[1] SONG J. The history and trends of semiconductor materials’ development [J]. Journal of Physics: Conference Series, 2023, 2608(1): 012019.
[2] VURGAFTMAN I, MEYER J R, RAM-MOHAN L R. Band parameters for III–V compound semiconductors and their alloys [J]. Journal of Applied Physics, 2001, 89(11): 5815-5875.
[3] JONES E A, WANG F F, COSTINETT D. Review of commercial GaN power devices and GaN-based converter design challenges [J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 707-719.
[4] MOHAMMAD S N, MORKOç H. Progress and prospects of group-III nitride semiconductors [J]. Progress in quantum electronics, 1996, 20(5): 361-525.
[5] ZHAO C, ALFARAJ N, CHANDRA SUBEDI R, et al. III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications [J]. Progress in Quantum Electronics, 2018, 61: 1-31.
[6] 丁格格. 深紫外发光器件中载流子注入特性研究 [D]. 安徽工程大学, 2018.
[7] 张敏. AlGaN基深紫外发光二级管电子阻挡层横向优化设计 [D]. 华东师范大学, 2022.
[8] NANISHI Y. The birth of the blue LED [J]. Nature photonics, 2014, 8(12): 884-886.
[9] AKASAKI I. Key inventions in the history of nitride-based blue LED and LD [J]. Journal of Crystal Growth, 2007, 300(1): 2-10.
[10] KIM K, HUA M, LIU D, et al. Efficiency enhancement of InGaN/GaN blue light-emitting diodes with top surface deposition of AlN/Al2O3 [J]. Nano Energy, 2018, 43: 259-269.
[11] LEE K, LEE C-R, CHUNG T-H, et al. Optical characteristics of InGaN/GaN light-emitting diodes depending on wafer bowing controlled by laser-treated grid patterns [J]. Optics Express, 2016, 24(21): 24153-24160.
[12] TSAO J Y, HAN J, HAITZ R H, et al. The blue LED Nobel Prize: Historical context, current scientific understanding, human benefit [J]. Annalen Der Physik, 2015, 527(5-6): A53-A61.
[13] JAEHEE C, JUN HYUK P, JONG KYU K, et al. White light-emitting diodes: History, progress, and future: White light-emitting diodes [J]. Laser & Photonics Reviews, 2017, 11: 1600147.
[14] CHEN Z, YAN S, DANESH C. MicroLED technologies and applications: characteristics, fabrication, progress, and challenges [J]. Journal of Physics D: Applied Physics, 2021, 54(12): 123001.
[15] LIU Z, LIN C-H, HYUN B-R, et al. Micro-light-emitting diodes with quantum dots in display technology [J]. Light: Science & Applications, 2020, 9(1): 83.
[16] KNEISSL M, SEONG T-Y, HAN J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies [J]. Nature Photonics, 2019, 13(4): 233-244.
[17] SONG K, MOHSENI M, TAGHIPOUR F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review [J]. Water Research, 2016, 94: 341-349.
[18] HIRAYAMA H, FUJIKAWA S, KAMATA N. Recent progress in AlGaN‐Based deep‐UV LEDs [J]. Electronics and Communications in Japan, 2015, 98(5): 1-8.
[19] FENG F, LIU Y, ZHANG K, et al. AlGaN multiple quantum well deep‐ultraviolet micro‐light‐emitting diodes for high color conversion efficiency quantum dots display [J]. Journal of the Society for Information Display, 2022, 30(7): 556-566.
[20] KHAN A, BALAKRISHNAN K, KATONA T. Ultraviolet light-emitting diodes based on group three nitrides [J]. Nature Photonics, 2008, 2(2): 77-84.
[21] 郭浩中. LED原理与应用 [M]. 北京: 化学工业出版社, 2013.
[22] 董鹏. AlGaN基紫外LED效率提升研究 [D]. 中国科学院大学, 2022.
[23] 周圣军. 氮化镓基发光二极管芯片设计与制造技术 [M]. 北京: 科学出版社, 2019.
[24] ZHANG C, JIANG K, SUN X, et al. Recent progress on AlGaN based deep ultraviolet light-emitting diodes below 250 nm [J]. Crystals, 2022, 12(12): 1812.
[25] JONES K A, CHOW T P, WRABACK M, et al. AlGaN devices and growth of device structures [J]. Journal of Materials Science, 2015, 50(9): 3267-3307.
[26] BAN K, YAMAMOTO J-I, TAKEDA K, et al. Internal quantum efficiency of whole-composition-range AlGaN multiquantum wells [J]. Applied Physics Express, 2011, 4(5): 052101.
[27] XU R, KANG Q, ZHANG Y, et al. Research progress of AlGaN-based deep ultraviolet light-emitting diodes [J]. Micromachines, 2023, 14(4): 844.
[28] SUN Y, XU F, ZHANG N, et al. Realization of high efficiency AlGaN-based multiple quantum wells grown on nano-patterned sapphire substrates [J]. CrystEngComm, 2021, 23(5): 1201-1206.
[29] YIN Y A, WANG N, FAN G, et al. Investigation of AlGaN-based deep-ultraviolet light-emitting diodes with composition-varying AlGaN multilayer barriers [J]. Superlattices and Microstructures, 2014, 76: 149-155.
[30] FENG F, LIU Y, ZHANG K, et al. Enhancing the optical and electrical properties of AlGaN ultraviolet-C micro-LED via a hybrid scheme of plasma and chemical treatment [J]. Applied Physics Letters, 2022, 121(22): 221104.
[31] ASANE J K, CHOWDHURY M G R, KHABIR K M, et al. Stimulated emission in vicinity of the critical angle [J]. Applied Physics Letters, 2021, 119(3): 031102.
[32] NAM K B, LI J, NAKARMI M L, et al. Unique optical properties of AlGaN alloys and related ultraviolet emitters [J]. Applied Physics Letters, 2004, 84(25): 5264-5266.
[33] KUO Y-K, CHANG J-Y, CHANG H-T, et al. Polarization effect in AlGaN-based deep-ultraviolet light-emitting diodes [J]. IEEE Journal of Quantum Electronics, 2017, 53(1): 1-6.
[34] KIRSTE R, SARKAR B, REDDY P, et al. Status of the growth and fabrication of AlGaN-based UV laser diodes for near and mid-UV wavelength [J]. Journal of Materials Research, 2021, 36(23): 4638-4664.
[35] LEE K H, PARK H J, KIM S H, et al. Light-extraction efficiency control in AlGaN-based deep-ultraviolet flip-chip light-emitting diodes: a comparison to InGaN-based visible flip-chip light-emitting diodes [J]. Optics Express, 2015, 23(16): 20340-20349.
[36] INOUE S-I, NAOKI T, KINOSHITA T, et al. Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90 mW output power via an AlN hybrid nanostructure [J]. Applied Physics Letters, 2015, 106(13): 131104.
[37] TRAN T B, ALQATARI F, LUC Q-H. Nanophotonic crystals on unpolished sapphire substrates for deep-UV light-emitting diodes [J]. Scientific Reports, 2021, 11(1): 4981.
[38] PENG Y, GUO X, LIANG R, et al. Fabrication of microlens arrays with controlled curvature by micromolding water condensing based porous films for deep ultraviolet LEDs [J]. ACS Photonics, 2017, 4(10): 2479-2485.
[39] WANG S, DAI J, HU J, et al. Ultrahigh degree of optical polarization above 80% in AlGaN-based deep-ultraviolet LED with moth-eye microstructure [J]. ACS Photonics, 2018, 5(9): 3534-3540.
[40] DU P, CHENG Z. Enhancing light extraction efficiency of vertical emission of AlGaN nanowire light emitting diodes with photonic crystal [J]. IEEE Photonics Journal, 2019, 11(3): 1-9.
[41] DONG P, YAN J, WANG J, et al. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates [J]. Applied Physics Letters, 2013, 102(24): 241113.
[42] ZHANG J, CHANG L, ZHAO Z, et al. Different scattering effect of nano-patterned sapphire substrate for TM- and TE-polarized light emitted from AlGaN-based deep ultraviolet light-emitting diodes [J]. Optical Materials Express, 2021, 11(3): 729-739.
[43] SHATALOV M, SUN W, LUNEV A, et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10% [J]. Applied Physics Express, 2012, 5(8): 082101.
[44] INAZU T, FUKAHORI S, PERNOT C, et al. Improvement of light extraction efficiency for AlGaN-based deep ultraviolet light-emitting diodes [J]. Japanese Journal of Applied Physics, 2011, 50(12R): 122101.
[45] ZHENG Y, ZHANG Y, ZHANG J, et al. Effects of meshed p-type contact structure on the light extraction effect for deep ultraviolet flip-chip light-emitting diodes [J]. Nanoscale Research Letters, 2019, 14(1): 1-9.
[46] LEE T H, PARK T H, SHIN H W, et al. Smart wide‐Bandgap omnidirectional reflector as an effective hole‐injection electrode for deep‐UV light‐emitting diodes [J]. Advanced Optical Materials, 2019, 8(2): 1901430.
[47] ZHANG G, SHAO H, ZHANG M, et al. Enhancing the light extraction efficiency for AlGaN-based DUV LEDs with a laterally over-etched p-GaN layer at the top of truncated cones [J]. Optics Express, 2021, 29(19): 30532-30542.
[48] WIERER J J, ALLERMAN A A, MONTAñO I, et al. Influence of optical polarization on the improvement of light extraction efficiency from reflective scattering structures in AlGaN ultraviolet light-emitting diodes [J]. Applied Physics Letters, 2014, 105(6): 061106.
[49] LEE J W, PARK J H, KIM D Y, et al. Arrays of truncated cone AlGaN deep-ultraviolet light-emitting diodes facilitating efficient outcoupling of in-plane emission [J]. ACS Photonics, 2016, 3(11): 2030-2034.
[50] ZHENG Y, ZHANG J, CHANG L, et al. Understanding omni-directional reflectors and nominating more dielectric materials for deep ultraviolet light-emitting diodes with inclined sidewalls [J]. Journal of Applied Physics, 2020, 128(9): 093106.
[51] TIAN M, YU H, MEMON M H, et al. Enhanced light extraction of the deep-ultraviolet micro-LED via rational design of chip sidewall [J]. Optics Letters, 2021, 46(19): 4809-4812.
[52] RYU H-Y, CHOI I-G, CHOI H-S, et al. Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes [J]. Applied Physics Express, 2013, 6(6): 062101.
[53] SHIN W, PANDEY A, LIU X, et al. Photonic crystal tunnel junction deep ultraviolet light emitting diodes with enhanced light extraction efficiency [J]. Optics Express, 2019, 27(26): 28413-38420.
[54] ZHANG J, CHANG L, ZHENG Y, et al. Integrating remote reflector and air cavity into inclined sidewalls to enhance the light extraction efficiency for AlGaN-based DUV LEDs [J]. Optics Express, 2020, 28(11): 17035-17046.
[55] ZHANG Y, MENG R, ZHANG Z-H, et al. Effects of inclined sidewall structure with bottom metal air cavity on the light extraction efficiency for AlGaN-based deep ultraviolet light-emitting diodes [J]. IEEE Photonics Journal, 2017, 9(5): 1-9.
[56] FAN Q, NI X, HUA B, et al. Extraction efficiency simulation in deep ultraviolet AlGaN light emitting diodes [J]. Optical and Quantum Electronics, 2021, 53(7): 401.
[57] HUANG K, GAO N, WANG C, et al. Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localised surface plasmons [J]. Scientific Reports, 2014, 4(1): 4380-4380.
[58] ZHANG C, TANG N, SHANG L, et al. Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells [J]. Scientific Reports, 2017, 7(1): 2358-2355.
[59] 郑羽欣. 反射镜微纳结构对深紫外发光二极管光提取影响的研究 [D]. 河北工业大学, 2020.
[60] FLOYD R, GAEVSKI M, HUSSAIN K, et al. Enhanced light extraction efficiency of micropixel geometry AlGaN DUV light-emitting diodes [J]. Applied Physics Express, 2021, 14(8): 084002.
[61] YU H, MEMON M H, WANG D, et al. AlGaN-based deep ultraviolet micro-LED emitting at 275 nm [J]. Optics Letters, 2021, 46(13): 3271-3274.
[62] FENG F, ZHANG K, LIU Y, et al. AlGaN-Based deep-UV Micro-LED array for quantum dots converted display with ultra-Wide color gamut [J]. IEEE Electron Device Letters, 2022, 43(1): 60-63.
[63] LIU Y, ZHANG K, HYUN B-R, et al. High-brightness InGaN/GaN micro-LEDs with secondary peak effect for displays [J]. IEEE Electron Device Letters, 2020, 41(9): 1380-1383.
[64] JIANG F, HYUN B-R, ZHANG Y, et al. Role of intrinsic surface states in efficiency attenuation of GaN‐based micro‐light‐emitting‐diodes [J]. physica status solidi (RRL)–Rapid Research Letters, 2020, 15(2): 2000487.
[65] MEKIS A, SHANHUI F, JOANNOPOULOS J D. Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides [J]. IEEE Microwave and Guided Wave Letters, 1999, 9(12): 502-504.
[66] BERENGER J-P. A perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of Computational Physics, 1994, 114(2): 185-200.
[67] LIU M, LI K, KONG F-M, et al. Enhancement of the light-extraction efficiency of light-emitting diodes with SiO2 photonic crystals [J]. Optik, 2018, 161: 27-37.
[68] OLIVIER F, DAAMI A, LICITRA C, et al. Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: A size effect study [J]. Applied Physics Letters, 2017, 111(2): 022104.
[69] TIAN P, MCKENDRY J J D, GONG Z, et al. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes [J]. Applied Physics Letters, 2012, 101(23): 231110.
[70] GONG Z, JIN S, CHEN Y, et al. Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes [J]. Journal of Applied Physics, 2010, 107(1): 013103.
[71] KOU J, SHEN C C, SHAO H, et al. Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes [J]. Optics Express, 2019, 27(12): A643-A653.
[72] YU H, MEMON M H, JIA H, et al. A 10 × 10 deep ultraviolet light-emitting micro-LED array [J]. Journal of Semiconductors, 2022, 43(6): 062801.
[73] FENG F, LIU Y, LI Z, et al. Elevating the light output power density of scaling‐down AlGaN ultraviolet‐C micro‐LED [J]. SID International Symposium Digest of Technical Papers, 2023, 54(1): 279-282.
[74] ENGELBRECHT J A A, SEPHTON B, MINNAAR E, et al. An alternative method to determine the refractive index of AlxGa1−xN [J]. Physica B: Condensed Matter, 2016, 480: 181-185.
[75] 田梦. AlGaN基深紫外LED器件的光场调控研究 [D]. 中国科学技术大学, 2022.
[76] ZHENG Z, CHEN Q, DAI J, et al. Enhanced light extraction efficiency via double nano-pattern arrays for high-efficiency deep UV LEDs [J]. Optics & Laser Technology, 2021, 143: 107360.
[77] KOLBE T, KNAUER A, CHUA C, et al. Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes [J]. Applied Physics Letters, 2010, 97(17): 171105.
[78] 杜朋伟. 高效紫外发光二极管的理论与实验研究 [D]. 浙江大学, 2022.
[79] LIANG R, DAI J, XU L, et al. High light extraction efficiency of deep ultraviolet LEDs enhanced using nanolens arrays [J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2498-2503.
修改评论