中文版 | English
题名

基于OCT检测的光生物调节对脑血液微循环的作用研究

其他题名
OCT-BASED EVALUATION OF PHOTOBIOMODULATION ON CEREBRAL BLOOD FLOW
姓名
姓名拼音
ZHENG Jiajia
学号
12132663
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
唐建波
导师单位
生物医学工程系
论文答辩日期
2024-05-07
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

全球老龄化是一个不可避免的现实,并带来了一系列健康问题,其中脑血管疾病尤为显著。鉴于大脑是高度血管化的器官,随着年龄增长及其他风险因素的积累,血管状态会受到影响进而导致血液微循环障碍,加速 脑血管疾病的进程。因此,对于脑血管疾病的预防和治疗显得非常迫切。目前,光生物调节作为一种新型非侵入式治疗技术,因其低成本和有效改善脑血液循环的潜力,在脑血管疾病的预防和治疗中展现出广阔的应用前景。然而,受限于分辨率和光生物调节参数的不确定性,目前尚无法精确观测到特定参数对脑动静脉结构及血流变化的独立影响。为了从微观 层面深入探究光生物调节对脑血管网络的作用机制,本研究提出了利用具 有微米级别分辨率的光学相干层析成像技术,监测不同参数下短期光生物调节对小鼠大脑皮层动静脉血流动态变化的影响。本课题比较了不同波长激光、连续照射时长及照射方式在调节脑血液 循环作用方面的差异。具体的,研究了中心波长为 650 nm,780 nm,808 nm 和 980 nm 照射30 分钟的调节作用。此外,以 808 nm为光源,对比了 30 分钟和1小时连续照射调节的差异,并分别评估了30分钟连续照射和脉 冲照射的效果。实验结果表明,使用波长808 nm,照射时间为30分钟的连续光生物调 节会对小鼠大脑动脉平均血流量产生最大值为 51%的促进作用,照射时间 的延长和40 Hz的脉冲式照射方式都没有达到相同的响应强度。650 nm 和 780 nm实验促进静脉血流作用显著,650 nm静脉平均血流量增加34%,780 nm 静脉平均血流量增加18%。这些都说明650 nm、780 nm和808 nm的30 分钟光生物调节有助于改善局部脑血液循环。本课题探究了短期光生物调节结合光学相干断层扫描技术在小鼠清醒 状态下的脑血液循环变化,表明了光生物调节在小鼠脑血管及脑血液循环 的影响中具有显著效果和安全性。

其他摘要

Global aging is an inevitable reality that has brought a series of health issues, among which cerebrovascular diseases are particularly severe. The brain is a highly vascularized organ, and with age and the accumulation of other risk factors, vascular health is affected and lead to microcirculation disorders, accelerating the progression of cerebrovascular diseases. Therefore, the prevention and treatment of cerebrovascular diseases are particularly urgent.Photobiomodulation (PBM) is a new non-invasive treatment technique, it is considered as a potential approach for the prevention and treatment of cerebrovascular diseases technology. Due to its low cost and effective improvement in cerebral blood circulation, this technology is highly anticipated. However, due to limitations in resolution and uncertainty in PBM parameters, it is currently impossible to accurately observe the effects of specific parameters on the structure and blood flow changes of cerebral arteries and veins. To understand the effect of PBM on the cerebral vascular network at the micro level, this study proposes the use of optical coherence tomography (OCT) with micrometer-level resolution to monitor the dynamic changes in cerebral cortex arteriovenous blood flow in mice under different parameters of short-term PBM.This study has compared the differences in the regulation of cerebral microcirculation by different laser wavelengths, continuous irradiation durations, and irradiation modes. Specifically, the study has examined the regulatory effects of different wavelengths (650 nm, 780 nm, 808 nm, and 980 nm) from the laser source, also has compared the differences between 30 minutes and one-hour continuous irradiation modulation, and has contrasted the effects of continuous irradiation versus pulsed irradiation.The experimental results show that continuous PBM with a wavelength of 808 nm and an irradiation time of 30 minutes have the greatest promotional effect on the average blood flow in the mouse brain arteries, with a maximum value of 51%. The extension of irradiation time and 40 Hz pulsed regulation do not achieve the same response intensity. Experiments with 650 nm and 780 nm significantly promoted venous blood flow, with an average increase in blood flow of 34% for 650 nm and 18% for 780 nm. This indicates that 30 minutes of PBM at 650 nm, 780 nm, and 808 nm helps improve local cerebral blood circulation.This study has investigated the effects of short-term PBM combined with OCT on cerebral blood circulation in awake mice. The results demonstrate that PBM technology has significant effects and safety in the impact on mouse cerebral vessels and cerebral blood circulation.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] GAO Y, AN R, HUANG X, et al. Effectiveness of photobiomodulation for people with age-related cognitive impairment: a systematic review and meta-analysis[J]. Lasers in Medical Science, 2023, 38(1): 237.
[2] EELLS J T, WONG-RILEY M T T, VERHOEVE J, et al. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy[J]. Mitochondrion, 2004, 4(5): 559-567.
[3] FERLITO J V, FERLITO M V, LEAL-JUNIOR E C P, et al. Comparison between cryotherapy and photobiomodulation in muscle recovery: a systematic review and meta-analysis[J]. Lasers in Medical Science, 2022, 37(3): 1375-1388.
[4] DA SILVA H N M, MIZOBUTI D S, PEREIRA V A, et al. LED therapy plus idebenone treatment targeting calcium and mitochondrial signaling pathways in dystrophic muscle cells[J]. Cell Stress and Chaperones, 2023, 28(6): 773-785.
[5] CHEN Y C, SU Y H, LIN Y T, et al. Acute physiological responses to combined blood flow restriction and low-level laser[J]. European Journal of Applied Physiology, 2020, 120(6): 1437-1447.
[6] FLORIANOVICZ V C, FERRARESI C, KURIKI H U, et al. Effects of photobiomodulation therapy and restriction of wrist extensor blood flow on grip: randomized clinical trial[J]. Photobiomodulation, Photomedicine, and Laser Surgery, 2020, 38(12): 743-749.
[7] DO VALLE I B, PRAZERES P H D M, MESQUITA R A, et al. Photobiomodulation drives pericyte mobilization towards skin regeneration[J]. Scientific Reports, 2020, 10(1): 1-15.
[8] KIM W S, GLEN C R. Is light-emitting diode phototherapy (LED-LLLT) really effective?[J]. Laser Therapy, 2011, 20(3): 205-215.
[9] HOSSEINI L, FARAZI N, ERFANI M, et al. Effect of transcranial near-infrared photobiomodulation on cognitive outcomes in D-galactose/AlCl3 induced brain aging in BALB/c mice[J]. Lasers in Medical Science, 2022, 37(3): 1787-1798.
[10] RAHMAN M A, SHUVO A A, APU M M H, et al. Combination of epigallocatechin 3 gallate and curcumin improves d-galactose and normal-aging associated memory impairment in mice[J]. Scientific Reports, 2023, 13(1): 1-14.
[11] ZHONG J, ZHAO L, WU W, et al. Transcranial near-infrared laser improves postoperative neurocognitive disorder in aged mice via SIRT3/AMPK/Nrf2 pathway[J]. Frontiers in Neuroscience, 2023, 16(1): 1-12.
[12] STEPANOV Y V., GOLOVYNSKA I, ZHANG R, et al. Near-infrared light reduces β-amyloid-stimulated microglial toxicity and enhances survival of neurons: mechanisms of light therapy for Alzheimer’s disease[J]. Alzheimer’s Research and Therapy, 2022, 14(1): 1-17.
[13] TAO L, LIU Q, ZHANG F, et al. Microglia modulation with 1070-nm light attenuates Aβ burden and cognitive impairment in Alzheimer’s disease mouse model[J]. Light: Science and Applications, 2021, 10(1): 179.
[14] VALVERDE A, MITROFANIS J. Photobiomodulation for hypertension and Alzheimer’s disease[J]. Journal of Alzheimer’s Disease, 2022, 90(3): 1045-1055.
[15] CARDOSO F dos S, GONZALEZ-LIMA F, COIMBRA N C. Mitochondrial photobiomodulation as a neurotherapeutic strategy for epilepsy[J]. Frontiers in Neurology, 2022, 13(6): 25-27.
[16] HAMBLIN M R. Photobiomodulation for traumatic brain injury and stroke[J]. Journal of Neuroscience Research, 2018, 96(4): 731-743.
[17] HEISKANEN V, HAMBLIN M R. Correction: Photobiomodulation: lasers vs. light emitting diodes?[J]. Photochemical and Photobiological Sciences, 2019, 18(1): 259.
[18] ZHOU T, OHULCHANSKYY T Y, QU J. Effect of NIR light on the permeability of the blood-brain barriers in in vitro models[J]. Biomedical Optics Express, 2021, 12(12): 7544.
[19] BORGHAMMER P, CUMMING P, ESTERGAARD K, et al. Cerebral oxygen metabolism in patients with early Parkinson’s disease[J]. Journal of the Neurological, Sciences, 2012, 313(1): 123-128.
[20] UOZUMI Y, NAWASHIRO H, SATO S, et al. Targeted increase in cerebral blood flow by transcranial near-infrared laser irradiation[J]. Lasers in Surgery and Medicine, 2010, 42(6): 566-576.
[21] WU X, LI J R, FU Y, et al. From static to dynamic: live observation of the support system after ischemic stroke by two photon-excited fluorescence laser-scanning microscopy[J]. Neural Regeneration Research, 2023, 18(10): 2093-2107.
[22] FAN J L, RIVERA J A, SUN W, et al. High-speed volumetric two-photon fluorescence imaging of neurovascular dynamics[J]. Nature Communications, 2020, 11(1): 1-12.
[23] 林曼娜. 荧光显微镜的成像原理及其在生物医学中的应用[J]. 电子显微学报, 2021, 40(1): 90-93.
[24] 张泽, 侯国忠, 邓岩岩, 等. 小鼠大脑飞秒双光子荧光三维显微成像研究[J]. 红外与激光工程, 2023, 52(8): 277-287.
[25] 陈雪利, 王鑫宇, 闫天宇, 等. 贝塞尔光束在生物医学显微成像技术中的应用(特邀)[J]. 光子学报, 2022, 51(8): 158-173.
[26] TANG J, ERDENER S E, LI B, et al. Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography[J]. Journal of Biophotonics, 2018, 11(2): 1-10.
[27] 倪秧. 谱域光学相干层析成像技术及其眼科应用研究[D]. 浙江大学, 2017.
[28] 李培. 微血管功能网络的三维光学成像技术及脑科学应用研究[D]. 浙江大学, 2018.
[29] SALEHPOUR F, MAHMOUDI J, KAMARI F, et al. Brain photobiomodulation therapy: a narrative review[J]. Molecular Neurobiology, 2018, 55(8): 6601-6636.
[30] ROJAS J C, BRUCHEY A K, GONZALEZ-LIMA F. Low-level light therapy improves cortical metabolic capacity and memory retention[J]. Journal of Alzheimer’s Disease, 2012, 32(3): 741-752.
[31] TIAN F, HASE S N, GONZALEZ-LIMA F, et al. Transcranial laser stimulation improves human cerebral oxygenation[J]. Lasers in Surgery and Medicine, 2016, 48(4): 343-349.
[32] QUIRK B J, WHELAN H T. What lies at the heart of photobiomodulation: Light, cytochrome c oxidase, and nitric oxide-review of the evidence[J]. Photobiomodulation, Photomedicine, and Laser Surgery, 2020, 38(9): 527-530.
[33] KASHIWAGI S, MORITA A, YOKOMIZO S, et al. Photobiomodulation and nitric oxide signaling[J]. Nitric Oxide - Biology and Chemistry, 2023, 130(11): 58-68.
[34] LITSCHER G, MIN L, PASSEGGER C A, et al. Transcranial yellow, red, and infrared laser and LED stimulation: Changes of vascular parameters in a chick embryo model[J]. Integrative Medicine International, 2015, 2(1): 80-89.
[35] LEE H I, LEE S W, KIM S Y, et al. Pretreatment with light-emitting diode therapy reduces ischemic brain injury in mice through endothelial nitric oxide synthasedependent mechanisms[J]. Biochemical and Biophysical Research Communications, 2017, 486(4): 945-950.
[36] WANG X, TIAN F, SONI S S, et al. Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser[J]. Scientific Reports, 2016, 6(4l): 1-10.
[37] ZHU R, AVSIEVICH T, SU X, et al. Hemorheological alterations of red blood cells induced by 450-nm and 520-nm laser radiation[J]. Journal of Photochemistry and Photobiology B: Biology, 2022, 230(1): 112-438.
[38] WANG X, TIAN F, REDDY D D, et al. Up-regulation of cerebral cytochrome-coxidase and hemodynamics by transcranial infrared laser stimulation: A broadband near-infrared spectroscopy study[J]. Journal of Cerebral Blood Flow and Metabolism, 2017, 37(12): 3789-3802.
[39] HENNESSY M, HAMBLIN M R. Photobiomodulation and the brain: a new paradigm[J]. Journal of Optics, 2017, 19(1): 13003.
[40] ZEIN R, SELTING W, HAMBLIN M R. Review of light parameters and photobiomodulation efficacy: dive into complexity[J]. Journal of Biomedical Optics, 2018, 23(12): 1.
[41] HUANG Y Y, NAGATA K, TEDFORD C E, et al. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro[J]. Biophotonics, 2013, 6(10): 829-838.
[42] SALEHPOUR F, AHMADIAN N, RASTA S H, et al. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in Dgalactose–induced aging mice[J]. Neurobiology of Aging, 2017, 58: 140-150.
[43] ALMEIDA-JUNIOR L A, MARQUES N C T, PRADO M T de O, et al. Effect of single and multiple doses of low-level laser therapy on viability and proliferation of stem cells from human exfoliated deciduous teeth (SHED)[J]. Lasers in Medical Science, 2019, 34(9): 1917-1924.
[44] XUAN W, HUANG L, HAMBLIN M R. Repeated transcranial low-level laser therapy for traumatic brain injury in mice: biphasic dose response and long-term treatment outcome[J]. Biophotonics, 2016, 9(11): 1263-1272.
[45] XUAN W, VATANSEVER F, HUANG L, et al. Transcranial low-level laser therapy improves neurological performance in traumatic brain injury in mice: Effect of treatment repetition regimen[J]. PLoS ONE, 2013, 8(1).
[46] SALEHPOUR F, KHADEMI M, BRAGIN D E, et al. Photobiomodulation Therapy and the Glymphatic System: Promising Applications for Augmenting the Brain Lymphatic Drainage System[J]. International Journal of Molecular Sciences, 2022, 23(6): 2975.
[47] JIANG H, WEI H, ZHOU Y, et al. Overview of the meningeal lymphatic vessels in aging and central nervous system disorders[J]. Cell and Bioscience, 2022, 12(1): 1-15.
[48] MORO C, VALVERDE A, DOLE M, et al. The effect of photobiomodulation on the brain during wakefulness and sleep[J]. Frontiers in Neuroscience, 2022, 16(6): 1-15.
[49] SEMYACHKINA-GLUSHKOVSKAYA O, PENZEL T, BLOKHINA I, et al. Night photostimulation of clearance of beta-amyloid from mouse brain: New strategies in preventing alzheimer’s disease[J]. Cells, 2021, 10(12): 1-14.
[50] ARGIBAY B, CAMPOS F, PEREZ-MATO M, et al. Light-emitting diode photobiomodulation after cerebral ischemia[J]. Frontiers in Neurology, 2019, 10(8): 1-9.
[51] SCHIFFER F, JOHNSTON A L, RAVICHANDRAN C, et al. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety[J]. Behavioral and Brain Functions, 2009, 5(1): 46.
[52] SALGADO A S I, ZÂNGARO R A, PARREIRA R B, et al. The effects of transcranial LED therapy (TCLT) on cerebral blood flow in the elderly women[J]. Lasers in Medical Science, 2015, 30(1): 339-346.
[53] NAWASHIRO H, WADA K, NAKAI K, et al. Focal increase in cerebral blood flow after treatment with near-infrared light to the forehead in a patient in a persistent vegetative state[J]. Photomedicine and Laser Surgery, 2012, 30(4): 231-233.
[54] HIPSKIND S G, GROVER F L, FORT T R, et al. Pulsed transcranial red/near-infrared light therapy using light-emitting diodes improves cerebral blood flow and cognitive function in veterans with chronic traumatic brain injury: A case series[J]. Photobiomodulation, Photomedicine, and Laser Surgery, 2019, 37(2): 77-84.
[55] SOO B J, YOUNG L T, GYUN K N, et al. Effects of Photobiomodulation on changes in cognitive function and regional cerebral blood flow in patients with mild cognitive impairment: A pilot uncontrolled trial.[J]. Journal of Alzheimer’s Disease, 2021, 83: 1513-1519.
[56] SALTMARCHE A E, NAESER M A, HO K F, et al. Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: Case series report[J]. Photomedicine and Laser Surgery, 2017, 35(8): 432-441.
[57] SALEHPOUR F, GHOLIPOUR-KHALILI S, FARAJDOKHT F, et al. Therapeutic potential of intranasal photobiomodulation therapy for neurological and neuropsychiatric disorders: A narrative review[J]. Reviews in the Neurosciences, 2020, 31(3): 269-286.
[58] MELO W W P, ARAGÃO W A B, BAIA-DA-SILVA D C, et al. Effects of photobiomodulation on oral mucositis: Visualization and analysis of knowledge[J]. Life, 2022, 12(11): 1940.
[59] GAMBINO A, CABRAS M, CAFARO A, et al. Preliminary evaluation of the utility of optical coherence tomography in detecting structural changes during photobiomodulation treatment in patients with atrophic-erosive oral lichen planus[J]. Photodiagnosis and Photodynamic Therapy, 2021, 34(2): 102255.
[60] LE H M, MEHANNA C J, DE ROSA I, et al. Effects of photobiomodulation in patients presenting with reticular pseudodrusen: A retrospective observational case series study[J]. Medicina, 2022, 58(11): 1662.
[61] SHEN W, TEO K Y C, WOOD J P M, et al. Preclinical and clinical studies of photobiomodulation therapy for macular oedema[J]. Diabetologia, 2020, 63(9): 19001915.
[62] ZINCHENKO E, NAVOLOKIN N, SHIROKOV A, et al. Pilot study of transcranial photobiomodulation of lymphatic clearance of beta-amyloid from the mouse brain: breakthrough strategies for non-pharmacologic therapy of Alzheimer’s disease[J]. Biomedical Optics Express, 2019, 10(8): 4003.
[63] SEMYACHKINA-GLUSHKOVSKAYA O, ABDURASHITOV A, DUBROVSKY A, et al. Photobiomodulation of lymphatic drainage and clearance: perspective strategy for augmentation of meningeal lymphatic functions[J]. Biomedical Optics Express, 2020, 11(2): 725.
[64] HUANG D, SWANSON E A, LIN C P, et al. Optical Coherence Tomography[J]. Science, 1991, 254(5035): 1178-1181.
[65] FERCHER F, HITZENBERGER K, KAMP G. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optical Communications, 1995, 117(1): 43-48.
[66] GUO X, REN G, TANG J. Autocorrelation analysis-based OCT velocimetry for axial blood flow velocity imaging of the cerebral capillary network.[J]. Optics Letters, 2023, 48(13): 3599-3602.
[67] KIM S J, AFFAN R O, FROSTIG H, et al. Advances in cellular resolution microscopy for brain imaging in rats[J]. Neurophotonics, 2023, 10(4): 44304.
[68] ORON U, ILIC S, DE TABOADA L, et al. Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture[J]. Photomedicine and Laser Surgery, 2007, 25(3): 180-182.
[69] GAGGI N L, COLLINS K A, GONZALEZ-CASTILLO J, et al. Transcranial photobiomodulation increases intrinsic brain activity within irradiated areas in early Alzheimer’s disease: Potential link with cerebral metabolism[J]. Brain Stimulation, 2024, 17(2): 208-210.
[70] WANG M, YAN C, LI X, et al. Non-invasive modulation of meningeal lymphatics ameliorates ageing and Alzheimer’s disease-associated pathology and cognition in mice[J]. Nature Communications, 2024, 15(1): 1453.
[71] YANG B, XU J, LI Y, et al. Photobiomodulation therapy for repeated closed head injury in rats[J]. Journal of Biophotonics, 2020, 13(2): 1-18.
[72] LI D, LIU S, YU T, et al. Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage[J]. Nature Communications, 2023, 14(1): 6104.
[73] ZHAO C, LI D, KONG Y, et al. Transcranial photobiomodulation enhances visual working memory capacity in humans[J]. Science Advances, 2022, 8(48).
[74] LU Y, WANG R, DONG Y, et al. Low-level laser therapy for beta amyloid toxicity in rat hippocampus[J]. Neurobiology of Aging, 2017, 49: 165-182.
[75] LAPCHAK P A, BOITANO P D. A novel method to promote behavioral improvement and enhance mitochondrial function following an embolic stroke[J]. Brain Research, 2016, 1646: 125-131.
[76] MILLER L A, TORRACA D G, DE TABOADA L. Retrospective observational study and analysis of two different photobiomodulation therapy protocols combined with rehabilitation therapy as therapeutic interventions for canine degenerative myelopathy[J]. Photobiomodulation, Photomedicine, and Laser Surgery, 2020, 38(4): 195-205.
[77] YUN Y C, JANG D, YOON S B, et al. Laser acupuncture exerts neuroprotective effects via regulation of Creb, Bdnf, Bcl-2, and Bax gene expressions in the hippocampus[J]. Evidence-based Complementary and Alternative Medicine, 2017, 2017: 7181637.
[78] CASSANO P, CUSIN C, MISCHOULON D, et al. Near-infrared transcranial Radiation for major depressive disorder: Proof of concept study[J]. Psychiatry Journal, 2015, 2015: 1-8.
[79] SOUZA N H C, FERRARI R A M, SILVA D F T, et al. Effect of low-level laser therapy on the modulation of the mitochondrial activity of macrophages[J]. Brazilian Journal of Physical Therapy, 2014, 18(4): 308-314.
[80] MORRIES L D, CASSANO P, HENDERSON T A. Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy[J]. Neuropsychiatric Disease and Treatment, 2015, 11: 2159-2175.
[81] AMAROLI A, BENEDICENTI A, FERRANDO S, et al. Photobiomodulation by infrared diode laser: Effects on intracellular calcium concentration and nitric oxide Production of Paramecium[J]. Photochemistry and Photobiology, 2016, 92(6): 854862.
[82] L R R, BRUNO-FÉLIX O, DAVIDE B, et al. Light controls cerebral blood flow in naive animals[J]. Nature Communications, 2017, 8(1): 141-191.

所在学位评定分委会
生物学
国内图书分类号
R318.51
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765959
专题南方科技大学
工学院_生物医学工程系
推荐引用方式
GB/T 7714
郑嘉嘉. 基于OCT检测的光生物调节对脑血液微循环的作用研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132663-郑嘉嘉-生物医学工程系(6254KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[郑嘉嘉]的文章
百度学术
百度学术中相似的文章
[郑嘉嘉]的文章
必应学术
必应学术中相似的文章
[郑嘉嘉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。