[1] FAWZY S, OSMAN A I, DORAN J, et al. Strategies for mitigation of climate change: a review[J]. Environmental Chemistry Letters, 2020, 18: 2069-2094.
[2] ZHANG M, WANG L, XU H, et al. Polyimides as promising materials for lithium-ion batteries:A review[J]. Nano-Micro Letters, 2023, 15(1): 135.
[3] MANTHIRAM A. An outlook on lithium ion battery technology[J]. ACS Central Science,2017, 3(10): 1063-1069.
[4] YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edition, 2012, 51(24): 5798-5800.
[5] MASIAS A, MARCICKI J, PAXTON W A. Opportunities and challenges of lithium ion batteries in automotive applications[J]. ACS Energy Letters, 2021, 6(2): 621-630.
[6] CHAYAMBUKA K, MULDER G, DANILOV D L, et al. From li-ion batteries toward Naion chemistries: challenges and opportunities[J]. Advanced Energy Materials, 2020, 10(38):2001310.
[7] KULOVA T L, FATEEV V N, SEREGINA E A, et al. A brief review of post-lithium-ionbatteries[J]. International Journal of Electrochemical Science, 2020, 15(8): 7242-7259.
[8] LU J, WU T, AMINE K. State-of-the-art characterization techniques for advanced lithium-ionbatteries[J]. Nature Energy, 2017, 2(3): 1-13.
[9] ZHANG L, WU X, QIAN W, et al. Exploring More Functions in Binders for Lithium Batteries[J]. Electrochemical Energy Reviews, 2023, 6(1): 36.
[10] DOU W, ZHENG M, ZHANG W, et al. Review on the binders for sustainable high-energydensity lithium ion batteries: status, solutions, and prospects[J]. Advanced Functional Materials, 2023, 33(45): 2305161.
[11] WANG Y B, YANG Q, GUO X, et al. Strategies of binder design for high-performance lithiumion batteries: a mini review[J]. Rare Metals, 2022, 41: 745–761.
[12] YE C, LIU M, ZHANG X, et al. Review—long-term cyclability of high-temperature stablepolyimide in LIBs[J]. Journal of The Electrochemical Society, 2021, 168(10): 100519.
[13] KURZWEIL P. Gaston Planté and his invention of the lead–acid battery—The genesis of thefirst practical rechargeable battery[J]. Journal of Power Sources, 2010, 195(14): 4424-4434.
[14] XIE J, LU Y C. A retrospective on lithium-ion batteries[J]. Nature Communications, 2020, 11(1): 2499.
[15] ZHANG H, LI C, ESHETU G G, et al. From Solid‐Solution Electrodes and the Rocking‐ChairConcept to Today’s Batteries[J]. Angewandte Chemie International Edition, 2020, 59(2): 534-538.
[16] KIM T H, PARK J S, CHANG S K, et al. The current move of lithium ion batteries towards thenext phase[J]. Advanced Energy Materials, 2012, 2(7): 860-872.
[17] LI M, LU J, CHEN Z, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561.
[18] MALEKI KHEIMEH SARI H, LI X. Controllable cathode–electrolyte interface of Li[Ni0.8Co0.1Mn0.1] O2for lithium ion batteries: a review[J]. Advanced Energy Materials, 2019,9(39): 1901597.
[19] SERVICE R F. Lithium-ion battery development takes Nobel[J]. Science, 2019, 366(6463):292.
[20] MENG, YUEZHONG, XIAO, et al. Polymer electrolytes for lithium polymer batteries[J]. Journal of Materials Chemistry A Materials for Energy and Sustainability, 2016, 4(26): 10038-10069.
[21] MÜLLER M, PFAFFMANN L, JAISER S, et al. Investigation of binder distribution in graphiteanodes for lithium-ion batteries[J]. Journal of Power Sources, 2017, 340: 1-5.
[22] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Journalof the American Chemical Society, 2013, 135(4): 1167-1176.
[23] YOO H D, MARKEVICH E, SALITRA G, et al. On the challenge of developing advancedtechnologies for electrochemical energy storage and conversion[J]. Materials Today, 2014, 17(3): 110-121.
[24] FAN E, LI L, WANG Z, et al. Sustainable recycling technology for Li-ion batteries and beyond:challenges and future prospects[J]. Chemical Reviews, 2020, 120(14): 7020-7063.
[25] HU Y, WAYMENT L J, HASLAM C, et al. Covalent organic framework based lithium-ionbattery: Fundamental, design and characterization[J]. EnergyChem, 2021, 3(1): 100048.
[26] CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery[J]. Journalof Power Sources, 2020, 478: 228649.
[27] FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery forelectric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
[28] DUH Y S, TSAI M T, KAO C S. Characterization on the thermal runaway of commercial 18650lithium-ion batteries used in electric vehicle[J]. Journal of Thermal Analysis and Calorimetry,2017, 127: 983-993.
[29] WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ionbattery[J]. Journal of Power Sources, 2012, 208: 210-224.
[30] CHEN X, YAN S, TAN T, et al. Supramolecular “flame-retardant”electrolyte enables safeand stable cycling of lithium-ion batteries[J]. Energy Storage Materials, 2022, 45: 182-190.
[31] SHI J L, XIAO D D, GE M, et al. High-Capacity Cathode Material with High Voltage for Li-IonBatteries[J]. Advanced Materials, 2018, 30(9): 1705575.
[32] HAN Y, XU J, WANG W, et al. Implanting an electrolyte additive on a single crystal Ni-richcathode surface for improved cycleability and safety[J]. Journal of Materials Chemistry A,2020, 8(46): 24579-24589.
[33] JUNG S K, GWON H, HONG J, et al. Understanding the degradation mechanisms ofLiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries[J]. Advanced Energy Materials, 2014, 4(1): 1300787.
[34] XU J, CAI X, CAI S, et al. High-energy lithium-ion batteries: recent progress and a promisingfuture in applications[J]. Energy & Environmental Materials, 2023, 6(5): e12450.
[35] LI Q, YANG Y, YU X, et al. A 700 w•h•kg−1 Rechargeable Pouch Type Lithium Battery[J].Chinese Physics Letters, 2023, 40(4): 048201.
[36] ZHANG S, ZHAO F, WANG S, et al. Advanced high-voltage all-solid-state Li-ion batteries enabled by a dual-halogen solid electrolyte[J]. Advanced Energy Materials, 2021, 11(32):2100836.
[37] KE X, WANG Y, REN G, et al. Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries[J]. Energy Storage Materials, 2020, 26: 313-324.
[38] LIU H, SUN Q, ZHANG H, et al. The application road of silicon-based anode in lithium-ionbatteries: From liquid electrolyte to solid-state electrolyte[J]. Energy Storage Materials, 2023,55: 244-263.
[39] LU X, WANG Y, XU X, et al. Polymer-Based Solid-State Electrolytes for High-Energy-DensityLithium-Ion Batteries–Review[J]. Advanced Energy Materials, 2023, 13(38): 2301746.
[40] XIAO Y, TURCHENIUK K, NARLA A, et al. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries[J]. Nature Materials, 2021, 20(7):984-990.
[41] HYUN W J, THOMAS C M, LUU N S, et al. Layered heterostructure ionogel electrolytesfor high-performance solid-state lithium-ion batteries[J]. Advanced Materials, 2021, 33(13):2007864.
[42] LUO C, JI X, CHEN J, et al. Solid-state electrolyte anchored with a carboxylated azo compoundfor all-solid-state lithium batteries[J]. Angewandte Chemie International Edition, 2018, 57(28):8567-8571.
[43] YUE L, MA J, ZHANG J, et al. All solid-state polymer electrolytes for high-performancelithium ion batteries[J]. Energy Storage Materials, 2016, 5: 139-164.
[44] WANG Y, WANG E, ZHANG X, et al. High-voltage “single-crystal”cathode materials forlithium-ion batteries[J]. Energy & Fuels, 2021, 35(3): 1918-1932.
[45] XIANG J, WEI Y, ZHONG Y, et al. Building practical high-voltage cathode materials forlithium-ion batteries[J]. Advanced Materials, 2022, 34(52): 2200912.
[46] LI W, SONG B, MANTHIRAM A. High-voltage positive electrode materials for lithium-ionbatteries[J]. Chemical Society Reviews, 2017, 46(10): 3006-3059.
[47] WU Q, ZHANG B, LU Y. Progress and perspective of high-voltage lithium cobalt oxide inlithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 74: 283-308.
[48] LI J, HE K, MENG Q, et al. Kinetic phase evolution of spinel cobalt oxide during lithiation[J].ACS Nano, 2016, 10(10): 9577-9585.
[49] LIN C, LI J, YIN Z W, et al. Structural Understanding for High-Voltage Stabilization of LithiumCobalt Oxide[J]. Advanced Materials, 2024, 36(6): 2307404.
[50] XU B, QIAN D, WANG Z, et al. Recent progress in cathode materials research for advancedlithium ion batteries[J]. Materials Science and Engineering: R: Reports, 2012, 73(5-6): 51-65.
[51] LI J, LIN C, WENG M, et al. Structural origin of the high-voltage instability of lithium cobaltoxide[J]. Nature Nanotechnology, 2021, 16(5): 599-605.
[52] FURUSHIMA Y, YANAGISAWA C, NAKAGAWA T, et al. Thermal stability and kinetics ofdelithiated LiCoO2[J]. Journal of Power Sources, 2011, 196(4): 2260-2263.
[53] ZHUANG Z, WANG J, JIA K, et al. Ultrahigh-Voltage LiCoO2 at 4.7 V by Interface Stabilization and Band Structure Modification[J]. Advanced Materials, 2023, 35(22): 2212059.
[54] HE P, YU H, ZHOU H, et al. Layered lithium transition metal oxide cathodes towards highenergy lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(9): 3680-3695.
[55] AHN J, SUSANTO D, NOH J K, et al. Achieving high capacity and rate capability in layeredlithium transition metal oxide cathodes for lithium-ion batteries[J]. Journal of Power Sources,2017, 360: 575-584.
[56] AISHOVA A, PARK G T, YOON C S, et al. Cobalt-free high-capacity Ni-rich layered Li[Ni0.9Mn0.1]O2 cathode[J]. Advanced Energy Materials, 2020, 10(4): 1903179.
[57] LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energylithium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(15): 4440-4457.
[58] GAN Q, QIN N, ZHU Y, et al. Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12594-12604.
[59] XIONG X, WANG Z, YUE P, et al. Washing effects on electrochemical performance and storagecharacteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries[J]. Journalof Power Sources, 2013, 222: 318-325.
[60] CHEN H, LING M, HENCZ L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices[J]. Chemical Reviews, 2018, 118(18):8936-8982.
[61] SHARPE L, SCHONHORN H. Theory gives direction to adhesion work[J]. Chemical andEngineering News, 1963, 41(15): 67-68.
[62] YUAN H, HUANG J Q, PENG H J, et al. A review of functional binders in lithium–sulfurbatteries[J]. Advanced Energy Materials, 2018, 8(31): 1802107.
[63] GARDNER D J, BLUMENTRITT M, WANG L, et al. Adhesion theories in wood adhesivebonding[J]. Progress in Adhesion and Adhesives, 2015: 125-168.
[64] MA Y, MA J, CUI G. Small things make big deal: Powerful binders of lithium batteries andpost-lithium batteries[J]. Energy Storage Materials, 2019, 20: 146-175.
[65] ZOU F, MANTHIRAM A. A review of the design of advanced binders for high-performancebatteries[J]. Advanced Energy Materials, 2020, 10(45): 2002508.
[66] ZHAO Y, LIANG Z, KANG Y, et al. Rational design of functional binder systems for highenergy lithium-based rechargeable batteries[J]. Energy Storage Materials, 2021, 35: 353-377.
[67] XING J, BLIZNAKOV S, BONVILLE L, et al. A review of nonaqueous electrolytes, binders,and separators for lithium-ion batteries[J]. Electrochemical Energy Reviews, 2022, 5(4): 14.
[68] CHOU S L, PAN Y, WANG J Z, et al. Small things make a big difference: binder effects onthe performance of Li and Na batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(38):20347-20359.
[69] ZHANG S, GU H, PAN H, et al. A novel strategy to suppress capacity and voltage fading ofLi-and Mn-rich layered oxide cathode material for lithium-ion batteries[J]. Advanced EnergyMaterials, 2017, 7(6): 1601066.
[70] WANG Y, QI K, DONG N, et al. Surface modification enabling 4.7 V Nickel-rich layeredcathode with superior long-term cyclability via novel functional polyimide binders[J]. Journalof Power Sources, 2022, 545: 231927.
[71] PIECZONKA N P, BORGEL V, ZIV B, et al. Lithium polyacrylate (LiPAA) as an advancedbinder and a passivating agent for high-voltage Li-ion batteries[J]. Advanced Energy Materials,2015, 5(23): 1501008.
[72] YANG J, LI P, ZHONG F, et al. Suppressing voltage fading of Li-rich oxide cathode via buildinga well-protected and partially-protonated surface by polyacrylic acid binder for cycle-stable Liion batteries[J]. Advanced Energy Materials, 2020, 10(15): 1904264.
[73] ZHANG T, LI J T, LIU J, et al. Suppressing the voltage-fading of layered lithium-rich cathodematerials via an aqueous binder for Li-ion batteries[J]. Chemical Communications, 2016, 52(25): 4683-4686.
[74] PEDABALLI S, LI C C. Aqueous processed Ni-rich 0.8Co0.1Mn0.1O2 cathodes along withwater-based binders and a carbon fabric as 3-D conductive host[J]. Journal of the Electrochemical Society, 2021, 168(12): 120538.
[75] CHEN Z, KIM G T, CHAO D, et al. Toward greener lithium-ion batteries: Aqueous binderbased LiNi0.4Co0.2Mn0.4O2 cathode material with superior electrochemical performance[J].Journal of Power Sources, 2017, 372: 180-187.
[76] YAO D, YANG Y, DENG Y, et al. Flexible polyimides through one-pot synthesis as watersoluble binders for silicon anodes in lithium ion batteries[J]. Journal of Power Sources, 2018,379: 26-32.
[77] FANG X Z, LI Q X, WANG Z, et al. Synthesis and properties of novel polyimides derived from2, 2′, 3, 3′-benzophenonetetracarboxylic dianhydride[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2004, 42(9): 2130-2144.
[78] QIAN G, WANG L, SHANG Y, et al. Polyimide binder: a facile way to improve safety oflithium ion batteries[J]. Electrochimica Acta, 2016, 187: 113-118.
[79] WANG Y, DONG N, LIU B, et al. Self-adaptive gel poly (imide-siloxane) binder ensuring stablecathode-electrolyte interface for achieving high-performance NCM811 cathode in lithium-ionbatteries[J]. Energy Storage Materials, 2023, 56: 621-630.
[80] CHOI J, RYOU M H, SON B, et al. Improved high-temperature performance of lithium-ionbatteries through use of a thermally stable co-polyimide-based cathode binder[J]. Journal ofPower Sources, 2014, 252: 138-143.
[81] LEE S, LI W, DOLOCAN A, et al. In-depth analysis of the degradation mechanisms of highnickel, low/no-cobalt layered oxide cathodes for lithium-ion batteries[J]. Advanced EnergyMaterials, 2021, 11(31): 2100858.
[82] QI K, WANG Y, DONG N, et al. Novel polyimide binders integrated with soft and hard functional segments ensuring long-term high-voltage operating stability of high-energy NCM811lithium-ion batteries up to 4.5 V[J]. Applied Energy, 2022, 320: 119282.
[83] YOO E, ZHOU H. Enhanced Cycle Stability of Rechargeable Li–O2 Batteries by the SynergyEffect of a LiF Protective Layer on the Li and DMTFA Additive[J]. ACS Applied Materials &Interfaces, 2017, 9(25): 21307-21313.
[84] ALVARADO J, SCHROEDER M A, ZHANG M, et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries[J]. Materials Today, 2018, 21(4): 341-353.
修改评论