中文版 | English
题名

AlGaN基深紫外Micro-LED的光提取效率模拟研究

其他题名
SIMULATION STUDY ON LIGHT EXTRACTION EFFICIENCY OF AlGaN-BASED DEEP ULTRAVIOLET MICRO-LED
姓名
姓名拼音
WANG Juan
学号
12232185
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
刘召军
导师单位
电子与电气工程系
论文答辩日期
2024-05-10
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

AlGaN基深紫外Micro-LED在固化、灭菌、可见光通信、显示技术等领域有广泛的用途。但是目前深紫外Micro-LED在效率方面面临着重大挑战,由于GaN对深紫外光强烈的吸收,外延层与空气之间的全内反射以及独特的横磁场(Transverse Magnetic, TM)光偏振现象,使得光提取效率极低,这也导致了外量子效率很低。因此,提升光提取效率对实现高效深紫外Micro-LED具有重大意义。本文通过数值模拟的方法,系统地对光提取效率的尺寸效应进行了探究,并进一步优化台面结构提升了倒装深紫外Micro-LED的光提取效率。

Micro-LED的效率与尺寸有着紧密的联系,但目前关于深紫外Micro-LED光提取效率的尺寸效应研究极少。为此,本文系统地探究了100 μm以内深紫外Micro-LED光提取效率的尺寸效应。研究结果表明,由于TM偏振光具有横向传播的性质,小尺寸的Micro-LED能够让更多的TM偏振光在侧壁射出空气,所以深紫外Micro-LED光提取效率随着尺寸的减小而增大。以上结果揭示了更高的光提取效率是造成更小尺寸的深紫外Micro-LED外量子效率更高的主要原因,这为AlGaN基深紫外Micro-LED效率的尺寸效应研究提供了数据支撑。

针对倒装结构的Micro-LED,本文通过优化台面结构来增强光提取效率。首先针对横电场(Transverse Electric, TE)偏振光垂直于外延层传播的特性和电极的反射作用,根据干涉效应优化了p-AlGaN和p-GaN的厚度,将TE偏振模式下的光提取效率提升了近两倍。进一步地,针对TM偏振光横向传播的特性,探究侧壁倾角对光提取效率的影响,结果表明最优倾角为40°。通过两方面的优化,最终实现了总的光提取效率提升123%,这对提升深紫外Micro-LED的效率提供了器件结构方面的设计思路。

综合而言,本研究系统地探究了AlGaN基深紫外Micro-LED光提取效率的尺寸效应,并通过优化台面结构提高了倒装Micro-LED的光提取效率。这对于实现高效的AlGaN基深紫外Micro-LED具有重要意义,为相关领域的应用和进一步研究提供了有价值的数据支持。

其他摘要

AlGaN-based deep ultraviolet Micro-LEDs have found widespread applications in curing, sterilization, visible light communication, and display technologies. However, significant challenges persist in enhancing the efficiency of Micro-LEDs. The strong absorption of deep ultraviolet light by GaN, total internal reflection between the epitaxial layer and air, and the unique Transverse Magnetic (TM) light polarization phenomenon lead to extremely low light extraction efficiency, subsequently resulting in low external quantum efficiency. Therefore, improving light extraction efficiency holds significant importance for achieving highly efficient deep ultraviolet Micro-LEDs. This thesis systematically investigates the size-dependence on light extraction efficiency through numerical simulations and further optimizes the mesa structure to enhance the light extraction efficiency of flip-chip deep ultraviolet Micro-LEDs.

The efficiency of Micro-LEDs is closely related to the size, but there are currently very few studies on the size-dependence on light extraction efficiency of deep ultraviolet Micro-LEDs. This study systematically explores the size-dependence on light extraction efficiency of deep ultraviolet Micro-LEDs within 100 μm. The results reveal that due to the transverse propagation property of TM-polarized light, smaller-sized Micro-LEDs allow more TM-polarized light to escape through the sidewall into the air. Consequently, the light extraction efficiency of deep ultraviolet Micro-LEDs increases as their size decreases. These findings highlight that higher light extraction efficiency is the main reason for achieving higher external quantum efficiency in smaller-sized deep ultraviolet Micro-LEDs, providing valuable data support for the study of size-dependence on the efficiency of AlGaN-based deep ultraviolet Micro-LEDs.

For flip-chip Micro-LEDs, this study focuses on optimizing the mesa structure to enhance light extraction efficiency. First, targeting the vertical propagation property of Transverse Electric (TE) polarized light and the reflection from the electrodes, the thicknesses of p-AlGaN and p-GaN layers are optimized using interference effect, resulting in nearly double the light extraction efficiency in the TE polarization mode. Furthermore, considering the transverse propagation property of TM-polarized light, the influence of sidewall inclination angle on light extraction efficiency is investigated, and the optimal inclination angle is determined to be 40°. Through these two optimization approaches, the overall light extraction efficiency improvement of 123% is achieved, providing valuable design insights for enhancing the efficiency of deep ultraviolet Micro-LEDs.

In summary, this study reveals the size-dependence on light extraction efficiency in AlGaN-based deep ultraviolet Micro-LEDs, and optimizes the mesa structure to improve the light extraction efficiency of flip-chip Micro-LEDs. These findings are significant for achieving highly efficient AlGaN-based deep ultraviolet Micro-LEDs and provide valuable data support for applications and further research in related fields.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] SONG J. The history and trends of semiconductor materials’ development [J]. Journal of Physics: Conference Series, 2023, 2608(1): 012019.
[2] VURGAFTMAN I, MEYER J R, RAM-MOHAN L R. Band parameters for III–V compound semiconductors and their alloys [J]. Journal of Applied Physics, 2001, 89(11): 5815-5875.
[3] JONES E A, WANG F F, COSTINETT D. Review of commercial GaN power devices and GaN-based converter design challenges [J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 707-719.
[4] MOHAMMAD S N, MORKOç H. Progress and prospects of group-III nitride semiconductors [J]. Progress in quantum electronics, 1996, 20(5): 361-525.
[5] ZHAO C, ALFARAJ N, CHANDRA SUBEDI R, et al. III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications [J]. Progress in Quantum Electronics, 2018, 61: 1-31.
[6] 丁格格. 深紫外发光器件中载流子注入特性研究 [D]. 安徽工程大学, 2018.
[7] 张敏. AlGaN基深紫外发光二级管电子阻挡层横向优化设计 [D]. 华东师范大学, 2022.
[8] NANISHI Y. The birth of the blue LED [J]. Nature photonics, 2014, 8(12): 884-886.
[9] AKASAKI I. Key inventions in the history of nitride-based blue LED and LD [J]. Journal of Crystal Growth, 2007, 300(1): 2-10.
[10] KIM K, HUA M, LIU D, et al. Efficiency enhancement of InGaN/GaN blue light-emitting diodes with top surface deposition of AlN/Al2O3 [J]. Nano Energy, 2018, 43: 259-269.
[11] LEE K, LEE C-R, CHUNG T-H, et al. Optical characteristics of InGaN/GaN light-emitting diodes depending on wafer bowing controlled by laser-treated grid patterns [J]. Optics Express, 2016, 24(21): 24153-24160.
[12] TSAO J Y, HAN J, HAITZ R H, et al. The blue LED Nobel Prize: Historical context, current scientific understanding, human benefit [J]. Annalen Der Physik, 2015, 527(5-6): A53-A61.
[13] JAEHEE C, JUN HYUK P, JONG KYU K, et al. White light-emitting diodes: History, progress, and future: White light-emitting diodes [J]. Laser & Photonics Reviews, 2017, 11: 1600147.
[14] CHEN Z, YAN S, DANESH C. MicroLED technologies and applications: characteristics, fabrication, progress, and challenges [J]. Journal of Physics D: Applied Physics, 2021, 54(12): 123001.
[15] LIU Z, LIN C-H, HYUN B-R, et al. Micro-light-emitting diodes with quantum dots in display technology [J]. Light: Science & Applications, 2020, 9(1): 83.
[16] KNEISSL M, SEONG T-Y, HAN J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies [J]. Nature Photonics, 2019, 13(4): 233-244.
[17] SONG K, MOHSENI M, TAGHIPOUR F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review [J]. Water Research, 2016, 94: 341-349.
[18] HIRAYAMA H, FUJIKAWA S, KAMATA N. Recent progress in AlGaN‐Based deep‐UV LEDs [J]. Electronics and Communications in Japan, 2015, 98(5): 1-8.
[19] FENG F, LIU Y, ZHANG K, et al. AlGaN multiple quantum well deep‐ultraviolet micro‐light‐emitting diodes for high color conversion efficiency quantum dots display [J]. Journal of the Society for Information Display, 2022, 30(7): 556-566.
[20] KHAN A, BALAKRISHNAN K, KATONA T. Ultraviolet light-emitting diodes based on group three nitrides [J]. Nature Photonics, 2008, 2(2): 77-84.
[21] 郭浩中. LED原理与应用 [M]. 北京: 化学工业出版社, 2013.
[22] 董鹏. AlGaN基紫外LED效率提升研究 [D]. 中国科学院大学, 2022.
[23] 周圣军. 氮化镓基发光二极管芯片设计与制造技术 [M]. 北京: 科学出版社, 2019.
[24] ZHANG C, JIANG K, SUN X, et al. Recent progress on AlGaN based deep ultraviolet light-emitting diodes below 250 nm [J]. Crystals, 2022, 12(12): 1812.
[25] JONES K A, CHOW T P, WRABACK M, et al. AlGaN devices and growth of device structures [J]. Journal of Materials Science, 2015, 50(9): 3267-3307.
[26] BAN K, YAMAMOTO J-I, TAKEDA K, et al. Internal quantum efficiency of whole-composition-range AlGaN multiquantum wells [J]. Applied Physics Express, 2011, 4(5): 052101.
[27] XU R, KANG Q, ZHANG Y, et al. Research progress of AlGaN-based deep ultraviolet light-emitting diodes [J]. Micromachines, 2023, 14(4): 844.
[28] SUN Y, XU F, ZHANG N, et al. Realization of high efficiency AlGaN-based multiple quantum wells grown on nano-patterned sapphire substrates [J]. CrystEngComm, 2021, 23(5): 1201-1206.
[29] YIN Y A, WANG N, FAN G, et al. Investigation of AlGaN-based deep-ultraviolet light-emitting diodes with composition-varying AlGaN multilayer barriers [J]. Superlattices and Microstructures, 2014, 76: 149-155.
[30] FENG F, LIU Y, ZHANG K, et al. Enhancing the optical and electrical properties of AlGaN ultraviolet-C micro-LED via a hybrid scheme of plasma and chemical treatment [J]. Applied Physics Letters, 2022, 121(22): 221104.
[31] ASANE J K, CHOWDHURY M G R, KHABIR K M, et al. Stimulated emission in vicinity of the critical angle [J]. Applied Physics Letters, 2021, 119(3): 031102.
[32] NAM K B, LI J, NAKARMI M L, et al. Unique optical properties of AlGaN alloys and related ultraviolet emitters [J]. Applied Physics Letters, 2004, 84(25): 5264-5266.
[33] KUO Y-K, CHANG J-Y, CHANG H-T, et al. Polarization effect in AlGaN-based deep-ultraviolet light-emitting diodes [J]. IEEE Journal of Quantum Electronics, 2017, 53(1): 1-6.
[34] KIRSTE R, SARKAR B, REDDY P, et al. Status of the growth and fabrication of AlGaN-based UV laser diodes for near and mid-UV wavelength [J]. Journal of Materials Research, 2021, 36(23): 4638-4664.
[35] LEE K H, PARK H J, KIM S H, et al. Light-extraction efficiency control in AlGaN-based deep-ultraviolet flip-chip light-emitting diodes: a comparison to InGaN-based visible flip-chip light-emitting diodes [J]. Optics Express, 2015, 23(16): 20340-20349.
[36] INOUE S-I, NAOKI T, KINOSHITA T, et al. Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90 mW output power via an AlN hybrid nanostructure [J]. Applied Physics Letters, 2015, 106(13): 131104.
[37] TRAN T B, ALQATARI F, LUC Q-H. Nanophotonic crystals on unpolished sapphire substrates for deep-UV light-emitting diodes [J]. Scientific Reports, 2021, 11(1): 4981.
[38] PENG Y, GUO X, LIANG R, et al. Fabrication of microlens arrays with controlled curvature by micromolding water condensing based porous films for deep ultraviolet LEDs [J]. ACS Photonics, 2017, 4(10): 2479-2485.
[39] WANG S, DAI J, HU J, et al. Ultrahigh degree of optical polarization above 80% in AlGaN-based deep-ultraviolet LED with moth-eye microstructure [J]. ACS Photonics, 2018, 5(9): 3534-3540.
[40] DU P, CHENG Z. Enhancing light extraction efficiency of vertical emission of AlGaN nanowire light emitting diodes with photonic crystal [J]. IEEE Photonics Journal, 2019, 11(3): 1-9.
[41] DONG P, YAN J, WANG J, et al. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates [J]. Applied Physics Letters, 2013, 102(24): 241113.
[42] ZHANG J, CHANG L, ZHAO Z, et al. Different scattering effect of nano-patterned sapphire substrate for TM- and TE-polarized light emitted from AlGaN-based deep ultraviolet light-emitting diodes [J]. Optical Materials Express, 2021, 11(3): 729-739.
[43] SHATALOV M, SUN W, LUNEV A, et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10% [J]. Applied Physics Express, 2012, 5(8): 082101.
[44] INAZU T, FUKAHORI S, PERNOT C, et al. Improvement of light extraction efficiency for AlGaN-based deep ultraviolet light-emitting diodes [J]. Japanese Journal of Applied Physics, 2011, 50(12R): 122101.
[45] ZHENG Y, ZHANG Y, ZHANG J, et al. Effects of meshed p-type contact structure on the light extraction effect for deep ultraviolet flip-chip light-emitting diodes [J]. Nanoscale Research Letters, 2019, 14(1): 1-9.
[46] LEE T H, PARK T H, SHIN H W, et al. Smart wide‐Bandgap omnidirectional reflector as an effective hole‐injection electrode for deep‐UV light‐emitting diodes [J]. Advanced Optical Materials, 2019, 8(2): 1901430.
[47] ZHANG G, SHAO H, ZHANG M, et al. Enhancing the light extraction efficiency for AlGaN-based DUV LEDs with a laterally over-etched p-GaN layer at the top of truncated cones [J]. Optics Express, 2021, 29(19): 30532-30542.
[48] WIERER J J, ALLERMAN A A, MONTAñO I, et al. Influence of optical polarization on the improvement of light extraction efficiency from reflective scattering structures in AlGaN ultraviolet light-emitting diodes [J]. Applied Physics Letters, 2014, 105(6): 061106.
[49] LEE J W, PARK J H, KIM D Y, et al. Arrays of truncated cone AlGaN deep-ultraviolet light-emitting diodes facilitating efficient outcoupling of in-plane emission [J]. ACS Photonics, 2016, 3(11): 2030-2034.
[50] ZHENG Y, ZHANG J, CHANG L, et al. Understanding omni-directional reflectors and nominating more dielectric materials for deep ultraviolet light-emitting diodes with inclined sidewalls [J]. Journal of Applied Physics, 2020, 128(9): 093106.
[51] TIAN M, YU H, MEMON M H, et al. Enhanced light extraction of the deep-ultraviolet micro-LED via rational design of chip sidewall [J]. Optics Letters, 2021, 46(19): 4809-4812.
[52] RYU H-Y, CHOI I-G, CHOI H-S, et al. Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes [J]. Applied Physics Express, 2013, 6(6): 062101.
[53] SHIN W, PANDEY A, LIU X, et al. Photonic crystal tunnel junction deep ultraviolet light emitting diodes with enhanced light extraction efficiency [J]. Optics Express, 2019, 27(26): 28413-38420.
[54] ZHANG J, CHANG L, ZHENG Y, et al. Integrating remote reflector and air cavity into inclined sidewalls to enhance the light extraction efficiency for AlGaN-based DUV LEDs [J]. Optics Express, 2020, 28(11): 17035-17046.
[55] ZHANG Y, MENG R, ZHANG Z-H, et al. Effects of inclined sidewall structure with bottom metal air cavity on the light extraction efficiency for AlGaN-based deep ultraviolet light-emitting diodes [J]. IEEE Photonics Journal, 2017, 9(5): 1-9.
[56] FAN Q, NI X, HUA B, et al. Extraction efficiency simulation in deep ultraviolet AlGaN light emitting diodes [J]. Optical and Quantum Electronics, 2021, 53(7): 401.
[57] HUANG K, GAO N, WANG C, et al. Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localised surface plasmons [J]. Scientific Reports, 2014, 4(1): 4380-4380.
[58] ZHANG C, TANG N, SHANG L, et al. Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells [J]. Scientific Reports, 2017, 7(1): 2358-2355.
[59] 郑羽欣. 反射镜微纳结构对深紫外发光二极管光提取影响的研究 [D]. 河北工业大学, 2020.
[60] FLOYD R, GAEVSKI M, HUSSAIN K, et al. Enhanced light extraction efficiency of micropixel geometry AlGaN DUV light-emitting diodes [J]. Applied Physics Express, 2021, 14(8): 084002.
[61] YU H, MEMON M H, WANG D, et al. AlGaN-based deep ultraviolet micro-LED emitting at 275 nm [J]. Optics Letters, 2021, 46(13): 3271-3274.
[62] FENG F, ZHANG K, LIU Y, et al. AlGaN-Based deep-UV Micro-LED array for quantum dots converted display with ultra-Wide color gamut [J]. IEEE Electron Device Letters, 2022, 43(1): 60-63.
[63] LIU Y, ZHANG K, HYUN B-R, et al. High-brightness InGaN/GaN micro-LEDs with secondary peak effect for displays [J]. IEEE Electron Device Letters, 2020, 41(9): 1380-1383.
[64] JIANG F, HYUN B-R, ZHANG Y, et al. Role of intrinsic surface states in efficiency attenuation of GaN‐based micro‐light‐emitting‐diodes [J]. physica status solidi (RRL)–Rapid Research Letters, 2020, 15(2): 2000487.
[65] MEKIS A, SHANHUI F, JOANNOPOULOS J D. Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides [J]. IEEE Microwave and Guided Wave Letters, 1999, 9(12): 502-504.
[66] BERENGER J-P. A perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of Computational Physics, 1994, 114(2): 185-200.
[67] LIU M, LI K, KONG F-M, et al. Enhancement of the light-extraction efficiency of light-emitting diodes with SiO2 photonic crystals [J]. Optik, 2018, 161: 27-37.
[68] OLIVIER F, DAAMI A, LICITRA C, et al. Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: A size effect study [J]. Applied Physics Letters, 2017, 111(2): 022104.
[69] TIAN P, MCKENDRY J J D, GONG Z, et al. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes [J]. Applied Physics Letters, 2012, 101(23): 231110.
[70] GONG Z, JIN S, CHEN Y, et al. Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes [J]. Journal of Applied Physics, 2010, 107(1): 013103.
[71] KOU J, SHEN C C, SHAO H, et al. Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes [J]. Optics Express, 2019, 27(12): A643-A653.
[72] YU H, MEMON M H, JIA H, et al. A 10 × 10 deep ultraviolet light-emitting micro-LED array [J]. Journal of Semiconductors, 2022, 43(6): 062801.
[73] FENG F, LIU Y, LI Z, et al. Elevating the light output power density of scaling‐down AlGaN ultraviolet‐C micro‐LED [J]. SID International Symposium Digest of Technical Papers, 2023, 54(1): 279-282.
[74] ENGELBRECHT J A A, SEPHTON B, MINNAAR E, et al. An alternative method to determine the refractive index of AlxGa1−xN [J]. Physica B: Condensed Matter, 2016, 480: 181-185.
[75] 田梦. AlGaN基深紫外LED器件的光场调控研究 [D]. 中国科学技术大学, 2022.
[76] ZHENG Z, CHEN Q, DAI J, et al. Enhanced light extraction efficiency via double nano-pattern arrays for high-efficiency deep UV LEDs [J]. Optics & Laser Technology, 2021, 143: 107360.
[77] KOLBE T, KNAUER A, CHUA C, et al. Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes [J]. Applied Physics Letters, 2010, 97(17): 171105.
[78] 杜朋伟. 高效紫外发光二极管的理论与实验研究 [D]. 浙江大学, 2022.
[79] LIANG R, DAI J, XU L, et al. High light extraction efficiency of deep ultraviolet LEDs enhanced using nanolens arrays [J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2498-2503.

所在学位评定分委会
材料与化工
国内图书分类号
TN364+.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765961
专题南方科技大学
工学院_电子与电气工程系
推荐引用方式
GB/T 7714
王娟. AlGaN基深紫外Micro-LED的光提取效率模拟研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232185-王娟-电子与电气工程系(3516KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王娟]的文章
百度学术
百度学术中相似的文章
[王娟]的文章
必应学术
必应学术中相似的文章
[王娟]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。