中文版 | English
题名

层状α-GaGeTe晶体及其少层薄膜的物性研究

其他题名
PHYSICAL PROPERTIES OF LAYERED 𝛼-GaGeTe CRYSTALS AND THEIR FEW-LAYER FILMS
姓名
姓名拼音
LI Gangyue
学号
12131263
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
张立源
导师单位
物理系
论文答辩日期
2024-05-15
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

自石墨烯于2004 年被发现以来,二维(2D)材料在材料科学、纳米技术以及量子研究领域带来了革命性的变化。这类材料因其独特的物理特性(高电子迁移率、优异的光学性质、高强度和高弹性模量等优势)和丰富的化学性质(高表面积比、优异的催化性能和光化学活性等)而受到广泛的关注。特别是在量子物理方面,2D 材料为研究量子限域效应引起的电子结构变化、非平庸的拓扑属性及非常规的超导属性等物理性质提供了新的研究平台。GaGeTe 作为2D 材料家族中的一种,其块材被预测可能表现出非平庸的拓扑态,其少层薄膜的能带结构易受到层数、外加电场、磁场以及应力等多种内外部因素的显著影响,展现出极其丰富的物理特性。不仅如此,研究者们验证了GaGeTe 的多数载流子为空穴且在空气中较稳定,这在已知的2D 材料中相对罕见。然而,关于少层GaGeTe 薄膜的能带结构随层数变化的问题,科学界仍存在争议。探测GaGeTe 薄膜光学信号的过程中激光或加热可能对GaGeTe 造成损伤,导致缺乏对其本征光学信号(如拉曼光谱)的实验分析。因此,本论文将重点研究GaGeTe 晶体及其少层2D 形态的本征物理特性。

本论文首先通过布里奇曼方法获得高质量的GaGeTe 单晶,并通过改良剥离方法获得少层甚至单层的GaGeTe 薄膜样品。通过改进实验方法,我们先后获得了GaGeTe 薄膜的本征光学衬度谱、拉曼光谱和电输运特性。研究结果显示,GaGeTe的光学衬度谱和拉曼光谱显著依赖于薄膜的层数,且通过角分辨偏振拉曼光谱的探测,我们确认了GaGeTe 薄膜具有明显的各向异性。不仅如此,300 nm SiO2/Si衬底上的少层GaGeTe 薄膜的光学衬度谱在550 nm 以及600-700 nm 波段有明显的衬度峰,因此通过绿光和红光波段的滤波片观察少层GaGeTe 薄膜更明显,这一结果与理论计算结果相似。基于这些结果,本论文开发了使用MATLAB 的图像分析技术,对少层GaGeTe 的明场及暗场成像中红色(R)、绿色(G)和蓝色(B)通道的衬度值进行分析,发展了一种适用于多种2D 薄膜材料的低损伤的光学厚度分析方法。此外,本论文还通过电学测量发现GaGeTe 薄膜材料在低温小磁场条件下表现出负磁阻现象和弱局域效应。因此,本论文的研究结果不仅揭示了本征的GaGeTe 薄膜在光电器件和微电子领域的潜在应用潜力,还为其他2D 材料的研究以及高性能器件应用的开发提供了有力的技术支持和研究基础。

其他摘要

Since the discovery of graphene in 2004, two-dimensional (2D) materials have revolutionized materials science, nanotechnology, and quantum research. These materials attract attention due to their wide distribution, unique physical properties (Combining the advantages of high electron mobility, desirable optical properties, high strength, and high elastic modulus.), and rich chemical properties (Including high surface area to volume ratio, excellent catalytic performance, and photochemical activity, among others.). In quantum physics, 2D materials provide a new platform for studying changes in electronic structure due to quantum confinement, non-trivial topological properties, and unconventional superconductivity. GaGeTe, a member of the 2D material family, is predicted to exhibit non-trivial topological states in its bulk form, and the band structures of its fewlayer films are significantly influenced by factors such as layer number, applied electric fields, magnetic fields, and stress, displaying a range of physical properties. Furthermore, researchers verified that the main carriers of GaGeTe are holes and GaGeTe films are stable in air, which is relatively rare in known 2D materials. GaGeTe has been verified to exhibit stable p-type characteristics, which are rare in 2D materials. However, the band structure of GaGeTe films with varying layers remains controversial, and the analysis of optical and electrical signals due to layer number changes is incomplete. Experimental analyses of intrinsic optical signals (such as Raman spectroscopy) are lacking due to damage from lasers or heating during detection. This thesis will focus on the intrinsic physical properties of GaGeTe crystals and their few-layer 2D forms.

In this thesis, high-quality GaGeTe single crystals were obtained using the Bridgman
method, and few-layer or even monolayer GaGeTe film samples were acquired through improved exfoliation techniques. By refining experimental methods, we obtained the intrinsic optical contrast spectroscopy, Raman spectroscopy, and electrical transport properties of GaGeTe films. Our research indicates that GaGeTe’s optical contrast and Raman spectra are strongly layer-dependent, and angle-resolved polarized Raman spectroscopy has revealed significant anisotropy in the film. Additionally, the optical contrast spectroscopy of GaGeTe films on 300 nm SiO2/Si substrates exhibited distinct contrast peaks at 550 nm and 600-700 nm, making the films more visible under green and red light filters, which is consistent with the theoretical calculations. Based on these results, we developed an image analysis technique using MATLAB to analyze the red (R), green (G), and blue (B) channel contrast values in bright and dark field imaging of GaGeTe films, creating a non-destructive thickness analysis method for various 2D materials. Moreover, electrical measurements revealed that GaGeTe films exhibit negative magnetoresistance and weak localization effects under low temperature and small magnetic field conditions. The findings of this thesis not only highlight the potential applications of GaGeTe films in optoelectronic devices and microelectronics but also provide strong technical support and a research foundation for the study of other 2D materials and the development of high-performance device applications.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. science, 2004, 306(5696): 666-669.
[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of masslessDirac fermions in graphene[J]. nature, 2005, 438(7065): 197-200.
[3] ZHANG Y, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene[J]. nature, 2005, 438(7065): 201-204.
[4] TANG S, ZHANG C, WONG D, et al. Quantum spin Hall state in monolayer 1T’-WTe2[J]. Nature Physics, 2017, 13(7): 683-687.
[5] WANG P, YU G, JIA Y, et al. Landau quantization and highly mobile fermions in an insulator [J]. Nature, 2021, 589(7841): 225-229.
[6] DENG Y, YU Y, SHI M Z, et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4[J]. Science, 2020, 367(6480): 895-900.
[7] GUPTA A, SAKTHIVEL T, SEAL S. Recent development in 2D materials beyond graphene [J]. Progress in Materials Science, 2015, 73: 44-126.
[8] KUC A, ZIBOUCHE N, HEINE T. Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2[J]. Physical review B, 2011, 83(24): 245213.
[9] SPLENDIANI A, SUN L, ZHANG Y, et al. Emerging photoluminescence in monolayer MoS2 [J]. Nano letters, 2010, 10(4): 1271-1275.
[10] GUTIÉRREZ H R, PEREA-LÓPEZ N, ELÍAS A L, et al. Extraordinary room-temperaturephotoluminescence in triangular WS2 monolayers[J]. Nano letters, 2013, 13(8): 3447-3454.
[11] NOVOSELOV K S, MISHCHENKO A, CARVALHO A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353(6298): aac9439.
[12] QI X L, ZHANG S C. Topological insulators and superconductors[J]. Reviews of modern physics, 2011, 83(4): 1057.
[13] FEI Z, HUANG B, MALINOWSKI P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2[J]. Nature materials, 2018, 17(9): 778-782.
[14] GUAN Z, HU H, SHEN X, et al. Recent progress in two-dimensional ferroelectric materials [J]. Advanced Electronic Materials, 2020, 6(1): 1900818.
[15] LI X, TAO L, CHEN Z, et al. Graphene and related two-dimensional materials: Structureproperty relationships for electronics and optoelectronics[J]. Applied Physics Reviews, 2017, 4(2).
[16] XIA F, WANG H, XIAO D, et al. Two-dimensional material nanophotonics[J]. Nature photonics, 2014, 8(12): 899-907.
[17] CHEN Y, TAN C, WANG Z, et al. Momentum-matching and band-alignment van der Waals heterostructures for high-efficiency infrared photodetection[J]. Science Advances, 2022, 8(30): eabq1781.
[18] SARMA S D, ADAM S, HWANG E, et al. Electronic transport in two-dimensional graphene [J]. Reviews of modern physics, 2011, 83(2): 407.
[19] KOPPENS F, MUELLER T, AVOURIS P, et al. Photodetectors based on graphene, other twodimensional materials and hybrid systems[J]. Nature nanotechnology, 2014, 9(10): 780-793.
[20] TAN C, CAO X, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials [J]. Chemical reviews, 2017, 117(9): 6225-6331.
[21] DAS S, ROBINSON J A, DUBEY M, et al. Beyond graphene: progress in novel twodimensional materials and van der Waals solids[J]. Annual Review of Materials Research,2015, 45: 1-27.
[22] BRITNELL L, RIBEIRO R M, ECKMANN A, et al. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science, 2013, 340(6138): 1311-1314.
[23] HAUBOLD E, FEDOROV A, PIELNHOFER F, et al. Possible experimental realization of a basic Z2 topological semimetal in GaGeTe[J]. APL Materials, 2019, 7(12).
[24] ZHANG J, LI S S, JI W X, et al. Two-dimensional GaGeTe film: a promising graphene-like material with tunable band structure and high carrier mobility[J]. Journal of Materials Chemistry C, 2017, 5(34): 8847-8853.
[25] EZAWA M. Photoinduced topological phase transition and a single Dirac-cone state in silicene [J]. Physical review letters, 2013, 110(2): 026603.
[26] LIU C C, FENG W, YAO Y. Quantum spin Hall effect in silicene and two-dimensional germanium[J]. Physical review letters, 2011, 107(7): 076802.
[27] BAMPOULIS P, CASTENMILLER C, KLAASSEN D J, et al. Quantum spin hall states and topological phase transition in germanene[J]. Physical review letters, 2023, 130(19): 196401.
[28] KE C, WU Y, ZHOU J, et al. Modification of the electronic and spintronic properties of monolayer GaGeTe with a vertical electric field[J]. Journal of Physics D: Applied Physics, 2019, 52 (11): 115101.
[29] HAN N T, DIEN V K, CHANG T R, et al. Theoretical investigations of the electronic and optical properties of a GaGeTe monolayer[J]. RSC advances, 2023, 13(28): 19464-19476.
[30] GALLEGO-PARRA S, BANDIELLO E, LIANG A, et al. Layered topological semimetalGaGeTe: New polytype with non-centrosymmetric structure[J]. Materials Today Advances, 2022, 16: 100309.
[31] LI J, LIU P F, ZHANG C, et al. Lattice vibrational modes and phonon thermal conductivity of single-layer GaGeTe[J]. Journal of Materiomics, 2020, 6(4): 723-728.
[32] 张晋. 二维GaGeTe 薄膜设计及其量子性质调控[D]. 济南大学, 2020.
[33] KUCEK V, DRASAR C, NAVRATIL J, et al. Optical and transport properties of GaGeTe single crystals[J]. Journal of crystal growth, 2013, 380: 72-77.
[34] PIELNHOFER F, MENSHCHIKOVA T V, RUSINOV I P, et al. Designing 3D topological insulators by 2D-Xene (X= Ge, Sn) sheet functionalization in GaGeTe-type structures[J]. Journal of Materials Chemistry C, 2017, 5(19): 4752-4762.
[35] ROYCHOWDHURY A, DALUI T, GHOSE P, et al. Coexisting ferromagnetic component and negative magnetoresistance at low temperature in single crystals of the VdW material GaGeTe [J]. Journal of Solid State Chemistry, 2022, 312: 123106.
[36] LÓPEZ-CRUZ E, CARDONA M, MARTÍNEZ E. Raman spectrum and lattice dynamics of GaGeTe[J]. Physical Review B, 1984, 29(10): 5774.
[37] LIN R, ZHAO D, ZHANG J, et al. Thickness-dependent semimetal-to-semiconductor transition in two-dimensional GaGeTe[J]. Journal of Applied Physics, 2023, 133(2).
[38] LEE C, YAN H, BRUS L E, et al. Anomalous lattice vibrations of single-and few-layer MoS2 [J]. ACS nano, 2010, 4(5): 2695-2700.
[39] QIN J K, LIAO P Y, SI M, et al. Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes[J]. Nature electronics, 2020, 3(3): 141-147.
[40] RYU H, LEE Y, JEONG J H, et al. Laser-Induced Phase Transition and Patterning of hBNEncapsulated MoTe2[J]. Small, 2023, 19(17): 2205224.
[41] TAMALAMPUDI S R, RASRAS M S. A high-performance broadband photodetector (UVNIR) based on few layer GaGeTe[C]//2021 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2021: 1-3.
[42] TAMALAMPUDI S R, DUSHAQ G, VILLEGAS J E, et al. Short-wavelength infrared (SWIR) photodetector based on multi-layer 2D GaGeTe[J]. Optics Express, 2021, 29(24): 39395-39405.
[43] TAMALAMPUDI S R, DUSHAQ G, VILLEGAS J E, et al. A multi-layered GaGeTe electrooptic device integrated in silicon photonics[J]. Journal of Lightwave Technology, 2023.
[44] RUDOLPH P, KIESSLING F M. The horizontal bridgman method[J]. Crystal research and technology, 1988, 23(10-11): 1207-1224.
[45] WANG D, LUO F, LU M, et al. Chemical vapor transport reactions for synthesizing layered materials and their 2D counterparts[J]. Small, 2019, 15(40): 1804404.
[46] Wikipedia. Bridgman–Stockbarger method[EB/OL]. 2023. https://en.wikipedia.org/wiki/Bridgman%E2%80%93Stockbarger_method, Last accessed on 2024-03-20.
[47] GARANDET J, ALBOUSSIERE T. Bridgman growth: modelling and experiments[J]. Progress in crystal growth and characterization of materials, 1999, 38(1-4): 133-159.
[48] ZHANG X, LI Y, MU W, et al. Advanced tape-exfoliated method for preparing large-area 2D monolayers: a review[J]. 2D Materials, 2021, 8(3): 032002.
[49] HUANG Y, SUTTER E, SHI N N, et al. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials[J]. ACS nano, 2015, 9(11): 10612-10620.
[50] MAGDA G Z, PETŐ J, DOBRIK G, et al. Exfoliation of large-area transition metal chalcogenide single layers[J]. Scientific reports, 2015, 5(1): 14714.
[51] VELICKY M, DONNELLY G E, HENDREN W R, et al. Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers[J]. ACS nano, 2018, 12 (10): 10463-10472.
[52] GAO P F, LEI G, HUANG C Z. Dark-field microscopy: recent advances in accurate analysis and emerging applications[J]. Analytical Chemistry, 2021, 93(11): 4707-4726.
[53] ZHANG B, ZHANG Z, HAN H, et al. A Universal Approach to Determine the Atomic Layer Numbers in Two-Dimensional Materials Using Dark-Field Optical Contrast[J]. Nano Letters, 2023, 23(19): 9170-9177.
[54] LI X L, HAN W P, WU J B, et al. Layer-number dependent optical properties of 2D materials and their application for thickness determination[J]. Advanced Functional Materials, 2017, 27 (19): 1604468.
[55] NI Z, WANG H, KASIM J, et al. Graphene thickness determination using reflection and contrast spectroscopy[J]. Nano letters, 2007, 7(9): 2758-2763.
[56] 韩文鹏, 史衍猛, 李晓莉, 等. 石墨烯等二维原子晶体薄片样品的光学衬度计算及其层数表征[J]. 物理学报, 2013, 62(11): 110702.
[57] WU J P, WANG L, ZHANG L Y. Rapid and nondestructive layer number identification of two-dimensional layered transition metal dichalcogenides[J]. Rare Metals, 2017, 36: 698-703.
[58] Materials Project. Materials Project - Materials Explorer[EB/OL]. 2023. https://next-gen.materialsproject.org/materials/mp-8211?chemsys=Ga-Ge-Te, Last accessed on 2024-03-20.
[59] SMITH D, SHILES E, INOKUTI M, et al. Handbook of optical constants of solids[J]. Handbook of Optical Constants of Solids, 1997, 1: 369-406.
[60] 吴国祯. 拉曼谱学: 峰强中的信息[M]. 科学出版社, 2007.
[61] TAN Y, LUO F, ZHU M, et al. Controllable 2H-to-1T′ phase transition in few-layer MoTe 2[J]. Nanoscale, 2018, 10(42): 19964-19971.
[62] LIN M L, LENG Y C, CONG X, et al. Understanding angle-resolved polarized Raman scattering from black phosphorus at normal and oblique laser incidences[J]. Science Bulletin, 2020, 65(22): 1894-1900.
[63] SHI G, GAO F, LI Z, et al. Quantum corrections to the magnetoconductivity of surface states in three-dimensional topological insulators[J]. Nature Communications, 2023, 14(1): 2596.
[64] OZERI M, XU J, BAUER G, et al. Modification of Weak Localization in Metallic Thin Films Due to the Adsorption of Chiral Molecules[J]. The Journal of Physical Chemistry Letters, 2023, 14(21): 4941-4948.
[65] LI H, HE H, LU H Z, et al. Negative magnetoresistance in Dirac semimetal Cd3As2[J]. Nature communications, 2016, 7(1): 10301.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765965
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
李冈玥. 层状α-GaGeTe晶体及其少层薄膜的物性研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12131263-李冈玥-物理系.pdf(10966KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李冈玥]的文章
百度学术
百度学术中相似的文章
[李冈玥]的文章
必应学术
必应学术中相似的文章
[李冈玥]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。