidental loads[J]. Nuclear Engineering and Design, 2013, 258: 89-101.
[9] Fang G, Liu Y, Qin S, et al. Visualized tracing of crack self-healing features in cement/microcapsule system with X-ray microcomputed tomography[J]. Construction and building Materials, 2018, 179: 336-347.
[10] Dong B, Ding W, Qin S, et al. Chemical self-healing system with novel microcapsules for corrosion inhibition of rebar in concrete[J]. Cement and Concrete Composites, 2018, 85: 83-91.
[11] Dong B, Ding W, Qin S, et al. 3D visualized tracing of rebar corrosion-inhibiting features in concrete with a novel chemical self-healing system[J]. Construction and Building Materials, 2018, 168: 11-20.
[12] Broomfield J P. Corrosion of steel in concrete: understanding, investigation and repair[M]. Crc Press, 2023.
[13] Zhou Y, Hu X, Pei Y, et al. Dynamic load test on progressive collapse resistance of fully assembled precast concrete frame structures[J]. Engineering Structures, 2020, 214: 110675.
[14] Hussain S, Bhunia D, Singh S B. Comparative study of accelerated carbonation of plain cement and fly-ash concrete[J]. Journal of Building Engineering, 2017, 10: 26-31.
[15] Tang S W, Yao Y, Andrade C, et al. Recent durability studies on concrete structure[J]. Cement and Concrete Research, 2015, 78: 143-154.
[16] Homaei F, Yazdani M. The probabilistic seismic assessment of aged concrete arch bridges: The role of soil-structure interaction[C]//Structures. Elsevier, 2020, 28: 894-904.
[17] Xin J, Zhang G, Liu Y, et al. Evaluation of behavior and cracking potential of early-age cementitious systems using uniaxial restraint tests: A review[J]. Construction and Building Materials, 2020, 231: 117146.
[18] Han Y, Yang Z, Ding T, et al. Environmental and economic assessment on 3D printed buildings with recycled concrete[J]. Journal of Cleaner Production, 2021, 278: 123884.
[19] Surya M, Vvl K R, Lakshmy P. Recycled aggregate concrete for transportation infrastructure[J]. Procedia-Social and Behavioral Sciences, 2013, 104: 1158-1167.
[20] Li P, Li W, Yu T, et al. Investigation on early-age hydration, mechanical properties and microstructure of seawater sea sand cement mortar[J]. Construction and Building Materials, 2020, 249: 118776.
[21] Guo M, Hu B, Xing F, et al. Characterization of the mechanical properties of eco-friendly concrete made with untreated sea sand and seawater based on statistical analysis[J]. Construction and Building Materials, 2020, 234: 117339.
[22] Wang Y S, Alrefaei Y, Dai J G. Influence of coal fly ash on the early performance enhancement and formation mechanisms of silico-aluminophosphate geopolymer[J]. Cement and Concrete Research, 2020, 127: 105932.
[23] Panda B, Unluer C, Tan M J. Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing[J]. Cement and Concrete Composites, 2018, 94: 307-314.
[24] Dong P, Ding W, Yuan H, et al. 3D-printed polymeric lattice-enhanced sustainable municipal solid waste incineration fly ash alkali-activated cementitious composites[J]. Developments in the Built Environment, 2022, 12: 100101.
[25] Duan Z H, Kou S C, Poon C S. Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete[J]. Construction and Building Materials, 2013, 44: 524-532.
[26] Yim H J, Bae Y H, Jun Y. Hydration and microstructural characterization of early-age cement paste with ultrasonic wave velocity and electrical resistivity measurements[J]. Construction and Building Materials, 2021, 303: 124508.
[27] Hong J, Kim R, Lee C H, et al. Evaluation of stiffening behavior of concrete based on contactless ultrasonic system and maturity method[J]. Construction and Building Materials, 2020, 262: 120717.
[28] Liu J, Yu C, Shu X, et al. Recent advance of chemical admixtures in concrete[J]. Cement and Concrete Research, 2019, 124: 105834.
[29] Chidiac S E, Mahmoodzadeh F. Plastic viscosity of fresh concrete–A critical review of predictions methods[J]. Cement and Concrete Composites, 2009, 31(8): 535-544.
[30] De Silva V R S, Ranjith P G, Perera M S A, et al. Investigation of the mechanical, microstructural and mineralogical morphology of soundless cracking demolition agents during the hydration process[J]. Materials Characterization, 2017, 130: 9-24.
[31] Shiotani T, Ohtsu H, Momoki S, et al. Damage evaluation for concrete bridge deck by means of stress wave techniques[J]. Journal of Bridge Engineering, 2012, 17(6): 847-856.
[32] Khoury S, Aliabdo A A H, Ghazy A. Reliability of core test–Critical assessment and proposed new approach[J]. Alexandria Engineering Journal, 2014, 53(1): 169-184.
[33] 林维正, 秦效启, 陈之毅, 等. 方形钢管混凝土超声波检测技术[J]. 建筑材料学报, 2003, 6(2): 190-194.
[34] 陈伟, 李远, 水中和. 基于超声波速与介电性能的硅酸盐水泥早期水化过程连续监测技术[J]. 硅酸盐通报, 2010 (5): 1190-1196.
[35] Taheri S. A review on five key sensors for monitoring of concrete structures[J]. Construction and Building Materials, 2019, 204: 492-509.
[36] Liu S, Bundur Z B, Zhu J, et al. Evaluation of self-healing of internal cracks in biomimetic mortar using coda wave interferometry[J]. Cement and Concrete Research, 2016, 83: 70-78.
[37] 孙明清, 李卓球, 候作富. 压电材料在土木工程结构健康检测中的应用[J]. 混凝土, 2003 (3): 22-24.
[38] Ospitia N, Jaramani R, Remy O, et al. Determination of Concrete Formwork Removal Time Based on Ultrasound Reflection[J]. Applied Sciences, 2022, 12(3): 1221.
[39] Taha H M, Ball R J, Heath A, et al. Crack growth and closure in cementitious composites: Monitoring using piezoceramic sensors[J]. Sensors and Actuators A: Physical, 2022, 333: 113221.
[40] Hu H, Li D, Wang L, et al. An improved ultrasonic coda wave method for concrete behavior monitoring under various loading conditions[J]. Ultrasonics, 2021, 116: 106498.
[41] Zima B, Woloszyk K, Garbatov Y. Experimental and numerical identification of corrosion degradation of ageing structural components[J]. Ocean Engineering, 2022, 258: 111739.
[42] Chimenti D E. Review of air-coupled ultrasonic materials characterization[J]. Ultrasonics, 2014, 54(7): 1804-1816.
[43] Abraham O, Piwakowski B, Villain G, et al. Non-contact, automated surface wave measurements for the mechanical characterisation of concrete[J]. Construction and Building Materials, 2012, 37: 904-915.
[44] Zhu J, Popovics J S. Imaging concrete structures using air-coupled impact-echo[J]. Journal of engineering mechanics, 2007, 133(6): 628-640.
[45] Choi H, Ham Y, Popovics J S. Integrated visualization for reinforced concrete using ultrasonic tomography and image-based 3-D reconstruction[J]. Construction and building materials, 2016, 123: 384-393.
[46] Ahn E, Kim H, Gwon S, et al. Monitoring of self-healing in concrete with micro-capsules using a combination of air-coupled surface wave and computer-vision techniques[J]. Structural Health Monitoring, 2022, 21(4): 1661-1677.
[47] Kim G, Loreto G, Kim J Y, et al. In situ nonlinear ultrasonic technique for monitoring microcracking in concrete subjected to creep and cyclic loading[J]. Ultrasonics, 2018, 88: 64-71.
[48] Ham S, Song H, Oelze M L, et al. A contactless ultrasonic surface wave approach to characterize distributed cracking damage in concrete[J]. Ultrasonics, 2017, 75: 46-57.
[49] Ahn, Eunjong, et al. Long-term autogenous healing and re-healing performance in concrete: Evaluation using air-coupled surface-wave method[J]. Construction and Building Materials 307 (2021): 124939.
[50] Sun H, Zhu J, Ham S. Automated acoustic scanning system for delamination detection in concrete bridge decks[J]. Journal of Bridge Engineering, 2018, 23(6): 04018027.
[51] Deraemaeker A, Dumoulin C. Embedding ultrasonic transducers in concrete: A lifelong monitoring technology[J]. Construction and building materials, 2019, 194: 42-50.
[52] Ohtsu M, Enoki M, Mizutani Y, et al. Principles of the acoustic emission (AE) method and signal processing[M]//Practical acoustic emission Testing. Tokyo: Springer Japan, 2016: 5-34.
[53] Rathod V T. A review of acoustic impedance matching techniques for piezoelectric sensors and transducers[J]. Sensors, 2020, 20(14): 4051.
[54] Ai D, Lin C, Zhu H. Embedded piezoelectric transducers based early-age hydration monitoring of cement concrete added with accelerator/retarder admixtures[J]. Journal of Intelligent Material Systems and Structures, 2021, 32(8): 847-866.
[55] Dumoulin C, Deraemaeker A. Real-time fast ultrasonic monitoring of concrete cracking using embedded piezoelectric transducers[J]. Smart Materials and Structures, 2017, 26(10): 104006.
[56] Fan S, Zhao S, Kong Q, et al. An embeddable spherical smart aggregate for monitoring concrete hydration in very early age based on electromechanical impedance method[J]. Journal of Intelligent Material Systems and Structures, 2021, 32(5): 537-548.
[57] Hou S, Kong Z, He J, et al. Geometry-independent attenuation and randomness of ultrasound wave propagation in concrete measured by embedded PZT transducers[J]. Smart Materials and Structures, 2019, 28(7): 075004.
[58] Jiang T, Kong Q, Peng Z, et al. Monitoring of corrosion-induced degradation in prestressed concrete structure using embedded piezoceramic-based transducers[J]. IEEE Sensors Journal, 2017, 17(18): 5823-5830.
[59] Kocherla A, Duddi M, VL S K. Combined global-local monitoring of hydrating concrete using embedded smart PZT sensors[J]. Materials Today: Proceedings, 2020, 28: 388-395.
[60] Narayanan A, Kocherla A, Subramaniam K V L. Embedded PZT sensor for monitoring mechanical impedance of hydrating cementitious materials[J]. Journal of Nondestructive Evaluation, 2017, 36: 1-13.
[61] Lu Y, Zhang J, Li Z, et al. Corrosion monitoring of reinforced concrete beam using embedded cement-based piezoelectric sensor[J]. Magazine of concrete research, 2013, 65(21): 1265-1276.
[62] W. Li, Q. Kong, S.C.M. Ho, Y. Mo, G. Song, Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures, Smart Materials and Structures 25(11) (2016) 115031.
[63] Zou D, Du C, Liu T, et al. Effects of temperature on the performance of the piezoelectric-based smart aggregates active monitoring method for concrete structures[J]. Smart Materials and Structures, 2019, 28(3): 035016.
[64] Liu T, Zou D, Du C, et al. Influence of axial loads on the health monitoring of concrete structures using embedded piezoelectric transducers[J]. Structural Health Monitoring, 2017, 16(2): 202-214.
[65] Yang W, Yang X, Li S. Monitoring of interfacial debonding of concrete filled pultrusion-GFRP tubular column based on piezoelectric smart aggregate and wavelet analysis[J]. Sensors, 2020, 20(7): 2149.
[66] Qin L, Huang S, Cheng X, et al. The application of 1–3 cement-based piezoelectric transducers in active and passive health monitoring for concrete structures[J]. Smart materials and structures, 2009, 18(9): 095018.
[67] Wang F Z, Wang H, Sun H J, et al. Research on a 0–3 cement-based piezoelectric sensor with excellent mechanical–electrical response and good durability[J]. Smart materials and structures, 2014, 23(4): 045032.
[68] Zhang J, Lu Y, Lu Z, et al. A new smart traffic monitoring method using embedded cement-based piezoelectric sensors[J]. Smart Materials and Structures, 2015, 24(2): 025023.
[69] Xu D Y, Huang S F, Qin L, et al. Monitoring of cement hydration reaction process based on ultrasonic technique of piezoelectric composite transducer[J]. Construction and Building Materials, 2012, 35: 220-226.
[70] Zhou H, Liu Y, Lu Y, et al. In-situ crack propagation monitoring in mortar embedded with cement-based piezoelectric ceramic sensors[J]. Construction and Building Materials, 2016, 126: 361-368.
[71] Pan H H, Huang M W. Piezoelectric cement sensor-based electromechanical impedance technique for the strength monitoring of cement mortar[J]. Construction and Building Materials, 2020, 254: 119307.
[72] Ma Y, Cheng X, Jiang Q, et al. A cement-based 1− 3 piezoelectric composite sensor working in d15 mode for the characterization of shear stress in civil engineering structures[J]. Smart Materials and Structures, 2018, 27(11): 115013.
[73] Du P, Xu D, Huang S, et al. Assessment of corrosion of reinforcing steel bars in concrete using embedded piezoelectric transducers based on ultrasonic wave[J]. Construction and Building Materials, 2017, 151: 925-930.
[74] Lu Y, Ma H, Li Z. Ultrasonic monitoring of the early-age hydration of mineral admixtures incorporated concrete using cement-based piezoelectric composite sensors[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(3): 280-291.
[75] Qin L, Li Z. Monitoring of cement hydration using embedded piezoelectric transducers[J]. Smart Materials and Structures, 2008, 17(5): 055005.
[76] Lu Y, Li Z, Liao W I. Damage monitoring of reinforced concrete frames under seismic loading using cement-based piezoelectric sensor[J]. Materials and structures, 2011, 44: 1273-1285.
[77] Ding W, Liu Y, Shiotani T, et al. Cement-based piezoelectric ceramic composites for sensing elements: a comprehensive state-of-the-art review[J]. Sensors, 2021, 21(9): 3230.
[78] Li Z, Zhang D, Wu K. Cement‐based 0‐3 piezoelectric composites[J]. Journal of the American Ceramic Society, 2002, 85(2): 305-313.
[79] Ding W, Xu W, Dong Z, et al. Piezoelectric properties and microstructure of ceramicrete-based piezoelectric composites[J]. Ceramics International, 2021, 47(21): 29681-29687.
[80] Ding W, Xu W, Dong Z, et al. Influence of hydration capacity for cement matrix on the piezoelectric properties and microstructure of cement-based piezoelectric ceramic composites[J]. Materials Characterization, 2021, 179: 111390.
[81] Ding W, Xu W, Dong P, et al. Roles of CSH gel in the microstructure and piezoelectric properties variation of cement-based piezoelectric ceramic composite[J]. Materials Letters, 2022, 306: 130952.
[82] Zhang F, Feng P, Wang T, et al. Mechanical-electric response characteristics of 1-3 cement based piezoelectric composite under impact loading[J]. Construction and Building Materials, 2019, 228: 116781.
[83] Dong B, Li Z. Cement-based piezoelectric ceramic smart composites[J]. Composites Science and Technology, 2005, 65(9): 1363-1371.
[84] Gong H, Li Z, Zhang Y, et al. Piezoelectric and dielectric behavior of 0-3 cement-based composites mixed with carbon black[J]. Journal of the European Ceramic Society, 2009, 29(10): 2013-2019.
[85] Liu Y, Ding W, Dong P, et al. Identification of hydration stages: An innovative study of ultrasonic coda waves using integrated sensing element (ISE)[J]. Construction and Building Materials, 2023, 401: 132764.
[86] Mata-Falcón J, Haefliger S, Lee M, et al. Combined application of distributed fibre optical and digital image correlation measurements to structural concrete experiments[J]. Engineering Structures, 2020, 225: 111309.
[87] Tuloup C, Harizi W, Aboura Z, et al. On the use of in-situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: A literature review[J]. Composite Structures, 2019, 215: 127-149.
[88] Lu Y, Li Z. Cement-based piezoelectric sensor for acoustic emission detection in concrete structures[M]//Earth & Space 2008: Engineering, Science, Construction, and Operations in Challenging Environments. 2008: 1-11.
[89] Dong B, Xing F, Li Z. Electrical response of cement-based piezoelectric ceramic composites under mechanical loadings[J]. Smart Materials Research, 2011, 2011.
[90] Xu D, Banerjee S, Wang Y, et al. Temperature and loading effects of embedded smart piezoelectric sensor for health monitoring of concrete structures[J]. Construction and Building Materials, 2015, 76: 187-193.
[91] Liu Y, Ding W, Zhao P, et al. Research on in-situ corrosion process monitoring and evaluation of reinforced concrete via ultrasonic guided waves[J]. Construction and Building Materials, 2022, 321: 126317.
[92] Liu P, Hu Y, Geng B, et al. Corrosion monitoring of the reinforced concrete by using the embedded annular piezoelectric transducer[J]. Journal of Materials Research and Technology, 2020, 9(3): 3511-3519.
[93] Padilla-Encinas P, Palomo A, Blanco-Varela M T, et al. Monitoring early hydration of calcium sulfoaluminate clinker[J]. Construction and Building Materials, 2021, 295: 123578.
[94] Ye G, Lura P, Van Breugel K, et al. Study on the development of the microstructure in cement-based materials by means of numerical simulation and ultrasonic pulse velocity measurement[J]. Cement and Concrete Composites, 2004, 26(5): 491-497.
[95] Reinhardt H W, Grosse C U. Continuous monitoring of setting and hardening of mortar and concrete[J]. Construction and building materials, 2004, 18(3): 145-154.
[96] Trtnik G, Valič M I, Turk G. Measurement of setting process of cement pastes using non-destructive ultrasonic shear wave reflection technique[J]. NDT & E International, 2013, 56: 65-75.
[97] Lee H K, Lee K M, Kim Y H, et al. Ultrasonic in-situ monitoring of setting process of high-performance concrete[J]. Cement and Concrete Research, 2004, 34(4): 631-640.
[98] Liu S, Zhu J, Seraj S, et al. Monitoring setting and hardening process of mortar and concrete using ultrasonic shear waves[J]. Construction and Building Materials, 2014, 72: 248-255.
[99] Trtnik G, Gams M. Ultrasonic assessment of initial compressive strength gain of cement based materials[J]. Cement and Concrete Research, 2015, 67: 148-155.
[100] Chotard T, Gimet-Breart N, Smith A, et al. Application of ultrasonic testing to describe the hydration of calcium aluminate cement at the early age[J]. Cement and Concrete Research, 2001, 31(3): 405-412.
[101] 乔军志. 水泥浆凝结硬化时内部结构与超声频谱的变化[J]. 湖南大学学报: 自然科学版, 1999, 26(3): 80-83.
[102] Xu D, Chen H, Hu Y, et al. Ultrasonic monitoring and property prediction of cement hydration with novel omnidirectional piezoelectric ultrasonic transducer[J]. Journal of Building Engineering, 2023, 72: 106612.
[103] von Daake H, Stephan D. Setting of cement with controlled superplasticizer addition monitored by ultrasonic measurements and calorimetry[J]. Cement and Concrete Composites, 2016, 66: 24-37.
[104] Ramírez A, Pauli J, Mota B, et al. C3A passivation with gypsum and hemihydrate monitored by optical spectroscopy[J]. Cement and Concrete Research, 2020, 133: 106082.
[105] Scrivener K L, Juilland P, Monteiro P J M. Advances in understanding hydration of Portland cement[J]. Cement and Concrete Research, 2015, 78: 38-56.
[106] Breysse D. Nondestructive evaluation of concrete strength: An historical review and a new perspective by combining NDT methods[J]. Construction and Building Materials, 2012, 33: 139-163.
[107] Sturrup V R, Vecchio F J, Caratin H. Pulse velocity as a measure of concrete compressive strength[J]. Special Publication, 1984, 82: 201-228.
[108] Samarin A, Meynink P. Use of combined ultrasonic and rebound hammer method for determining strength of concrete structural members[J]. Concrete International, 1981, 3(3): 25-29.
[109] Hamid R, Yusof K M, Zain M F M. A combined ultrasound method applied to high performance concrete with silica fume[J]. Construction and Building Materials, 2010, 24(1): 94-98.
[110] Lencis U, Udris A, Korjakins A. Frost influence on the ultrasonic pulse velocity in concrete at early phases of hydration process[J]. Case Studies in Construction Materials, 2021, 15: e00614.
[111] Masi A, Vona M. La stima della resistenza del calcestruzzo in situ: Impostazione delle indagini ed elaborazione dei risultati[J]. Progettazione sismica, 2009 (1).
[112] Elvery R H, Ibrahim L A M. Ultrasonic assessment of concrete strength at early ages[J]. Magazine of Concrete Research, 1976, 28(97): 181-190.
[113] Demirboğa R, Türkmen İ, Karakoc M B. Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete[J]. Cement and concrete research, 2004, 34(12): 2329-2336.
[114] Chang T P, Lin H C, Chang W T, et al. Engineering properties of lightweight aggregate concrete assessed by stress wave propagation methods[J]. Cement and Concrete Composites, 2006, 28(1): 57-68.
[115] Kheder G F. A two stage procedure for assessment of in situ concrete strength using combined non-destructive testing[J]. Materials and structures, 1999, 32: 410-417.
[116] Thirumalaiselvi A, Sasmal S. Acoustic emission monitoring and classification of signals in cement composites during early-age hydration[J]. Construction and Building Materials, 2019, 196: 411-427.
[117] Stepisnik J, Lukac M, Kocuvan I. Measurement of cement hydration by ultrasonics[J]. 1981.
[118] Voigt T, Malonn T, Shah S P. Green and early age compressive strength of extruded cement mortar monitored with compression tests and ultrasonic techniques[J]. Cement and Concrete Research, 2006, 36(5): 858-867.
[119] Voigt T, Ye G, Sun Z, et al. Early age microstructure of Portland cement mortar investigated by ultrasonic shear waves and numerical simulation[J]. Cement and concrete research, 2005, 35(5): 858-866.
[120] Subramaniam K V, Mohsen J P, Shaw C K, et al. Ultrasonic technique for monitoring concrete strength gain at early age[J]. Materials Journal, 2002, 99(5): 458-462.
[121] Subramaniam K V, Lee J, Christensen B J. Monitoring the setting behavior of cementitious materials using one-sided ultrasonic measurements[J]. Cement and Concrete Research, 2005, 35(5): 850-857.
[122] Voigt T, Sun Z, Shah S P. Comparison of ultrasonic wave reflection method and maturity method in evaluating early-age compressive strength of mortar[J]. Cement and Concrete Composites, 2006, 28(4): 307-316.
[123] Yim H J, Kim J H, Shah S P. Ultrasonic monitoring of the setting of cement-based materials: Frequency dependence[J]. Construction and Building Materials, 2014, 65: 518-525.
[124] Akkaya Y, Voigt T, Subramaniam K V, et al. Nondestructive measurement of concrete strength gain by an ultrasonic wave reflection method[J]. Materials and structures, 2003, 36: 507-514.
[125] 庄晨旭, 张劲泉, 蒋含莞. 混凝土应力检测技术研究综述[J]. 公路交通科技, 2016, 3(3): 43-49.
[126] Murnaghan F D. Finite deformations of an elastic solid[J]. American Journal of Mathematics, 1937, 59(2): 235-260.
[127] Hughes D S, Kelly J L. Second-order elastic deformation of solids[J]. Physical review, 1953, 92(5): 1145.
[128] Lillamand I, Chaix J F, Ploix M A, et al. Acoustoelastic effect in concrete material under uni-axial compressive loading[J]. Ndt & E International, 2010, 43(8): 655-660.
[129] Lundqvist P, Rydén N. Acoustoelastic effects on the resonance frequencies of prestressed concrete beams—Short-term measurements[J]. Ndt & e International, 2012, 50: 36-41.
[130] Bompan K F, Haach V G. Ultrasonic tests in the evaluation of the stress level in concrete prisms based on the acoustoelasticity[J]. Construction and Building Materials, 2018, 162: 740-750.
[131] Zhong B, Zhu J, Morcous G. Measuring acoustoelastic coefficients for stress evaluation in concrete[J]. Construction and Building Materials, 2021, 309: 125127.
[132] Zhang Y, Abraham O, Grondin F, et al. Study of stress-induced velocity variation in concrete under direct tensile force and monitoring of the damage level by using thermally-compensated Coda Wave Interferometry[J]. Ultrasonics, 2012, 52(8): 1038-1045.
[133] Planes T, Larose E. A review of ultrasonic Coda Wave Interferometry in concrete[J]. Cement and Concrete Research, 2013, 53: 248-255.
[134] Snieder R, Grêt A, Douma H, et al. Coda wave interferometry for estimating nonlinear behavior in seismic velocity[J]. Science, 2002, 295(5563): 2253-2255.
[135] Larose E, de Rosny J, Margerin L, et al. Observation of multiple scattering of kHz vibrations in a concrete structure and application to monitoring weak changes[J]. Physical Review E, 2006, 73(1): 016609.
[136] Schurr D P, Kim J Y, Sabra K G, et al. Monitoring damage in concrete using diffuse ultrasonic coda wave interferometry[C]//AIP Conference Proceedings. American Institute of Physics, 2011, 1335(1): 1283-1290.
[137] Larose E, Hall S. Monitoring stress related velocity variation in concrete with a 2× 10− 5 relative resolution using diffuse ultrasound[J]. The Journal of the Acoustical Society of America, 2009, 125(4): 1853-1856.
[138] Stähler S C, Sens-Schönfelder C, Niederleithinger E. Monitoring stress changes in a concrete bridge with coda wave interferometry[J]. The Journal of the Acoustical Society of America, 2011, 129(4): 1945-1952.
[139] Zhang Y, Abraham O, Larose E, et al. Following stress level modification of real size concrete structures with coda wave interferometry (CWI)[C]//AIP Conference Proceedings. American Institute of Physics, 2011, 1335(1): 1291-1298.
[140] Wojtczak E, Rucka M, Skarżyński Ł. Monitoring the fracture process of concrete during splitting using integrated ultrasonic coda wave interferometry, digital image correlation and X-ray micro-computed tomography[J]. NDT & E International, 2022, 126: 102591.
[141] Qu S, Hilloulin B, Saliba J, et al. Imaging concrete cracks using Nonlinear Coda Wave Interferometry (INCWI)[J]. Construction and Building Materials, 2023, 391: 131772.
[142] Grabke S, Bletzinger K U, Wüchner R. Development of a finite element-based damage localization technique for concrete by applying coda wave interferometry[J]. Engineering Structures, 2022, 269: 114585.
[143] Cheng W, Fan Z, Tan K H. Characterisation of corrosion-induced crack in concrete using ultrasonic diffuse coda wave[J]. Ultrasonics, 2023, 128: 106883.
[144] Schmerr L W. Fundamentals of ultrasonic nondestructive evaluation[M]. New York: Springer, 2016.
[145] 肖卓, 高原. 尾波干涉原理及其应用研究进展综述[J]. 地震学报, 2015, 37(3): 516-526.
[146] 刘书奎. 基于主动超声的混凝土全寿命参数识别与损伤检测[D]. 西安: 西北工业大学, 2015.
[147] Zhang M, Xu R, Liu K, et al. Research progress on durability of marine concrete under the combined action of Cl− erosion, carbonation, and dry–wet cycles[J]. Reviews on Advanced Materials Science, 2022, 61(1): 622-637.
[148] Zhu J, Kee S H, Han D, et al. Effects of air voids on ultrasonic wave propagation in early age cement pastes[J]. Cement and Concrete Research, 2011, 41(8): 872-881.
[149] Park J Y, Yoon Y G, Oh T K. Prediction of concrete strength with P-, S-, R-wave velocities by support vector machine (SVM) and artificial neural network (ANN)[J]. Applied Sciences, 2019, 9(19): 4053.
[150] Lais H, Lowe P S, Gan T H, et al. Numerical modelling of acoustic pressure fields to optimize the ultrasonic cleaning technique for cylinders[J]. Ultrasonics sonochemistry, 2018, 45: 7-16.
[151] Su X, Lu Z, Norris A N. Elastic metasurfaces for splitting SV-and P-waves in elastic solids[J]. Journal of Applied Physics, 2018, 123(9).
[152] Fan Z, Jiang W, Cai M, et al. The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates[J]. Ultrasonics, 2016, 65: 282-295.
[153] Fan Z, Jiang W, Wright W M D. Non-contact ultrasonic gas flow metering using air-coupled leaky Lamb waves[J]. Ultrasonics, 2018, 89: 74-83.
[154] Russo N, Lollini F. Effect of carbonated recycled coarse aggregates on the mechanical and durability properties of concrete[J]. Journal of Building Engineering, 2022, 51: 104290.
[155] Blackshire J L, Giurgiutiu V, Cooney A, et al. Characterization of sensor performance and durability for structural health monitoring systems[C]//Advanced Sensor Technologies for Nondestructive Evaluation and Structural Health Monitoring. SPIE, 2005, 5770: 66-75.
[156] Ye G, Van Breugel K, Fraaij A L A. Experimental study and numerical simulation on the formation of microstructure in cementitious materials at early age[J]. Cement and Concrete Research, 2003, 33(2): 233-239.
[157] Behnood A, Van Tittelboom K, De Belie N. Methods for measuring pH in concrete: A review[J]. Construction and Building Materials, 2016, 105: 176-188.
[158] Sabir B B, Wild S, Bai J. Metakaolin and calcined clays as pozzolans for concrete: a review[J]. Cement and concrete composites, 2001, 23(6): 441-454.
[159] Rodrigues A, Duchesne J, Fournier B, et al. Mineralogical and chemical assessment of concrete damaged by the oxidation of sulfide-bearing aggregates: Importance of thaumasite formation on reaction mechanisms[J]. Cement and Concrete Research, 2012, 42(10): 1336-1347.
[160] Brunner A J. Structural health and condition monitoring with acoustic emission and guided ultrasonic waves: what about long-term durability of sensors, sensor coupling and measurement chain?[J]. Applied Sciences, 2021, 11(24): 11648.
[161] Bao J, Wang Y, Zhang H, et al. Effect of loading-induced damage on chloride ingress behavior of recycled aggregate concrete: A comprehensive review[J]. Cement and Concrete Composites, 2023: 105123.
[162] Lanzara G, Yoon Y, Kim Y, et al. Influence of interface degradation on the performance of piezoelectric actuators[J]. Journal of Intelligent Material Systems and Structures, 2009, 20(14): 1699-1710.
[163] De Sutter S, Verbruggen S, Tysmans T, et al. Fracture monitoring of lightweight composite-concrete beams[J]. Composite Structures, 2017, 167: 11-19.
[164] Sagar R V. An experimental study on acoustic emission energy and fracture energy of concrete[C]//National Seminar & Exhibition on Non-Destructive Evaluation. 2009: 225-228.
[165] Li Y, Lu R, Zhang H, et al. Improvement of intake structures in a two-way pumping station with experimental analysis[J]. Applied Sciences, 2020, 10(19): 6842.
[166] Liao X, Yan Q, Zhong H, et al. Integrating PZT-enabled active sensing with deep learning techniques for automatic monitoring and assessment of early-age concrete strength[J]. Measurement, 2023, 211: 112657.
[167] Gagg C R. Cement and concrete as an engineering material: An historic appraisal and case study analysis[J]. Engineering Failure Analysis, 2014, 40: 114-140.
[168] Tang Z S, Lim Y Y, Smith S T, et al. Monitoring the curing process of in-situ concrete with piezoelectric-based techniques–A practical application[J]. Structural Health Monitoring, 2023, 22(1): 518-539.
[169] Negi P, Chakraborty T, Kaur N, et al. Investigations on effectiveness of embedded PZT patches at varying orientations for monitoring concrete hydration using EMI technique[J]. Construction and Building Materials, 2018, 169: 489-498.
[170] Han S, Zhong J, Ding W, et al. Strength, hydration, and microstructure of seawater sea-sand concrete using high-ferrite Portland cement[J]. Construction and Building Materials, 2021, 295: 123703.
[171] 阮静, 叶见曙, 谢发祥, 等. 高强度混凝土水化热的研究[J]. 东南大学学报: 自然科学版, 2001, 31(3): 53-56.
[172] Zhai M, Zhao J, Wang D, et al. Hydration properties and kinetic characteristics of blended cement containing lithium slag powder[J]. Journal of Building Engineering, 2021, 39: 102287.
[173] Liu Y, Chen S J, Sagoe-Crentsil K, et al. Evolution of tricalcium silicate (C3S) hydration based on image analysis of microstructural observations obtained via Field's metal intrusion[J]. Materials Characterization, 2021, 181: 111457.
[174] Dong B, Zhang J, Wang Y, et al. Evolutionary trace for early hydration of cement paste using electrical resistivity method[J]. Construction and Building Materials, 2016, 119: 16-20.
[175] Tawie R, Lee H K. Monitoring the strength development in concrete by EMI sensing technique[J]. Construction and Building Materials, 2010, 24(9): 1746-1753.
[176] Nehdi M, Soliman A M. Early-age properties of concrete: overview of fundamental concepts and state-of-the-art research[J]. Proceedings of the Institution of Civil Engineers-Construction Materials, 2011, 164(2): 57-77.
[177] Liu X, Qian X, Pu S, et al. Methods for testing the quality of lightweight cellular concrete during pouring[J]. Construction and Building Materials, 2022, 315: 125755.
[178] Liu X, Ni C, Ji H, et al. Construction techniques and quality test and evaluation of lightweight cellular concrete mixed with fly ash as subgrade material[J]. Advances in Materials Science and Engineering, 2019, 2019: 1-12.
[179] Bullard J W, Jennings H M, Livingston R A, et al. Mechanisms of cement hydration[J]. Cement and concrete research, 2011, 41(12): 1208-1223.
[180] Bhalla N, Sharma S, Sharma S, et al. Monitoring early-age setting of silica fume concrete using wave propagation techniques[J]. Construction and Building Materials, 2018, 162: 802-815.
[181] Ghosh R, Sagar S P, Kumar A, et al. Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser[J]. Journal of building engineering, 2018, 16: 39-44.
[182] Ye G, Van Breugel K, Fraaij A L A. Experimental study on ultrasonic pulse velocity evaluation of the microstructure of cementitious material at early age[J]. Heron, 2001, 46(3): 161-167.
[183] Mohammed T U, Rahman M N. Effect of types of aggregate and sand-to-aggregate volume ratio on UPV in concrete[J]. Construction and Building Materials, 2016, 125: 832-841.
[184] Trincal V, Benavent V, Lahalle H, et al. Effect of drying temperature on the properties of alkali-activated binders-recommendations for sample preconditioning[J]. Cement and Concrete Research, 2022, 151: 106617.
[185] Michałek J. Variation in compressive strength of concrete aross thickness of placed layer[J]. Materials, 2019, 12(13): 2162.
[186] Xie F, Li W, Zhang Y. Monitoring of environmental loading effect on the steel with different plastic deformation by diffuse ultrasound[J]. Structural Health Monitoring, 2019, 18(2): 602-609.
[187] Thery R, Guillemot A, Abraham O, et al. Tracking fluids in multiple scattering and highly porous materials: toward applications in non-destructive testing and seismic monitoring[J]. Ultrasonics, 2020, 102: 106019.
[188] Chen B, Callens D, Campistron P, et al. Monitoring cleaning cycles of fouled ducts using ultrasonic coda wave interferometry (CWI)[J]. Ultrasonics, 2019, 96: 253-260.
[189] Alaoui H H, Rodriguez S, Deschamps M. Detection of defects in a 2D fluid-solid periodic cluster[J]. Ultrasonics, 2021, 112: 106307.
[190] Hill R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society. Section A, 1952, 65(5): 349.
[191] 孙伟. 荷载与环境因素耦合作用下结构混凝土的耐久性与服役寿命[J]. 东南大学学报: 自然科学版, 2006 (S2): 7-14.
[192] He Z, Li W, Salehi H, et al. Integrated structural health monitoring in bridge engineering[J]. Automation in Construction, 2022, 136: 104168.
[193] Kurz J H, Finck F, Grosse C U, et al. Stress drop and stress redistribution in concrete quantified over time by the b-value analysis[J]. Structural health monitoring, 2006, 5(1): 69-81.
[194] Snieder R. The theory of coda wave interferometry[J]. Pure and Applied geophysics, 2006, 163: 455-473.
[195] Zhang Y, Abraham O, Tournat V, et al. Validation of a thermal bias control technique for Coda Wave Interferometry (CWI)[J]. Ultrasonics, 2013, 53(3): 658-664.
[196] Liu Q, Chai Y, Wang Y, et al. Adhesively bonding a reusable PZT transducer for structural health monitoring (SHM) with an ethylene-acrylic acid copolymer adhesive[J]. International Journal of Adhesion and Adhesives, 2022, 119: 103256.
[197] Gorgin R, Luo Y, Wu Z. Environmental and operational conditions effects on Lamb wave based structural health monitoring systems: A review[J]. Ultrasonics, 2020, 105: 106114.
[198] Zhang J, Han B, Xie H B, et al. Correlation between coda wave and stresses in uni-axial compression concrete[J]. Applied Sciences, 2018, 8(9): 1609.
[199] Zhan H, Jiang H, Zhuang C, et al. Estimation of stresses in concrete by using coda wave interferometry to establish an acoustoelastic modulus database[J]. Sensors, 2020, 20(14): 4031.
[200] Bado M F, Casas J R, Dey A, et al. Distributed optical fiber sensing bonding techniques performance for embedment inside reinforced concrete structures[J]. Sensors, 2020, 20(20): 5788.
[201] Nalon G H, Ribeiro J C L, de Araújo E N D, et al. Concrete units for strain-monitoring in civil structures: Installation of cement-based sensors using different approaches[J]. Construction and Building Materials, 2023, 394: 132169.
[202] Niederleithinger E, Wang X, Herbrand M, et al. Processing ultrasonic data by coda wave interferometry to monitor load tests of concrete beams[J]. Sensors, 2018, 18(6): 1971.
[203] Zhang W, Jia H, Gao G, et al. Backing layers on electroacoustic properties of the acoustic emission sensors[J]. Applied Acoustics, 2019, 156: 387-393.
[204] Zhang S, Cao R, Jia Z, et al. Cement/epoxy-based embedded ultrasonic transducers for concrete structure applications[J]. Journal of Materials Research and Technology, 2021, 14: 242-254.
[205] Xie X C, Li M M, Xu D Y, et al. Effect of backing materials on the performance of cement-based piezoelectric ultrasonic sensors[J]. Applied Mechanics and Materials, 2013, 351: 1273-1277.

所在学位评定分委会
力学
国内图书分类号
O348.8
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765958
专题南方科技大学
工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
丁蔚健. 集成式压电传感单元作用机理及其在混凝 土全寿命健康监测的应用研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930711-丁蔚健-力学与航空航天(23885KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[丁蔚健]的文章
百度学术
百度学术中相似的文章
[丁蔚健]的文章
必应学术
必应学术中相似的文章
[丁蔚健]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。