中文版 | English
题名

基于改性聚酰亚胺的锂离子电池正极粘结剂制备与性能研究

其他题名
PREPARATION AND PERFORMANCE OF CATHODE BINDER FOR LITHIUM-ION BATTERIES BASED ON MODIFIED POLYIMIDE
姓名
姓名拼音
LIU Lin
学号
12233185
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
徐洪礼
导师单位
创新创业学院
论文答辩日期
2024-05-08
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

锂离子电池具有高能量密度和低自放电率等特点,在可穿戴电子产品、新能
源汽车等领域具有广阔的应用前景。然而各种应用终端对轻量化和长续航的极致
追求使得开发高能量密度和长循环寿命的锂离子电池更为迫切。基于高电压平台
的镍钴锰酸锂(NCM)正极可显著提高锂离子电池的能量密度,然而 NCM 正极材料也存在缺陷,如循环过程中活性颗粒结构变化大、电极极片结构不稳定,严重影响电池的循环稳定性和循环寿命。开发适配于高电压 NCM 正极材料的新型粘结剂,对于进一步提高锂离子电池的电化学性能至关重要。本论文致力于开发基于改性聚酰亚胺共聚物的正极粘结剂,利用聚酰亚胺的高强度和高稳定性以提高正极极片的结构稳定性,从而提升电池的循环稳定性。本论文的具体研究内容如下:
(1)设计合成了聚酰亚胺-聚氨酯-聚二甲基硅氧烷的软硬段相结合的共聚物
(PI-PU),并将其作为粘结剂用于制备正极极片,显著提升了锂离子电池的电化学性能。以 PI-PU 为正极粘结剂制备的多晶 NCM811/Li 电池在 3.0 - 4.3 V 的电压区间内以 0.2 C 电流进行循环充放电,首圈放电比容量为 204 mAh/g,循环 100 周后的放电比容量为 168 mAh/g,其容量保持率为 83 %。使用扫描电子显微镜观察循环 100 周后的极片微观形貌,发现使用 PI-PU 粘结剂制备的极片裂纹很小,并且电极表面仍然光滑平整。相比之下,使用 PVDF 粘结剂的极片则显示出显著的大裂纹,且有明显的活性物质剥离脱落现象。这主要是因为 PI-PU 粘结剂的特殊软硬段相结合的分子结构特点,赋予其高机械强度和柔韧性,有利于保持极片在长期循环过程中的结构稳定性和完整性。
(2)为进一步提升基于聚酰亚胺类粘结剂的高电压稳定性和长循环性能,本
论文设计合成了聚砜-聚酰胺-聚酰亚胺共聚物(SPI),将其作为粘结剂应用于高电压正极的制备。该粘结剂的粘结性能与电化学性能均较为优异。以 SPI 作粘结剂制备的正极极片剥离强度达到 390 N/m。基于 SPI 正极粘结剂组装的单晶 NCM811/Li电池在 0.2 C 的电流密度下进行循环,首圈放电比容量为 176 mAh/g,循环 300 周后的电池容量保持率达到 80 %,且循环之后的放电比容量为 141 mAh/g。以 SPI为正极粘结剂组装的多晶 NCM811/Li 电池以 0.2 C 的电流密度进行充放电,初始放电比容量为 202 mAh/g,在经过 100 周循环后为 182 mAh/g,其容量保持率达 90%。使用透射电子显微镜观察正极极片,可见 SPI 粘结剂在 NCM 颗粒表面形成一层均匀、致密且连续的包覆层,这对于提高电池的电化学性能大有裨益。

其他摘要

Lithium-ion batteries are characterised by high energy density and low self-discharge rate, and have broad application prospects in wearable electronic products, new energy vehicles and other fields. However, the pursuit of lightweight and long-lasting endurance in various application terminals makes the development of lithium-ion batteries with high energy density and long cycle life more urgent. Nickel-cobalt-manganese lithium (NCM) cathodes based on high-voltage platforms can significantly increase the energy density of lithium-ion batteries. However, NCM cathode materials also have defects, such as large changes in the structure of active particles during cycling and unstable electrode structure, which seriously affect the cycling stability and cycle life of the battery. The development of new binders compatible with high-voltage NCM cathode materials is crucial for further improving the electrochemical performance of lithium-ion batteries. This paper is dedicated to the development of positive electrode binders based on modified polyimide copolymers, utilizing the high strength and stability of polyimide to enhance the structural stability of positive electrode sheets, thereby improving the cycling stability of batteries. The specific research contents of this paper are as follows:
(1)A copolymer of polyimide-polyurethane-polydimethylsiloxane (PI-PU) with combined soft and hard segments was designed and synthesized, and it was used as a binder for preparing cathode electrodes, significantly enhancing the electrochemical performance of lithium-ion batteries. Lithium-ion batteries based on NCM811/Li with cathode electrodes prepared using PI-PU as the binder were cycled at a current rate of 0.2 C in the voltage range of 3.0 to 4.3 V. The initial discharge specific capacity was 204 mAh/g, and after 100 cycles, it decreased to 168 mAh/g, with a capacity retention of 83 %. Scanning electron microscopy observations of the cathode electrodes after 100 cycles revealed minimal cracking and a smooth surface when using PI-PU as the binder, whereas electrodes with polyvinylidene fluoride (PVDF) binder showed significant cracking and noticeable detachment of active materials. This is mainly attributed to the unique molecular structure of PI-PU binder, with its combined soft and hard segments, providing high mechanical strength and flexibility, which helps maintain the structural stability and integrity of the electrodes during long-term cycling.
(2) To further improve the high voltage stability and long cycling performance basedon polyimide binder, this paper designs and synthesizes a copolymer of polyether sulfonepolyamide-polyimide (SPI) as a binder for the preparation of high voltage cathodes. The bonding and electrochemical properties of this binder are both excellent. The peel strength of the cathode electrode prepared with SPI as a binder reaches 390 N/m. Monocrystalline NCM811/Li batteries assembled with SPI as the cathode binder show a first-cycle discharge specific capacity of 176 mAh/g at a current density of 0.2 C, and after 300 cycles, the discharge specific capacity remains at 141 mAh/g, with a capacity retention rate of 80 %. Polycrystalline NCM811/Li batteries assembled with SPI as the cathode binder exhibit an initial discharge specific capacity of 202 mAh/g at a current density of 0.2 C, which decreases to 182 mAh/g after 100 cycles, with a capacity retention rate of 90 %. Transmission electron microscopy observation of the cathode electrodes reveals that the SPI binder forms a uniform, dense, and continuous coating layer on the surface of NCM particles, which greatly benefits the improvement of the battery’s electrochemical performance.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] FAWZY S, OSMAN A I, DORAN J, et al. Strategies for mitigation of climate change: a review[J]. Environmental Chemistry Letters, 2020, 18: 2069-2094.
[2] ZHANG M, WANG L, XU H, et al. Polyimides as promising materials for lithium-ion batteries:A review[J]. Nano-Micro Letters, 2023, 15(1): 135.
[3] MANTHIRAM A. An outlook on lithium ion battery technology[J]. ACS Central Science,2017, 3(10): 1063-1069.
[4] YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edition, 2012, 51(24): 5798-5800.
[5] MASIAS A, MARCICKI J, PAXTON W A. Opportunities and challenges of lithium ion batteries in automotive applications[J]. ACS Energy Letters, 2021, 6(2): 621-630.
[6] CHAYAMBUKA K, MULDER G, DANILOV D L, et al. From li-ion batteries toward Naion chemistries: challenges and opportunities[J]. Advanced Energy Materials, 2020, 10(38):2001310.
[7] KULOVA T L, FATEEV V N, SEREGINA E A, et al. A brief review of post-lithium-ionbatteries[J]. International Journal of Electrochemical Science, 2020, 15(8): 7242-7259.
[8] LU J, WU T, AMINE K. State-of-the-art characterization techniques for advanced lithium-ionbatteries[J]. Nature Energy, 2017, 2(3): 1-13.
[9] ZHANG L, WU X, QIAN W, et al. Exploring More Functions in Binders for Lithium Batteries[J]. Electrochemical Energy Reviews, 2023, 6(1): 36.
[10] DOU W, ZHENG M, ZHANG W, et al. Review on the binders for sustainable high-energydensity lithium ion batteries: status, solutions, and prospects[J]. Advanced Functional Materials, 2023, 33(45): 2305161.
[11] WANG Y B, YANG Q, GUO X, et al. Strategies of binder design for high-performance lithiumion batteries: a mini review[J]. Rare Metals, 2022, 41: 745–761.
[12] YE C, LIU M, ZHANG X, et al. Review—long-term cyclability of high-temperature stablepolyimide in LIBs[J]. Journal of The Electrochemical Society, 2021, 168(10): 100519.
[13] KURZWEIL P. Gaston Planté and his invention of the lead–acid battery—The genesis of thefirst practical rechargeable battery[J]. Journal of Power Sources, 2010, 195(14): 4424-4434.
[14] XIE J, LU Y C. A retrospective on lithium-ion batteries[J]. Nature Communications, 2020, 11(1): 2499.
[15] ZHANG H, LI C, ESHETU G G, et al. From Solid‐Solution Electrodes and the Rocking‐ChairConcept to Today’s Batteries[J]. Angewandte Chemie International Edition, 2020, 59(2): 534-538.
[16] KIM T H, PARK J S, CHANG S K, et al. The current move of lithium ion batteries towards thenext phase[J]. Advanced Energy Materials, 2012, 2(7): 860-872.
[17] LI M, LU J, CHEN Z, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561.
[18] MALEKI KHEIMEH SARI H, LI X. Controllable cathode–electrolyte interface of Li[Ni0.8Co0.1Mn0.1] O2for lithium ion batteries: a review[J]. Advanced Energy Materials, 2019,9(39): 1901597.
[19] SERVICE R F. Lithium-ion battery development takes Nobel[J]. Science, 2019, 366(6463):292.
[20] MENG, YUEZHONG, XIAO, et al. Polymer electrolytes for lithium polymer batteries[J]. Journal of Materials Chemistry A Materials for Energy and Sustainability, 2016, 4(26): 10038-10069.
[21] MÜLLER M, PFAFFMANN L, JAISER S, et al. Investigation of binder distribution in graphiteanodes for lithium-ion batteries[J]. Journal of Power Sources, 2017, 340: 1-5.
[22] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Journalof the American Chemical Society, 2013, 135(4): 1167-1176.
[23] YOO H D, MARKEVICH E, SALITRA G, et al. On the challenge of developing advancedtechnologies for electrochemical energy storage and conversion[J]. Materials Today, 2014, 17(3): 110-121.
[24] FAN E, LI L, WANG Z, et al. Sustainable recycling technology for Li-ion batteries and beyond:challenges and future prospects[J]. Chemical Reviews, 2020, 120(14): 7020-7063.
[25] HU Y, WAYMENT L J, HASLAM C, et al. Covalent organic framework based lithium-ionbattery: Fundamental, design and characterization[J]. EnergyChem, 2021, 3(1): 100048.
[26] CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery[J]. Journalof Power Sources, 2020, 478: 228649.
[27] FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery forelectric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
[28] DUH Y S, TSAI M T, KAO C S. Characterization on the thermal runaway of commercial 18650lithium-ion batteries used in electric vehicle[J]. Journal of Thermal Analysis and Calorimetry,2017, 127: 983-993.
[29] WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ionbattery[J]. Journal of Power Sources, 2012, 208: 210-224.
[30] CHEN X, YAN S, TAN T, et al. Supramolecular “flame-retardant”electrolyte enables safeand stable cycling of lithium-ion batteries[J]. Energy Storage Materials, 2022, 45: 182-190.
[31] SHI J L, XIAO D D, GE M, et al. High-Capacity Cathode Material with High Voltage for Li-IonBatteries[J]. Advanced Materials, 2018, 30(9): 1705575.
[32] HAN Y, XU J, WANG W, et al. Implanting an electrolyte additive on a single crystal Ni-richcathode surface for improved cycleability and safety[J]. Journal of Materials Chemistry A,2020, 8(46): 24579-24589.
[33] JUNG S K, GWON H, HONG J, et al. Understanding the degradation mechanisms ofLiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries[J]. Advanced Energy Materials, 2014, 4(1): 1300787.
[34] XU J, CAI X, CAI S, et al. High-energy lithium-ion batteries: recent progress and a promisingfuture in applications[J]. Energy & Environmental Materials, 2023, 6(5): e12450.
[35] LI Q, YANG Y, YU X, et al. A 700 w•h•kg−1 Rechargeable Pouch Type Lithium Battery[J].Chinese Physics Letters, 2023, 40(4): 048201.
[36] ZHANG S, ZHAO F, WANG S, et al. Advanced high-voltage all-solid-state Li-ion batteries enabled by a dual-halogen solid electrolyte[J]. Advanced Energy Materials, 2021, 11(32):2100836.
[37] KE X, WANG Y, REN G, et al. Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries[J]. Energy Storage Materials, 2020, 26: 313-324.
[38] LIU H, SUN Q, ZHANG H, et al. The application road of silicon-based anode in lithium-ionbatteries: From liquid electrolyte to solid-state electrolyte[J]. Energy Storage Materials, 2023,55: 244-263.
[39] LU X, WANG Y, XU X, et al. Polymer-Based Solid-State Electrolytes for High-Energy-DensityLithium-Ion Batteries–Review[J]. Advanced Energy Materials, 2023, 13(38): 2301746.
[40] XIAO Y, TURCHENIUK K, NARLA A, et al. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries[J]. Nature Materials, 2021, 20(7):984-990.
[41] HYUN W J, THOMAS C M, LUU N S, et al. Layered heterostructure ionogel electrolytesfor high-performance solid-state lithium-ion batteries[J]. Advanced Materials, 2021, 33(13):2007864.
[42] LUO C, JI X, CHEN J, et al. Solid-state electrolyte anchored with a carboxylated azo compoundfor all-solid-state lithium batteries[J]. Angewandte Chemie International Edition, 2018, 57(28):8567-8571.
[43] YUE L, MA J, ZHANG J, et al. All solid-state polymer electrolytes for high-performancelithium ion batteries[J]. Energy Storage Materials, 2016, 5: 139-164.
[44] WANG Y, WANG E, ZHANG X, et al. High-voltage “single-crystal”cathode materials forlithium-ion batteries[J]. Energy & Fuels, 2021, 35(3): 1918-1932.
[45] XIANG J, WEI Y, ZHONG Y, et al. Building practical high-voltage cathode materials forlithium-ion batteries[J]. Advanced Materials, 2022, 34(52): 2200912.
[46] LI W, SONG B, MANTHIRAM A. High-voltage positive electrode materials for lithium-ionbatteries[J]. Chemical Society Reviews, 2017, 46(10): 3006-3059.
[47] WU Q, ZHANG B, LU Y. Progress and perspective of high-voltage lithium cobalt oxide inlithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 74: 283-308.
[48] LI J, HE K, MENG Q, et al. Kinetic phase evolution of spinel cobalt oxide during lithiation[J].ACS Nano, 2016, 10(10): 9577-9585.
[49] LIN C, LI J, YIN Z W, et al. Structural Understanding for High-Voltage Stabilization of LithiumCobalt Oxide[J]. Advanced Materials, 2024, 36(6): 2307404.
[50] XU B, QIAN D, WANG Z, et al. Recent progress in cathode materials research for advancedlithium ion batteries[J]. Materials Science and Engineering: R: Reports, 2012, 73(5-6): 51-65.
[51] LI J, LIN C, WENG M, et al. Structural origin of the high-voltage instability of lithium cobaltoxide[J]. Nature Nanotechnology, 2021, 16(5): 599-605.
[52] FURUSHIMA Y, YANAGISAWA C, NAKAGAWA T, et al. Thermal stability and kinetics ofdelithiated LiCoO2[J]. Journal of Power Sources, 2011, 196(4): 2260-2263.
[53] ZHUANG Z, WANG J, JIA K, et al. Ultrahigh-Voltage LiCoO2 at 4.7 V by Interface Stabilization and Band Structure Modification[J]. Advanced Materials, 2023, 35(22): 2212059.
[54] HE P, YU H, ZHOU H, et al. Layered lithium transition metal oxide cathodes towards highenergy lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(9): 3680-3695.
[55] AHN J, SUSANTO D, NOH J K, et al. Achieving high capacity and rate capability in layeredlithium transition metal oxide cathodes for lithium-ion batteries[J]. Journal of Power Sources,2017, 360: 575-584.
[56] AISHOVA A, PARK G T, YOON C S, et al. Cobalt-free high-capacity Ni-rich layered Li[Ni0.9Mn0.1]O2 cathode[J]. Advanced Energy Materials, 2020, 10(4): 1903179.
[57] LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energylithium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(15): 4440-4457.
[58] GAN Q, QIN N, ZHU Y, et al. Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12594-12604.
[59] XIONG X, WANG Z, YUE P, et al. Washing effects on electrochemical performance and storagecharacteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries[J]. Journalof Power Sources, 2013, 222: 318-325.
[60] CHEN H, LING M, HENCZ L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices[J]. Chemical Reviews, 2018, 118(18):8936-8982.
[61] SHARPE L, SCHONHORN H. Theory gives direction to adhesion work[J]. Chemical andEngineering News, 1963, 41(15): 67-68.
[62] YUAN H, HUANG J Q, PENG H J, et al. A review of functional binders in lithium–sulfurbatteries[J]. Advanced Energy Materials, 2018, 8(31): 1802107.
[63] GARDNER D J, BLUMENTRITT M, WANG L, et al. Adhesion theories in wood adhesivebonding[J]. Progress in Adhesion and Adhesives, 2015: 125-168.
[64] MA Y, MA J, CUI G. Small things make big deal: Powerful binders of lithium batteries andpost-lithium batteries[J]. Energy Storage Materials, 2019, 20: 146-175.
[65] ZOU F, MANTHIRAM A. A review of the design of advanced binders for high-performancebatteries[J]. Advanced Energy Materials, 2020, 10(45): 2002508.
[66] ZHAO Y, LIANG Z, KANG Y, et al. Rational design of functional binder systems for highenergy lithium-based rechargeable batteries[J]. Energy Storage Materials, 2021, 35: 353-377.
[67] XING J, BLIZNAKOV S, BONVILLE L, et al. A review of nonaqueous electrolytes, binders,and separators for lithium-ion batteries[J]. Electrochemical Energy Reviews, 2022, 5(4): 14.
[68] CHOU S L, PAN Y, WANG J Z, et al. Small things make a big difference: binder effects onthe performance of Li and Na batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(38):20347-20359.
[69] ZHANG S, GU H, PAN H, et al. A novel strategy to suppress capacity and voltage fading ofLi-and Mn-rich layered oxide cathode material for lithium-ion batteries[J]. Advanced EnergyMaterials, 2017, 7(6): 1601066.
[70] WANG Y, QI K, DONG N, et al. Surface modification enabling 4.7 V Nickel-rich layeredcathode with superior long-term cyclability via novel functional polyimide binders[J]. Journalof Power Sources, 2022, 545: 231927.
[71] PIECZONKA N P, BORGEL V, ZIV B, et al. Lithium polyacrylate (LiPAA) as an advancedbinder and a passivating agent for high-voltage Li-ion batteries[J]. Advanced Energy Materials,2015, 5(23): 1501008.
[72] YANG J, LI P, ZHONG F, et al. Suppressing voltage fading of Li-rich oxide cathode via buildinga well-protected and partially-protonated surface by polyacrylic acid binder for cycle-stable Liion batteries[J]. Advanced Energy Materials, 2020, 10(15): 1904264.
[73] ZHANG T, LI J T, LIU J, et al. Suppressing the voltage-fading of layered lithium-rich cathodematerials via an aqueous binder for Li-ion batteries[J]. Chemical Communications, 2016, 52(25): 4683-4686.
[74] PEDABALLI S, LI C C. Aqueous processed Ni-rich 0.8Co0.1Mn0.1O2 cathodes along withwater-based binders and a carbon fabric as 3-D conductive host[J]. Journal of the Electrochemical Society, 2021, 168(12): 120538.
[75] CHEN Z, KIM G T, CHAO D, et al. Toward greener lithium-ion batteries: Aqueous binderbased LiNi0.4Co0.2Mn0.4O2 cathode material with superior electrochemical performance[J].Journal of Power Sources, 2017, 372: 180-187.
[76] YAO D, YANG Y, DENG Y, et al. Flexible polyimides through one-pot synthesis as watersoluble binders for silicon anodes in lithium ion batteries[J]. Journal of Power Sources, 2018,379: 26-32.
[77] FANG X Z, LI Q X, WANG Z, et al. Synthesis and properties of novel polyimides derived from2, 2′, 3, 3′-benzophenonetetracarboxylic dianhydride[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2004, 42(9): 2130-2144.
[78] QIAN G, WANG L, SHANG Y, et al. Polyimide binder: a facile way to improve safety oflithium ion batteries[J]. Electrochimica Acta, 2016, 187: 113-118.
[79] WANG Y, DONG N, LIU B, et al. Self-adaptive gel poly (imide-siloxane) binder ensuring stablecathode-electrolyte interface for achieving high-performance NCM811 cathode in lithium-ionbatteries[J]. Energy Storage Materials, 2023, 56: 621-630.
[80] CHOI J, RYOU M H, SON B, et al. Improved high-temperature performance of lithium-ionbatteries through use of a thermally stable co-polyimide-based cathode binder[J]. Journal ofPower Sources, 2014, 252: 138-143.
[81] LEE S, LI W, DOLOCAN A, et al. In-depth analysis of the degradation mechanisms of highnickel, low/no-cobalt layered oxide cathodes for lithium-ion batteries[J]. Advanced EnergyMaterials, 2021, 11(31): 2100858.
[82] QI K, WANG Y, DONG N, et al. Novel polyimide binders integrated with soft and hard functional segments ensuring long-term high-voltage operating stability of high-energy NCM811lithium-ion batteries up to 4.5 V[J]. Applied Energy, 2022, 320: 119282.
[83] YOO E, ZHOU H. Enhanced Cycle Stability of Rechargeable Li–O2 Batteries by the SynergyEffect of a LiF Protective Layer on the Li and DMTFA Additive[J]. ACS Applied Materials &Interfaces, 2017, 9(25): 21307-21313.
[84] ALVARADO J, SCHROEDER M A, ZHANG M, et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries[J]. Materials Today, 2018, 21(4): 341-353.

所在学位评定分委会
材料与化工
国内图书分类号
TM911.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765971
专题南方科技大学
创新创业学院
推荐引用方式
GB/T 7714
刘琳. 基于改性聚酰亚胺的锂离子电池正极粘结剂制备与性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233185-刘琳-创新创业学院.p(12545KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘琳]的文章
百度学术
百度学术中相似的文章
[刘琳]的文章
必应学术
必应学术中相似的文章
[刘琳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。