[1] MANRAO E A, DERRINGTON I M, PAVLENOK M, et al. Nucleotide discrimination with DNA immobilized in the MSPA nanopore[J]. PLoS ONE, 2011, 6(10):e25723.
[2] WORKMAN R E, TANG A D, TANG P S, et al. Nanopore native RNA sequencing of a human poly(A) transcriptome[J]. Nature Methods, 2019, 16(12): 1297-1305.
[3] ROBERTSON J W F, REINER J E. The Utility of Nanopore Technology for Protein and Peptide Sensing[M]//Proteomics. Wiley-VCH Verlag, 2018.
[4] PIGUET F, OULDALI H, PASTORIZA-GALLEGO M, et al. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore[J]. Nature Communications, 2018, 9(1):996.
[5] LUCAS F L R, VERSLOOT R C A, YAKOVLIEVA L, et al. Protein identification by nanopore peptide profiling[J]. Nature Communications, 2021, 12(1):5795.
[6] CELAYA G, PERALES-CALVO J, et al. Label-Free, Multiplexed, Single-Molecule Analysis of Protein-DNA Complexes with Nanopores[J]. (2017):5815-5825.
[7] DERRINGTON I M, CRAIG J M, STAVA E, et al. Subangstrom single-molecule measurements of motor proteins using a nanopore[J]. Nature Biotechnology, 2015, 33(10): 1073-1075.
[8] ROSENSTEIN J. The promise of nanopore technology: Nanopore DNA sequencing represents a fundamental change in the way that genomic information is read, with potentially big savings[J]. IEEE Pulse, 2014, 5(4): 52-54.
[9] ROSENSTEIN J K, RAMAKRISHNAN S, ROSEMAN J, et al. Single ion channel recordings with CMOS-anchored lipid membranes[J]. Nano Letters, 2013, 13(6): 2682-2686.
[10] Axopatch 200B Patch Clamp Theory and Operation[R]. 1997.
[11] AWAN M A, WANG B, QUADIR N A, et al. Review and analysis of CMOS current readout circuits for biosensing applications[C]//Proceedings - IEEE International Symposium on Circuits and Systems: 2021-May. Institute of Electrical and Electronics Engineers Inc., 2021.
[12] DOOHWAN JUNG, SAGAR RAMESH KUMASHI, JONGSEOK PARK, et al. A CMOS Multimodality In-Pixel Electrochemical and Impedance Cellular Sensing Array for Massively Paralleled Synthetic Exoelectrogen Characterization[C]//2020 IEEE International Solid-State Circuits Conference. IEEE, 2020.
[13] YUN-SHIANG SHU, ZHI-XIN CHEN, YU-HONG LIN, et al. A 4.5mm2 Multimodal Biosensing SoC for PPG, ECG, BIOZ and GSR Acquisition in Consumer Wearable Devices[C]//2020 IEEE International Solid-State Circuits Conference. IEEE, 2020.
[14] LOPEZ C M, CHUN H S, BERTI L, et al. A 16384-electrode 1024-channel multimodal CMOS MEA for high-throughput intracellular action potential measurements and impedance spectroscopy in drug-screening applications[C]//2018 IEEE International Solid-State Circuits Conference: Vol. 61. Institute of Electrical and Electronics Engineers Inc., 2018: 464-466.
[15] ZHONG C B, MA H, WANG J J, et al. An ultra-low noise amplifier array system for high throughput single entity analysis[J]. Faraday Discussions, 2022, 233,33-43.
[16] YUN J, CHOI H, KIM J. Low-noise wide-bandwidth DNA readout instrument for nanopore applications[J]. Electronics Letters, 2017, 53(11): 706-708.
[17] KIM J, DUNBAR W B. High-precision low-power DNA readout interface chip for multichannel nanopore applications[J]. Sensors and Actuators, B: Chemical, 2016, 234: 273-277.
[18] KIM J, PEDROTTI K, DUNBAR W B. An area-efficient low-noise CMOS DNA detection sensor for multichannel nanopore applications[J]. Sensors and Actuators, B: Chemical, 2013, 176: 1051-1055.
[19] FANG S, YIN B, XIE W, et al. Low-noise and high-speed trans-impedance amplifier for nanopore sensor[J]. Review of Scientific Instruments, 2023, 94(7).
[20] YAN H, ZHANG Z, WENG T, et al. Recognition of bimolecular logic operation pattern based on a solid-state nanopore[M]//Sensors (Switzerland). MDPI AG, 2021: 1-11.
[21] KIM D, BYUN S, PU Y, et al. Design of a Current Sensing System with TIA Gain of 160 dBΩ and Input-Referred Noise of 1.8 pArms for Biosensor[J]. Sensors, 2023, 23(6):3019.
[22] SHEKAR S, NIEDZWIECKI D J, CHIEN C C, et al. Measurement of DNA translocation dynamics in a solid-state nanopore at 100 ns temporal resolution[J]. Nano Letters, 2016, 16(7): 4483-4489.
[23] DJEKIC D, FANTNER G, LIPS K, et al. A 0.1% THD, 1-MΩ to 1-GΩ Tunable, Temperature-Compensated Transimpedance Amplifier Using a Multi-Element Pseudo-Resistor[J]. IEEE Journal of Solid-State Circuits, 2018, 53(7): 1913-1923.
[24] SINA PARSNEJAD, HAITAO LI, ANDREW J. MASON. Compact CMOS Amperometric Readout for Nanopore Arrays in High Throughput Lab-on-CMOS[C]//2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2016.
[25] MULBERRY G, WHITE K A, KIM B N. Analysis of Simple Half-Shared Transimpedance Amplifier for Picoampere Biosensor Measurements[J]. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13(2): 387-395.
[26] TAHERZADEH-SANI M, HUSSAIN HUSSAINI S M, REZAEE-DEHSORKH H, et al. A 170-dBΩ CMOS TIA With 52-pA Input-Referred Noise and 1-MHz Bandwidth for Very Low Current Sensing[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(5): 1756-1766.
[27] HSU C L, JIANG H, VENKATESH A G, et al. A Hybrid Semi-Digital Transimpedance Amplifier with Noise Cancellation Technique for Nanopore-Based DNA Sequencing[J]. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9(5): 652-661.
[28] DAWJI Y, HABIBI M, GHAFAR-ZADEH E, et al. A Scalable Discrete-Time Integrated CMOS Readout Array for Nanopore Based DNA Sequencing[J]. IEEE Access, 2021, 9: 155543-155554.
[29] WANG Y, JIN G, TANG H, et al. A potentiostat readout array for nanopore-based DNA sequencing[J]. IEICE Electronics Express, 2024: 21.20240118.
[30] PANSODTEE P, SELBERG J, JIA M, et al. The multi-channel potentiostat: Development and evaluation of a scalable mini-potentiostat array for investigating electrochemical reaction mechanisms[J]. PLoS ONE, 2021, 16(9):e0257167
[31] LU S Y, SHAN S S, LU T H, et al. A Review of CMOS Electrochemical Readout Interface Designs for Biomedical Assays[M]//IEEE Sensors Journal. Institute of Electrical and Electronics Engineers Inc., 2021: 12469-12483.
[32] LIU X, FAN Q, HU X, et al. A Fast Current Sensing Front-End IC Design for Nanopore-Based DNA Sequencing[C]//Proceedings of the International Conference on Anti-Counterfeiting, Security and Identification, ASID: 2022-December. IEEE Computer Society, 2022: 81-85.
[33] CRESCENTINI M, THEI F, BENNATI M, et al. A distributed amplifier system for bilayer lipid membrane (BLM) arrays with noise and individual offset cancellation[J]. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9(3): 334-344.
[34] CAIRNS-GIBSON D F, COCKROFT S L. Functionalised nanopores: Chemical and biological modifications[J]. Chemical Science, 2022, 13(7): 1869-1882.
[35] WU Y, GOODING J J. The application of single molecule nanopore sensing for quantitative analysis[M]//Chemical Society Reviews. Royal Society of Chemistry, 2022: 3862-3885.
[36] CHENJIE DONG, YIZHOU JIANG, KE JIANG, et al. A 37.37µW-per-Cell Multifunctional Automated Nanopore Sequencing CMOS Platform with 16*8 Biosensor Array[C]//2020 IEEE International Symposium on Circuits and Systems (ISCAS): proceedings : ISCAS 2020 : Virtual Conference, October 10-21, 2020.
[37] ROSENSTEIN J K, WANUNU M, MERCHANT C A, et al. Integrated nanopore sensing platform with sub-microsecond temporal resolution[J]. Nature Methods, 2012, 9(5): 487-492.
[38] W. H. COULTER. Means for counting particles suspended in a fluid[P]. 1953.
[39] DEAMER D, AKESON M, BRANTON D. Three decades of nanopore sequencing[M]//Nature Biotechnology. Nature Publishing Group, 2016: 518-524.
[40] KASIANOWICZ J J, BRANDIN E, BRANTON D, et al. Characterization of individual polynucleotide molecules using a membrane channel[R]//Biophysics: Vol. 93. 1996.
[41] DERRINGTON I M, BUTLER T Z, COLLINS M D, et al. Nanopore DNA sequencing with MspA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (37): 16060-16065.
[42] MANRAO E A, DERRINGTON I M, LASZLO A H, et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase[J]. Nature Biotechnology, 2012, 30(4): 349-353.
[43] VAN DER VERREN S E, VAN GERVEN N, JONCKHEERE W, et al. A dual-constriction biological nanopore resolves homonucleotide sequences with high fidelity[J]. Nature Biotechnology, 2020, 38(12): 1415-1420.
[44] YU J, CAO C, LONG Y T. Selective and Sensitive Detection of Methylcytosine by Aerolysin Nanopore under Serum Condition[J]. Analytical Chemistry, 2017, 89(21): 11685-11689.
[45] JIALI LI, DEREK STEIN, CIARAN MCMULLAN, et al. Ion-beam sculpting at nanometre length scales[J]. Nature, 2001, 412(6843): 166-169.
[46] C. DEKKER. Solid-state nanopores[J]. Nature Nanotechnology, 2007, 2(4): 209-215.
[47] YING C, ZHANG Y, FENG Y, et al. 3D nanopore shape control by current-stimulus dielectric breakdown[J]. Applied Physics Letters, 2016, 109(6): 063105.
[48] SCHOCH R B, HAN J, RENAUD P. Transport phenomena in nanofluidics[J]. Reviews of Modern Physics, 2008, 80(3): 839-883.
[49] AMAYREH M, BAAKEN G, BEHRENDS J C, et al. A Fully Integrated Current-Mode Continuous-Time Delta-Sigma Modulator for Biological Nanopore Read Out[J]. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13(1): 225-236.
[50] JACOB K. ROSENSTEIN, KENNETH L. SHEPARD. Temporal Resolution of Nanopore Sensor Recordings[C]//2013 35th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 3-7 July 2013, Osaka, Japan. 2013.
[51] LIU H, ZHOU Q, WANG W, et al. Solid-State Nanopore Array: Manufacturing and Applications[M]//Small. John Wiley and Sons Inc, 2023.
[52] WANUNU M, SUTIN J, MCNALLY B, et al. DNA translocation governed by interactions with solid-state nanopores[J]. Biophysical Journal, 2008, 95(10): 4716-4725.
[53] SMEETS R M M, KEYSER U F, DEKKER N H, et al. Noise in solid-state nanopores[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105 (2): 417-421.
[54] FRAGASSO A, SCHMID S, DEKKER C. Comparing Current Noise in Biological and Solid-State Nanopores[M]//ACS Nano 2020, 14, 2, 1338–1349.
[55] WEN C, ZENG S, ARSTILA K, et al. Generalized Noise Study of Solid-State Nanopores at Low Frequencies[J]. ACS Sensors, 2017, 2(2): 300-307.
[56] LUGER P. Shot noise in ion channels[R]//Btochimwa et Btophysica Acta: Vol. 413. 1975.
[57] H. Frohlich, Theory of Dielectrics: Dielectric Constant and Dielectric Loss. [M]Oxford University Press, 1949.
[58] YANAGI I, FUJISAKI K, HAMAMURA H, et al. Thickness-dependent dielectric breakdown and nanopore creation on sub-10-nm-thick SiN membranes in solution[J]. Journal of Applied Physics, 2017, 121(4).
[59] RAZAVI. B. Design of Analog CMOS Integrated Circuits[M] McGraw Hill, 2016.
[60] MAGIEROWSKI S, HUANG Y, WANG C, et al. Nanopore-CMOS interfaces for DNA sequencing[M]// Biosensors 2016, 6(3), 42.
[61] SAKMANN_NEHER. Single-Channel Recording[M]//Single-Channel Recording. Springer US, 1995.
[62] FLEMING S J. Probing nanopore-DNA interactions with MspA[D]. 2017.
修改评论