[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. science, 2004, 306(5696): 666-669.
[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of masslessDirac fermions in graphene[J]. nature, 2005, 438(7065): 197-200.
[3] ZHANG Y, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene[J]. nature, 2005, 438(7065): 201-204.
[4] TANG S, ZHANG C, WONG D, et al. Quantum spin Hall state in monolayer 1T’-WTe2[J]. Nature Physics, 2017, 13(7): 683-687.
[5] WANG P, YU G, JIA Y, et al. Landau quantization and highly mobile fermions in an insulator [J]. Nature, 2021, 589(7841): 225-229.
[6] DENG Y, YU Y, SHI M Z, et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4[J]. Science, 2020, 367(6480): 895-900.
[7] GUPTA A, SAKTHIVEL T, SEAL S. Recent development in 2D materials beyond graphene [J]. Progress in Materials Science, 2015, 73: 44-126.
[8] KUC A, ZIBOUCHE N, HEINE T. Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2[J]. Physical review B, 2011, 83(24): 245213.
[9] SPLENDIANI A, SUN L, ZHANG Y, et al. Emerging photoluminescence in monolayer MoS2 [J]. Nano letters, 2010, 10(4): 1271-1275.
[10] GUTIÉRREZ H R, PEREA-LÓPEZ N, ELÍAS A L, et al. Extraordinary room-temperaturephotoluminescence in triangular WS2 monolayers[J]. Nano letters, 2013, 13(8): 3447-3454.
[11] NOVOSELOV K S, MISHCHENKO A, CARVALHO A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353(6298): aac9439.
[12] QI X L, ZHANG S C. Topological insulators and superconductors[J]. Reviews of modern physics, 2011, 83(4): 1057.
[13] FEI Z, HUANG B, MALINOWSKI P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2[J]. Nature materials, 2018, 17(9): 778-782.
[14] GUAN Z, HU H, SHEN X, et al. Recent progress in two-dimensional ferroelectric materials [J]. Advanced Electronic Materials, 2020, 6(1): 1900818.
[15] LI X, TAO L, CHEN Z, et al. Graphene and related two-dimensional materials: Structureproperty relationships for electronics and optoelectronics[J]. Applied Physics Reviews, 2017, 4(2).
[16] XIA F, WANG H, XIAO D, et al. Two-dimensional material nanophotonics[J]. Nature photonics, 2014, 8(12): 899-907.
[17] CHEN Y, TAN C, WANG Z, et al. Momentum-matching and band-alignment van der Waals heterostructures for high-efficiency infrared photodetection[J]. Science Advances, 2022, 8(30): eabq1781.
[18] SARMA S D, ADAM S, HWANG E, et al. Electronic transport in two-dimensional graphene [J]. Reviews of modern physics, 2011, 83(2): 407.
[19] KOPPENS F, MUELLER T, AVOURIS P, et al. Photodetectors based on graphene, other twodimensional materials and hybrid systems[J]. Nature nanotechnology, 2014, 9(10): 780-793.
[20] TAN C, CAO X, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials [J]. Chemical reviews, 2017, 117(9): 6225-6331.
[21] DAS S, ROBINSON J A, DUBEY M, et al. Beyond graphene: progress in novel twodimensional materials and van der Waals solids[J]. Annual Review of Materials Research,2015, 45: 1-27.
[22] BRITNELL L, RIBEIRO R M, ECKMANN A, et al. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science, 2013, 340(6138): 1311-1314.
[23] HAUBOLD E, FEDOROV A, PIELNHOFER F, et al. Possible experimental realization of a basic Z2 topological semimetal in GaGeTe[J]. APL Materials, 2019, 7(12).
[24] ZHANG J, LI S S, JI W X, et al. Two-dimensional GaGeTe film: a promising graphene-like material with tunable band structure and high carrier mobility[J]. Journal of Materials Chemistry C, 2017, 5(34): 8847-8853.
[25] EZAWA M. Photoinduced topological phase transition and a single Dirac-cone state in silicene [J]. Physical review letters, 2013, 110(2): 026603.
[26] LIU C C, FENG W, YAO Y. Quantum spin Hall effect in silicene and two-dimensional germanium[J]. Physical review letters, 2011, 107(7): 076802.
[27] BAMPOULIS P, CASTENMILLER C, KLAASSEN D J, et al. Quantum spin hall states and topological phase transition in germanene[J]. Physical review letters, 2023, 130(19): 196401.
[28] KE C, WU Y, ZHOU J, et al. Modification of the electronic and spintronic properties of monolayer GaGeTe with a vertical electric field[J]. Journal of Physics D: Applied Physics, 2019, 52 (11): 115101.
[29] HAN N T, DIEN V K, CHANG T R, et al. Theoretical investigations of the electronic and optical properties of a GaGeTe monolayer[J]. RSC advances, 2023, 13(28): 19464-19476.
[30] GALLEGO-PARRA S, BANDIELLO E, LIANG A, et al. Layered topological semimetalGaGeTe: New polytype with non-centrosymmetric structure[J]. Materials Today Advances, 2022, 16: 100309.
[31] LI J, LIU P F, ZHANG C, et al. Lattice vibrational modes and phonon thermal conductivity of single-layer GaGeTe[J]. Journal of Materiomics, 2020, 6(4): 723-728.
[32] 张晋. 二维GaGeTe 薄膜设计及其量子性质调控[D]. 济南大学, 2020.
[33] KUCEK V, DRASAR C, NAVRATIL J, et al. Optical and transport properties of GaGeTe single crystals[J]. Journal of crystal growth, 2013, 380: 72-77.
[34] PIELNHOFER F, MENSHCHIKOVA T V, RUSINOV I P, et al. Designing 3D topological insulators by 2D-Xene (X= Ge, Sn) sheet functionalization in GaGeTe-type structures[J]. Journal of Materials Chemistry C, 2017, 5(19): 4752-4762.
[35] ROYCHOWDHURY A, DALUI T, GHOSE P, et al. Coexisting ferromagnetic component and negative magnetoresistance at low temperature in single crystals of the VdW material GaGeTe [J]. Journal of Solid State Chemistry, 2022, 312: 123106.
[36] LÓPEZ-CRUZ E, CARDONA M, MARTÍNEZ E. Raman spectrum and lattice dynamics of GaGeTe[J]. Physical Review B, 1984, 29(10): 5774.
[37] LIN R, ZHAO D, ZHANG J, et al. Thickness-dependent semimetal-to-semiconductor transition in two-dimensional GaGeTe[J]. Journal of Applied Physics, 2023, 133(2).
[38] LEE C, YAN H, BRUS L E, et al. Anomalous lattice vibrations of single-and few-layer MoS2 [J]. ACS nano, 2010, 4(5): 2695-2700.
[39] QIN J K, LIAO P Y, SI M, et al. Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes[J]. Nature electronics, 2020, 3(3): 141-147.
[40] RYU H, LEE Y, JEONG J H, et al. Laser-Induced Phase Transition and Patterning of hBNEncapsulated MoTe2[J]. Small, 2023, 19(17): 2205224.
[41] TAMALAMPUDI S R, RASRAS M S. A high-performance broadband photodetector (UVNIR) based on few layer GaGeTe[C]//2021 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2021: 1-3.
[42] TAMALAMPUDI S R, DUSHAQ G, VILLEGAS J E, et al. Short-wavelength infrared (SWIR) photodetector based on multi-layer 2D GaGeTe[J]. Optics Express, 2021, 29(24): 39395-39405.
[43] TAMALAMPUDI S R, DUSHAQ G, VILLEGAS J E, et al. A multi-layered GaGeTe electrooptic device integrated in silicon photonics[J]. Journal of Lightwave Technology, 2023.
[44] RUDOLPH P, KIESSLING F M. The horizontal bridgman method[J]. Crystal research and technology, 1988, 23(10-11): 1207-1224.
[45] WANG D, LUO F, LU M, et al. Chemical vapor transport reactions for synthesizing layered materials and their 2D counterparts[J]. Small, 2019, 15(40): 1804404.
[46] Wikipedia. Bridgman–Stockbarger method[EB/OL]. 2023. https://en.wikipedia.org/wiki/Bridgman%E2%80%93Stockbarger_method, Last accessed on 2024-03-20.
[47] GARANDET J, ALBOUSSIERE T. Bridgman growth: modelling and experiments[J]. Progress in crystal growth and characterization of materials, 1999, 38(1-4): 133-159.
[48] ZHANG X, LI Y, MU W, et al. Advanced tape-exfoliated method for preparing large-area 2D monolayers: a review[J]. 2D Materials, 2021, 8(3): 032002.
[49] HUANG Y, SUTTER E, SHI N N, et al. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials[J]. ACS nano, 2015, 9(11): 10612-10620.
[50] MAGDA G Z, PETŐ J, DOBRIK G, et al. Exfoliation of large-area transition metal chalcogenide single layers[J]. Scientific reports, 2015, 5(1): 14714.
[51] VELICKY M, DONNELLY G E, HENDREN W R, et al. Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers[J]. ACS nano, 2018, 12 (10): 10463-10472.
[52] GAO P F, LEI G, HUANG C Z. Dark-field microscopy: recent advances in accurate analysis and emerging applications[J]. Analytical Chemistry, 2021, 93(11): 4707-4726.
[53] ZHANG B, ZHANG Z, HAN H, et al. A Universal Approach to Determine the Atomic Layer Numbers in Two-Dimensional Materials Using Dark-Field Optical Contrast[J]. Nano Letters, 2023, 23(19): 9170-9177.
[54] LI X L, HAN W P, WU J B, et al. Layer-number dependent optical properties of 2D materials and their application for thickness determination[J]. Advanced Functional Materials, 2017, 27 (19): 1604468.
[55] NI Z, WANG H, KASIM J, et al. Graphene thickness determination using reflection and contrast spectroscopy[J]. Nano letters, 2007, 7(9): 2758-2763.
[56] 韩文鹏, 史衍猛, 李晓莉, 等. 石墨烯等二维原子晶体薄片样品的光学衬度计算及其层数表征[J]. 物理学报, 2013, 62(11): 110702.
[57] WU J P, WANG L, ZHANG L Y. Rapid and nondestructive layer number identification of two-dimensional layered transition metal dichalcogenides[J]. Rare Metals, 2017, 36: 698-703.
[58] Materials Project. Materials Project - Materials Explorer[EB/OL]. 2023. https://next-gen.materialsproject.org/materials/mp-8211?chemsys=Ga-Ge-Te, Last accessed on 2024-03-20.
[59] SMITH D, SHILES E, INOKUTI M, et al. Handbook of optical constants of solids[J]. Handbook of Optical Constants of Solids, 1997, 1: 369-406.
[60] 吴国祯. 拉曼谱学: 峰强中的信息[M]. 科学出版社, 2007.
[61] TAN Y, LUO F, ZHU M, et al. Controllable 2H-to-1T′ phase transition in few-layer MoTe 2[J]. Nanoscale, 2018, 10(42): 19964-19971.
[62] LIN M L, LENG Y C, CONG X, et al. Understanding angle-resolved polarized Raman scattering from black phosphorus at normal and oblique laser incidences[J]. Science Bulletin, 2020, 65(22): 1894-1900.
[63] SHI G, GAO F, LI Z, et al. Quantum corrections to the magnetoconductivity of surface states in three-dimensional topological insulators[J]. Nature Communications, 2023, 14(1): 2596.
[64] OZERI M, XU J, BAUER G, et al. Modification of Weak Localization in Metallic Thin Films Due to the Adsorption of Chiral Molecules[J]. The Journal of Physical Chemistry Letters, 2023, 14(21): 4941-4948.
[65] LI H, HE H, LU H Z, et al. Negative magnetoresistance in Dirac semimetal Cd3As2[J]. Nature communications, 2016, 7(1): 10301.
修改评论