中文版 | English
题名

基于直接反卷积模型的湍流大涡模拟方法

其他题名
DIRECT DECONVOLUTION MODELING APPROACHES FOR LARGE-EDDY SIMULATION OF TURBULENCE
姓名
姓名拼音
CHANG Ning
学号
12031257
学位类型
博士
学位专业
080103 流体力学
学科门类/专业学位类别
08 工学
导师
王建春
导师单位
力学与航空航天工程系
论文答辩日期
2024-05-17
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

大涡模拟方法(large-eddy simulation,LES)是研究湍流问题的有效工具,其基本思想是通过滤波方法将流场按尺度做分解,对大尺度结构进行直接求解,对小尺度结构进行建模。本文将直接反卷积模型用于湍流大涡模拟,研究了直接反卷积模型的亚滤波尺度(sub-filter scale,SFS)动力学,将其扩展到各向异性滤波器的情况,并推广到离散形式。主要的研究工作如下:
(1)研究了亚滤波尺度(SFS)动力学在不同滤波器和不同滤波网格尺度比(filter-to-grid ratio,FGR)的情况下对直接反卷积模型(direct deconvolution model,DDM)精度的影响。本文考虑了多种可逆滤波器,包括高斯、Helmholtz I 型和II型、Butterworth、Chebyshev I 型和II 型、Cauchy、Pao 和快速衰减滤波器。FGR的范围是从1 到4。本文发现,FGR 对于控制误差、确保精确预测亚滤波应力至关重要。在FGR 为1 的情况下,DDM 模型无法精确地重构亚滤波应力,因为粗网格没有精确解析亚滤波动力学对亚滤波应力的影响。在FGR 为2 的情况下,除Helmholtz I 型和II 型滤波器外,大多数DDM 模型的预测能力得到了显著提高,可以相当精确地重构亚滤波应力。在FGR 为4 的情况下,所有DDM 模型都给出了非常精确的结果。此外,作者将DDM 模型与传统的亚滤波模型进行了全面比较,包括速度梯度模型(velocity gradient model,VGM)、动态Smagorinsky 模型(dynamic Smagorinsky model,DSM)、动态混合模型(dynamic mixed model,DMM)。在先验研究中,DDM 模型的亚滤波应力的相关系数远大于传统模型的相关系数。在后验研究中,DDM 模型在预测各种速度统计量和瞬时流动结构方面优于DSM 和DMM 模型。这些结果表明,具有适当FGR 的DDM 模型在大涡模拟中具有很大潜力。
(2)研究了各向异性滤波器的情况下亚滤波动力学对大涡模拟精度的影响。本文采用了不同类型的亚滤波模型,包括DSM、DMM,以及DDM。各向异性滤波器的长宽比(aspect ratio,AR)范围是从1 到16。作者发现,DDM 模型能够在滤波器各向异性很强的情况下精确地预测亚滤波应力。在先验研究中,DDM 模型重构的亚滤波应力的相关系数超过90%,远大于DSM 和DMM 模型的相关系数。在后验研究中,DDM 模型在预测各种湍流统计量方面优于DSM 和DMM 模型,包括速度谱,以及涡量、亚滤波能量流量、速度增量、应变率张量和亚滤波应力的概率密度函数(probability density function,PDF)。随着滤波器各向异性的增加,DSM 和DMM 模型的结果变得更差,但DDM 模型在各种滤波器各向异性的情况下能够给出较为精确的结果。这些结果表明,在各向异性滤波器的情况下,DDM模型是一种有效的亚滤波模型。
(3)发展了离散直接反卷积模型(discrete direct deconvolution model,D3M)。对于第一种模型D3M-1,作者用不同阶数的局部离散公式去近似高斯滤波器,并通过对离散滤波器直接求逆来重构未滤波的流场。原始高斯滤波器的逆也可以通过局部离散公式进行近似,从而得到完全局部的模型D3M-2。与传统的DSM 和DMM 相比,D3M-1 和D3M-2 模型在先验研究中具有更高的相关系数和更低的相对误差。在后验验证中,D3M-1 和D3M-2 模型都能精确地预测湍流统计量,包括速度谱,以及亚滤波应力和亚滤波能量流量的PDF。同时,能够精确预测湍流混合层中的动能谱、动量厚度和雷诺应力。此外,该模型还能很好地捕捉Q 准则等值面的空间结构。因此,D3M 模型在大涡模拟中具有很大的潜力。
综合上述情况,采用合适FGR 的直接反卷积模型具有很高精度,在各向异性滤波器的情况下仍能保持较好的预测效果,同时能够用在物理空间,在湍流大涡模拟中具有良好的应用前景。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] 赵松年, 于允贤. 湍流问题十讲[M]. 科学出版社, 2016.
[2] 中国学科发展战略流体动力学[M]. 北京: 科学出版社, 2014.
[3] 陈坚强. 计算流体力学2035 愿景[M]. 北京: 科学出版社, 2023.
[4] POPE S B. Turbulent flows[M]. Cambridge university press, 2000.
[5] 是勋刚. 湍流[M]. 天津大学出版社, 1995.
[6] CARLSON J A, JAFFE A, WILES A. The millennium prize problems[M]. American MathematicalSoc., 2006.
[7] MARUSIC I, BROOMHALL S. Leonardo da Vinci and fluid mechanics[J]. Annual Review ofFluid Mechanics, 2021, 53: 1-25.
[8] COLAGROSSI A, MARRONE S, COLAGROSSI P, et al. Da Vinci’s observation of turbulence:A French-Italian study aiming at numerically reproducing the physics behind one of hisdrawings, 500 years later[J]. Physics of Fluids, 2021, 33(11).
[9] BOUSSINESQ J. Essai sur la théorie des eaux courantes[M]. Imprimerie nationale, 1877.
[10] SCHMITT F G. About Boussinesq’s turbulent viscosity hypothesis: historical remarks and adirect evaluation of its validity[J]. Comptes Rendus Mécanique, 2007, 335(9-10): 617-627.
[11] JACKSON D, LAUNDER B. Osborne Reynolds and the publication of his papers on turbulentflow[J]. Annu. Rev. Fluid Mech., 2007, 39: 19-35.
[12] REYNOLDS O. XXIX. An experimental investigation of the circumstances which determinewhether the motion of water shall be direct or sinuous, and of the law of resistance in parallelchannels[J]. Philosophical Transactions of the Royal society of London, 1883(174): 935-982.
[13] REYNOLDS O. IV. On the dynamical theory of incompressible viscous fluids and the determinationof the criterion[J]. Philosophical transactions of the royal society of london.(a.), 1895(186): 123-164.
[14] 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz[J]. ZAMM-Journal of AppliedMathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1925, 5(2): 136-139.
[15] BATCHELOR G K, TAYLOR G I. The life and legacy of GI Taylor[M]. Cambridge UniversityPress, 1996.
[16] TAYLOR G I. Statistical theory of turbulenc[J]. Proceedings of the Royal Society of London.Series A-Mathematical and Physical Sciences, 1935, 151(873): 421-444.
[17] TAYLOR G I. Statistical theory of turbulence-II[J]. Proceedings of the Royal Society of London.Series A-Mathematical and Physical Sciences, 1935, 151(873): 444-454.
[18] RICHARDSON L F. Weather prediction by numerical process[M]. University Press, 1922.
[19] KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid forvery large Reynolds[J]. Numbers. In Dokl. Akad. Nauk SSSR, 1941, 30: 301.
[20] KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid forvery large Reynolds numbers[J]. Proceedings of the Royal Society of London. Series A: Mathematicaland Physical Sciences, 1991, 434(1890): 9-13.
[21] 傅德薰, 马延文, 李新亮. 现代力学丛书: 可压缩湍流直接数值模拟[M]. 北京: 科学出版社, 2010.
[22] 张兆顺, 崔桂香, 许春晓. 湍流理论与模拟[M]. 清华大学出版社, 2005.
[23] 张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论与应用[M]. 清华大学出版社, 2008.
[24] SAGAUT P. Large eddy simulation for incompressible flows: an introduction[M]. SpringerScience & Business Media, 2006.
[25] SMAGORINSKY J. General circulation experiments with the primitive equations: I. The basicexperiment[J]. Monthly Weather Review, 1963, 91(3): 99-164.
[26] LILLY D K. The representation of small-scale turbulence in numerical simulation experiments[J]. IBM Form, 1967: 195-210.
[27] LILLY D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physicsof Fluids A: Fluid Dynamics, 1992, 4(3): 633-635.
[28] ZANG T A, DAHLBURG R, DAHLBURG J. Direct and large-eddy simulations of threedimensionalcompressible Navier–Stokes turbulence[J]. Physics of Fluids A: Fluid Dynamics,1992, 4(1): 127-140.
[29] VREMAN B, GEURTS B, KUERTEN H. On the formulation of the dynamic mixed subgridscalemodel[J]. Physics of Fluids, 1994, 6(12): 4057-4059.
[30] BARDINA J, FERZIGER J, REYNOLDS W. Improved subgrid-scale models for large-eddysimulation[C]//13th fluid and plasmadynamics conference. 1980: 1357.
[31] CLARK R A, FERZIGER J H, REYNOLDS W C. Evaluation of subgrid-scale models usingan accurately simulated turbulent flow[J]. Journal of Fluid Mechanics, 1979, 91(1): 1-16.
[32] STOLZ S, ADAMS N A. An approximate deconvolution procedure for large-eddy simulation[J]. Physics of Fluids, 1999, 11(7): 1699-1701.
[33] STOLZ S, ADAMS N A, KLEISER L. The approximate deconvolution model for large-eddysimulations of compressible flows and its application to shock-turbulent-boundary-layer interaction[J]. Physics of Fluids, 2001, 13(10): 2985-3001.
[34] STOLZ S, ADAMS N A, KLEISER L. An approximate deconvolution model for large-eddysimulation with application to incompressible wall-bounded flows[J]. Physics of Fluids, 2001,13(4): 997-1015.
[35] HANJALIĆ K, LAUNDER B. Modelling turbulence in engineering and the environment:second-moment routes to closure[M]. Cambridge university press, 2011.
[36] 陶文铨. 数值传热学[M]. 西安交通大学出版社, 2001.
[37] 刘沛清. 湍流模式理论[M]. 北京: 科学出版社, 2020.
[38] 符松, 王亮. 湍流模式理论基础科学[M]. 科学出版社, 2023.
[39] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//30th aerospace sciences meeting and exhibit. 1992: 439.
[40] The prediction of laminarization with a two-equation model of turbulence[J]. Internationaljournal of heat and mass transfer, 1972, 15(2): 301-314.
[41] Application of the energy-dissipation model of turbulence to the calculation of flow near a spinningdisc[J]. Letters in heat and mass transfer, 1974, 1(2): 131-137.
[42] WILCOX D C, et al. Turbulence modeling for CFD: Vol. 2[M]. DCW industries La Canada,CA, 1998.
[43] WANG B C, BERGSTROM D J. A dynamic nonlinear subgrid-scale stress model[J]. Physicsof Fluids, 2005, 17(3).
[44] LIU S, MENEVEAU C, KATZ J. On the properties of similarity subgrid-scale models as deducedfrom measurements in a turbulent jet[J]. Journal of Fluid Mechanics, 1994, 275: 83-119.
[45] VREMAN B, GEURTS B, KUERTEN H. Large-eddy simulation of the turbulent mixing layer[J]. Journal of Fluid Mechanics, 1997, 339: 357-390.
[46] SCHWERTFIRM F, MATHEW J, MANHART M. Improving spatial resolution characteristicsof finite difference and finite volume schemes by approximate deconvolution pre-processing[J]. Computers & fluids, 2008, 37(9): 1092-1102.
[47] SAN O, STAPLES A E, WANG Z, et al. Approximate deconvolution large eddy simulation ofa barotropic ocean circulation model[J]. Ocean Modelling, 2011, 40(2): 120-132.
[48] SAN O, STAPLES A E, ILIESCU T. Approximate deconvolution large eddy simulation of astratified two-layer quasigeostrophic ocean model[J]. Ocean Modelling, 2013, 63: 1-20.
[49] LABOVSKY A, TRENCHEA C. Approximate deconvolution models for magnetohydrodynamics[J]. Numerical Functional Analysis and Optimization, 2010, 31(12): 1362-1385.
[50] MATHEW J. Large eddy simulation of a premixed flame with approximate deconvolutionmodeling[J]. Proceedings of the Combustion Institute, 2002, 29(2): 1995-2000.
[51] DOMINGO P, VERVISCH L. Large eddy simulation of premixed turbulent combustion usingapproximate deconvolution and explicit flame filtering[J]. Proceedings of the CombustionInstitute, 2015, 35(2): 1349-1357.
[52] DOMINGO P, VERVISCH L. DNS and approximate deconvolution as a tool to analyse onedimensionalfiltered flame sub-grid scale modelling[J]. Combustion and Flame, 2017, 177:109-122.
[53] MEHL C, IDIER J, FIORINA B. Evaluation of deconvolution modelling applied to numericalcombustion[J]. Combustion Theory and Modelling, 2018, 22(1): 38-70.
[54] WANG Q, IHME M. Regularized deconvolution method for turbulent combustion modeling[J]. Combustion and Flame, 2017, 176: 125-142.
[55] WANG Q, IHME M. A regularized deconvolution method for turbulent closure modeling inimplicitly filtered large-eddy simulation[J]. Combustion and Flame, 2019, 204: 341-355.
[56] NIKOLAOU Z, CANT R, VERVISCH L. Scalar flux modeling in turbulent flames using iterativedeconvolution[J]. Physical Review Fluids, 2018, 3(4): 043201.
[57] NIKOLAOU Z, VERVISCH L. A priori assessment of an iterative deconvolution method forLES sub-grid scale variance modelling[J]. Flow, Turbulence and Combustion, 2018, 101: 33-53.
[58] SELTZ A, DOMINGO P, VERVISCH L, et al. Direct mapping from LES resolved scales tofiltered-flame generated manifolds using convolutional neural networks[J]. Combustion andFlame, 2019, 210: 71-82.
[59] DOMINGO P, NIKOLAOU Z, SELTZ A, et al. From discrete and iterative deconvolutionoperators to machine learning for premixed turbulent combustion modeling[J]. Data Analysisfor Direct Numerical Simulations of Turbulent Combustion: From Equation-Based Analysis toMachine Learning, 2020: 215-232.
[60] SCHNEIDERBAUER S, SAEEDIPOUR M. Approximate deconvolution model for the simulationof turbulent gas-solid flows: An a priori analysis[J]. Physics of Fluids, 2018, 30(2):023301.
[61] SCHNEIDERBAUER S, SAEEDIPOUR M. Numerical simulation of turbulent gas–solid flowusing an approximate deconvolution model[J]. International Journal of Multiphase Flow, 2019,114: 287-302.
[62] SAEEDIPOUR M, VINCENT S, PIRKER S. Large eddy simulation of turbulent interfacialflows using approximate deconvolution model[J]. International Journal of Multiphase Flow,2019, 112: 286-299.
[63] DUNCA A, EPSHTEYN Y. On the Stolz–Adams Deconvolution Model for the Large-EddySimulation of Turbulent Flows[J]. SIAM Journal on Mathematical Analysis, 2006, 37(6): 1890-1902.
[64] DUNCA A A. On the existence of global attractors of the approximate deconvolution models ofturbulence[J]. Journal of Mathematical Analysis and Applications, 2012, 389(2): 1128-1138.
[65] LAYTON W, NEDA M. A similarity theory of approximate deconvolution models of turbulence[J]. Journal of Mathematical Analysis and Applications, 2007, 333(1): 416-429.
[66] LAYTON W, STANCULESCU I. Chebychev optimized approximate deconvolution models ofturbulence[J]. Applied mathematics and computation, 2009, 208(1): 106-118.
[67] LAYTON W J, REBHOLZ L G. Approximate deconvolution models of turbulence: analysis,phenomenology and numerical analysis: Vol. 2042[M]. Springer Science & Business Media,2012.
[68] BERSELLI L C, LEWANDOWSKI R. Convergence of approximate deconvolution models tothe mean Navier–Stokes equations[J]. Annales de l’Institut Henri Poincaré C, Analyse nonlinéaire, 2012, 29(2): 171-198.
[69] DUNCA A A. Estimates of the discrete van Cittert deconvolution error in approximate deconvolutionmodels of turbulence in bounded domains[J]. Applied Numerical Mathematics, 2018,134: 1-10.
[70] VAN CITTERT P. Zum einfluss der spaltbreite auf die intensitätsverteilung in spektrallinien. ii[J]. Zeitschrift für Physik, 1931, 69(5-6): 298-308.
[71] SCHLATTER P, STOLZ S, KLEISER L. LES of transitional flows using the approximatedeconvolution model[J]. International Journal of Heat and Fluid Flow, 2004, 25(3): 549-558.
[72] SAN O, VEDULA P. Generalized deconvolution procedure for structural modeling of turbulence[J]. Journal of Scientific Computing, 2018, 75: 1187-1206.
[73] MAULIK R, SAN O. A neural network approach for the blind deconvolution of turbulent flows[J]. Journal of Fluid Mechanics, 2017, 831: 151-181.
[74] MAULIK R, SAN O, RASHEED A, et al. Data-driven deconvolution for large eddy simulationsof Kraichnan turbulence[J]. Physics of Fluids, 2018, 30(12).
[75] MAULIK R, SAN O, RASHEED A, et al. Subgrid modelling for two-dimensional turbulenceusing neural networks[J]. Journal of Fluid Mechanics, 2019, 858: 122-144.
[76] DENG Z, HE C, LIU Y, et al. Super-resolution reconstruction of turbulent velocity fields usinga generative adversarial network-based artificial intelligence framework[J]. Physics of Fluids,2019, 31(12).
[77] LIU B, TANG J, HUANG H, et al. Deep learning methods for super-resolution reconstructionof turbulent flows[J]. Physics of Fluids, 2020, 32(2).
[78] YUAN Z, XIE C, WANG J. Deconvolutional artificial neural network models for large eddysimulation of turbulence[J]. Physics of Fluids, 2020, 32(11): 115106.
[79] YUAN Z, WANG Y, XIE C, et al. Deconvolutional artificial-neural-network framework forsubfilter-scale models of compressible turbulence[J]. Acta Mechanica Sinica, 2021, 37(12):1773-1785.
[80] TENG J, YUAN Z, WANG J. Subgrid-scale modelling using deconvolutional artificial neuralnetworks in large eddy simulations of chemically reacting compressible turbulence[J]. InternationalJournal of Heat and Fluid Flow, 2022, 96: 109000.
[81] YUAN Z, WANG Y, XIE C, et al. Dynamic iterative approximate deconvolution models forlarge-eddy simulation of turbulence[J]. Physics of Fluids, 2021, 33(8): 085125.
[82] ZHANG C, YUAN Z, WANG Y, et al. Density-unweighted subgrid-scale models for large-eddysimulations of compressible turbulence[J]. Physics of Fluids, 2022, 34(6): 065137.
[83] ZHANG C, YUAN Z, DUAN L, et al. Dynamic iterative approximate deconvolution modelfor large-eddy simulation of dense gas compressible turbulence[J]. Physics of Fluids, 2022, 34(12): 125103.
[84] GEURTS B J. Inverse modeling for large-eddy simulation[J]. Physics of Fluids, 1997, 9(12):3585-3587.
[85] KUERTEN J, GEURTS B, VREMAN A, et al. Dynamic inverse modeling and its testing inlarge-eddy simulations of the mixing layer[J]. Physics of Fluids, 1999, 11(12): 3778-3785.
[86] ADAMS N A, HICKEL S, FRANZ S. Implicit subgrid-scale modeling by adaptive deconvolution[J]. Journal of Computational Physics, 2004, 200(2): 412-431.
[87] HICKEL S, ADAMS N A, DOMARADZKI J A. An adaptive local deconvolution method forimplicit LES[J]. Journal of Computational Physics, 2006, 213(1): 413-436.
[88] BOGUSLAWSKI A, WAWRZAK K, PALUSZEWSKA A, et al. Deconvolution of inducedspatial discretization filters subgrid modeling in LES: application to two-dimensional turbulence[C]//Journal of Physics: Conference Series: Vol. 2090. IOP Publishing, 2021: 012064.
[89] SAN O, STAPLES A E, ILIESCU T. A posteriori analysis of low-pass spatial filters for approximatedeconvolution large eddy simulations of homogeneous incompressible flows[J]. InternationalJournal of Computational Fluid Dynamics, 2015, 29(1): 40-66.
[90] SAN O. Analysis of low-pass filters for approximate deconvolution closure modelling in onedimensionaldecaying Burgers turbulence[J]. International Journal of Computational Fluid Dynamics,2016, 30(1): 20-37.
[91] NAJAFI-YAZDI A, NAJAFI-YAZDI M, MONGEAU L. A high resolution differential filterfor large eddy simulation: Toward explicit filtering on unstructured grids[J]. Journal of ComputationalPhysics, 2015, 292: 272-286.
[92] NAJAFI-YAZDI M, MONGEAU L, NADARAJAH S. Explicit Differential Filtering on UnstructuredGrids for Large-Eddy Simulations in Aeroacoustics Using an Approximate DeconvolutionModel[C]//25th AIAA/CEAS aeroacoustics conference. 2019: 2466.
[93] NAJAFI-YAZDI M, MONGEAU L, NADARAJAH S. Large eddy simulation on unstructuredgrids using explicit differential filtering: A case study of Taylor-Green vortex[J]. Journal ofComputational Physics, 2023, 476: 111833.
[94] BULL J R, JAMESON A. Explicit filtering and exact reconstruction of the sub-filter stressesin large eddy simulation[J]. Journal of Computational Physics, 2016, 306: 117-136.
[95] BAE H, LOZANO-DURÁN A. Towards exact subgrid-scale models for explicitly filtered largeeddysimulation of wall-bounded flows[J]. Annual research briefs. Center for Turbulence Research(US), 2017, 2017: 207.
[96] NIKOLAOU Z, VERVISCH L, DOMINGO P. An optimisation framework for the developmentof explicit discrete forward and inverse filters[J]. Computers & Fluids, 2023, 255: 105840.
[97] GERMANO M. Differential filters for the large eddy numerical simulation of turbulent flows[J]. Physics of Fluids, 1986, 29(6): 1755-1757.
[98] GERMANO M. Differential filters of elliptic type[J]. Physics of fluids, 1986, 29(6): 1757-1758.
[99] HAERING S W, LEE M, MOSER R D. Resolution-induced anisotropy in large-eddy simulations[J]. Physical Review Fluids, 2019, 4(11): 114605.
[100] SCHUMANN J E, TOOSI S, LARSSON J. Assessment of grid anisotropy effects on large-eddysimulationmodels with different length scales[J]. AIAA Journal, 2020, 58(10): 4522-4533.
[101] WANG J, SHI Y, WANG L P, et al. Effect of compressibility on the small-scale structures inisotropic turbulence[J]. Journal of Fluid Mechanics, 2012, 713: 588-631.
[102] WANG J, WAN M, CHEN S, et al. Effect of flow topology on the kinetic energy flux in compressibleisotropic turbulence[J]. Journal of Fluid Mechanics, 2020, 883.
[103] BORIS J P, GRINSTEIN F F, ORAN E S, et al. New insights into large eddy simulation[J].Fluid Dynamics Research, 1992, 10(4-6): 199.
[104] LEONARD A. Energy cascade in large-eddy simulations of turbulent fluid flows[M]//Advancesin geophysics: Vol. 18. Elsevier, 1975: 237-248.
[105] GERMANO M, PIOMELLI U, MOIN P, et al. A dynamic subgrid-scale eddy viscosity model[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(7): 1760-1765.
[106] SHI Y, XIAO Z, CHEN S. Constrained subgrid-scale stress model for large eddy simulation[J].Physics of Fluids, 2008, 20(1): 011701.
[107] DOMARADZKI J A, ADAMS N A. Direct modelling of subgrid scales of turbulence in largeeddy simulations[J]. Journal of Turbulence, 2002, 3(1): 024.
[108] ADAMS N A. A stochastic extension of the approximate deconvolution model[J]. Physics ofFluids, 2011, 23(5): 055103.
[109] LABOVSKY A E. Approximate deconvolution with correction: a member of a new class ofmodels for high Reynolds number flows[J]. SIAM Journal on Numerical Analysis, 2020, 58(5): 3068-3090.
[110] GHOSAL S. An analysis of numerical errors in large-eddy simulations of turbulence[J]. Journalof Computational Physics, 1996, 125(1): 187-206.
[111] SAGAUT P, GROHENS R. Discrete filters for large eddy simulation[J]. International Journalfor Numerical Methods in Fluids, 1999, 31(8): 1195-1220.
[112] LUND T. The use of explicit filters in large eddy simulation[J]. Computers & Mathematicswith Applications, 2003, 46(4): 603-616.
[113] CHOW F K, MOIN P. A further study of numerical errors in large-eddy simulations[J]. Journalof Computational Physics, 2003, 184(2): 366-380.
[114] DAIRAY T, LAMBALLAIS E, LAIZET S, et al. Numerical dissipation vs. subgrid-scale modellingfor large eddy simulation[J]. Journal of Computational Physics, 2017, 337: 252-274.
[115] MARSDEN A L, VASILYEV O V, MOIN P. Construction of commutative filters for LES onunstructured meshes[J]. Journal of Computational Physics, 2002, 175(2): 584-603.
[116] BUTTERWORTH S. On the theory of filter amplifiers[J]. Wireless Engineer, 1930, 7(6): 536-541.
[117] MULLEN J S, FISCHER P F. Filtering techniques for complex geometry fluid flows[J]. Communicationsin Numerical Methods in Engineering, 1999, 15(1): 9-18.
[118] SOUCASSE L, RIVIERE P, SOUFIANI A. Subgrid-scale model for radiative transfer in turbulentparticipating media[J]. Journal of Computational Physics, 2014, 257: 442-459.
[119] WINCKELMANS G S, WRAY A A, VASILYEV O V, et al. Explicit-filtering large-eddy simulationusing the tensor-diffusivity model supplemented by a dynamic Smagorinsky term[J].Physics of Fluids, 2001, 13(5): 1385-1403.
[120] CARATI D, WINCKELMANS G S, JEANMART H. On the modelling of the subgrid-scaleand filtered-scale stress tensors in large-eddy simulation[J]. Journal of Fluid Mechanics, 2001,441: 119-138.
[121] DOMARADZKI J. Large eddy simulations without explicit eddy viscosity models[J]. InternationalJournal of Computational Fluid Dynamics, 2010, 24(10): 435-447.
[122] MASON J C, HANDSCOMB D C. Chebyshev polynomials[M]. Chapman and Hall/CRC,2002.
[123] CANUTO C, HUSSAINI M Y, QUARTERONI A, et al. Spectral methods in fluid dynamics[M]. Springer Science & Business Media, 2012.
[124] LUNDGREN T. Linearly Forced Isotropic Turbulence[J]. Center for Turbulence ResearchAnnual Research Briefs 2003, 2003.
[125] ROSALES C, MENEVEAU C. Linear forcing in numerical simulations of isotropic turbulence:Physical space implementations and convergence properties[J]. Physics of Fluids, 2005, 17(9):095106.
[126] WANG J, SHI Y, WANG L P, et al. Scaling and statistics in three-dimensional compressibleturbulence[J]. Physical Review Letters, 2012, 108(21): 214505.
[127] WANG J, WAN M, CHEN S, et al. Kinetic energy transfer in compressible isotropic turbulence[J]. Journal of Fluid Mechanics, 2018, 841: 581-613.
[128] FRISCH U, SULEM P L, NELKIN M. A simple dynamical model of intermittent fully developedturbulence[J]. Journal of Fluid Mechanics, 1978, 87(4): 719-736.
[129] ISHIHARA T, KANEDA Y, YOKOKAWA M, et al. Small-scale statistics in high-resolutiondirect numerical simulation of turbulence: Reynolds number dependence of one-point velocitygradient statistics[J]. Journal of Fluid Mechanics, 2007, 592: 335-366.
[130] ISHIHARA T, GOTOH T, KANEDA Y. Study of high-Reynolds number isotropic turbulenceby direct numerical simulation[J]. Annual Review of Fluid Mechanics, 2009, 41(1): 165-180.
[131] BUTCHER J C. Numerical methods for ordinary differential equations[M]. John Wiley &Sons, 2016.
[132] ANDERSON J D, WENDT J. Computational fluid dynamics: Vol. 206[M]. Springer, 1995.
[133] TADMOR E. Shock capturing by the spectral viscosity method[J]. Computer Methods inApplied Mechanics and Engineering, 1990, 80(1-3): 197-208.
[134] GRINSTEIN F F, MARGOLIN L G, RIDER W J. Implicit large eddy simulation: Vol. 10[M].Cambridge university press Cambridge, 2007.
[135] LELE S K. Compact finite difference schemes with spectral-like resolution[J]. Journal ofComputational Physics, 1992, 103(1): 16-42.
[136] WANG J, WANG L P, XIAO Z, et al. A hybrid numerical simulation of isotropic compressibleturbulence[J]. Journal of Computational Physics, 2010, 229(13): 5257-5279.
[137] YALLA G R, OLIVER T A, HAERING S W, et al. Effects of resolution inhomogeneity inlarge-eddy simulation[J]. Physical Review Fluids, 2021, 6(7): 074604.
[138] CHAUVET N, DECK S, JACQUIN L. Zonal detached eddy simulation of a controlled propulsivejet[J]. AIAA Journal, 2007, 45(10): 2458-2473.
[139] MOCKETT C, FUCHS M, GARBARUK A, et al. Two non-zonal approaches to accelerateRANS to LES transition of free shear layers in DES[M]//Progress in hybrid RANS-LES modelling.Springer, 2015: 187-201.
[140] TRIAS F X, GOROBETS A, SILVIS M H, et al. A new subgrid characteristic length for turbulencesimulations on anisotropic grids[J]. Physics of Fluids, 2017, 29(11): 115109.
[141] VREMAN A. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theoryand applications[J]. Physics of Fluids, 2004, 16(10): 3670-3681.
[142] CHANG N, YUAN Z, WANG J. The effect of sub-filter scale dynamics in large eddy simulationof turbulence[J]. Physics of Fluids, 2022, 34(9): 095104.
[143] PRAKASH A, JANSEN K E, EVANS J A. Invariant Data-driven Subgrid Stress Modeling onAnisotropic Grids for Large Eddy Simulation[M/OL]. arXiv, 2022. https://arxiv.org/abs/2212.00332. DOI: 10.48550/ARXIV.2212.00332.
[144] LESIEUR M, METAIS O. New trends in large-eddy simulations of turbulence[J]. AnnualReview of Fluid Mechanics, 1996, 28(1): 45-82.
[145] MENEVEAU C, KATZ J. Scale-invariance and turbulence models for large-eddy simulation[J]. Annual Review of Fluid Mechanics, 2000, 32(1): 1-32.
[146] XIE C, WANG J, E W. Modeling subgrid-scale forces by spatial artificial neural networks inlarge eddy simulation of turbulence[J]. Physical Review Fluids, 2020, 5(5): 054606.
[147] CHANG N, YUAN Z, WANG Y, et al. The effect of filter anisotropy on the large eddy simulationof turbulence[J]. Physics of Fluids, 2023, 35(3).
[148] SPIVAK M. Calculus[M]. Cambridge University Press, 2006.
[149] ADAMS N A, SHARIFF K. A high-resolution hybrid compact-ENO scheme for shockturbulenceinteraction problems[J]. Journal of Computational Physics, 1996, 127(1): 27-51.
[150] YEUNG P, SREENIVASAN K, POPE S. Effects of finite spatial and temporal resolution indirect numerical simulations of incompressible isotropic turbulence[J]. Physical Review Fluids,2018, 3(6): 064603.
[151] CHEN T, WEN X, WANG L P, et al. Simulation of three-dimensional compressible decayingisotropic turbulence using a redesigned discrete unified gas kinetic scheme[J]. Physics of Fluids,2020, 32(12): 125104.
[152] YANG X I, GRIFFIN K P. Grid-point and time-step requirements for direct numerical simulationand large-eddy simulation[J]. Physics of Fluids, 2021, 33(1): 015108.
[153] SHARAN N, MATHEOU G, DIMOTAKIS P E. Turbulent shear-layer mixing: initial conditions,and direct-numerical and large-eddy simulations[J]. Journal of Fluid Mechanics, 2019,877: 35-81.
[154] WANG X, WANG J, CHEN S. Compressibility effects on statistics and coherent structures ofcompressible turbulent mixing layers[J]. Journal of Fluid Mechanics, 2022, 947: A38.
[155] KLEIN M, SADIKI A, JANICKA J. A digital filter based generation of inflow data for spatiallydeveloping direct numerical or large eddy simulations[J]. Journal of computational Physics,2003, 186(2): 652-665.
[156] WANG Y, YUAN Z, WANG X, et al. Constant-coefficient spatial gradient models for the subgridscale closure in large-eddy simulation of turbulence[J]. Physics of Fluids, 2022, 34(9).

所在学位评定分委会
力学
国内图书分类号
O357.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765968
专题南方科技大学
工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
常宁. 基于直接反卷积模型的湍流大涡模拟方法[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031257-常宁-力学与航空航天工(14129KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[常宁]的文章
百度学术
百度学术中相似的文章
[常宁]的文章
必应学术
必应学术中相似的文章
[常宁]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。