[1] MIZOROKI T, MORI K, OZAKI A. Arylation of olefin with aryl iodide catalyzed by palladium[J]. Bulletin of the Chemical Society of Japan, 1971, 44(2): 581-581.
[2] DIECK H A, HECK R F. Organophosphinepalladium complexes as catalysts for vinylic hydrogen substitution reactions[J]. Journal of the American Chemical Society, 1974, 96(4): 1133-1136.
[3] BELETSKAYA I P, CHEPRAKOV A V. The Heck reaction as a sharpening stone of palladium catalysis[J]. Chemical Reviews, 2000, 100(8): 3009-3066.
[4] JAGTAP S. Heck reaction–state of the art[J]. Catalysts, 2017, 7(9): 267.
[5] YIN, LIEBSCHER J. Carbon−carbon coupling reactions catalyzed by heterogeneous palladium catalysts[J]. Chemical Reviews, 2007, 107(1): 133-173.
[6] LI C-J. Organic reactions in aqueous media with a focus on carbon−carbon bond formations: A decade update[J]. Chemical Reviews, 2005, 105(8): 3095-3166.
[7] BRäSE S, WAEGELL B, DE MEIJERE A. Palladium-catalyzed coupling reactions of 1-Bromoadamantane with styrenes and arenes[J]. Synthesis, 1998, 1998(02): 148-152.
[8] LITTKE A F, FU G C. Heck reactions in the presence of P(t-Bu)3: Expanded scope and milder reaction conditions for the coupling of aryl chlorides[J]. The Journal of Organic Chemistry, 1999, 64(1): 10-11.
[9] LITTKE A F, FU G C. A versatile catalyst for Heck reactions of aryl chlorides and aryl bromides under mild conditions[J]. Journal of the American Chemical Society, 2001, 123(29): 6989-7000.
[10] YANG C, NOLAN S P. A highly efficient palladium/imidazolium salt system for catalytic Heck reactions[J]. Synlett, 2001, 2001(10): 1539-1542.
[11] SøBJERG L S, GAUTHIER D, LINDHARDT A T, et al. Bio-supported palladium nanoparticles as a catalyst for Suzuki–Miyaura and Mizoroki–Heck reactions[J]. Green Chemistry, 2009, 11(12): 2041-2046.
[12] LASKA U, FROST C G, PRICE G J, et al. Easy-separable magnetic nanoparticle-supported Pd catalysts: Kinetics, stability and catalyst re-use[J]. Journal of Catalysis, 2009, 268(2): 318-328.
[13] KURANDINA D, PARASRAM M, GEVORGYAN V. Visible light-induced room-temperature Heck reaction of functionalized alkyl halides with vinyl arenes/heteroarenes[J]. Angewandte Chemie International Edition, 2017, 56(45): 14212-14216.
[14] WANG G-Z, SHANG R, CHENG W-M, et al. Irradiation-Induced Heck reaction of unactivated alkyl halides at room temperature[J]. Journal of the American Chemical Society, 2017, 139(50): 18307-18312.
[15] LEE G S, KIM D, HONG S H. Pd-catalyzed formal Mizoroki–Heck coupling of unactivated alkyl chlorides[J]. Nature Communications, 2021, 12(1): 991.
[16] AFFO W, OHMIYA H, FUJIOKA T, et al. Cobalt-Catalyzed trimethylsilylmethylmagnesium-promoted radical alkenylation of alkyl halides: A complement to the Heck reaction[J]. Journal of the American Chemical Society, 2006, 128(24): 8068-8077.
[17] NISHIKATA T, NODA Y, FUJIMOTO R, et al. An efficient generation of a functionalized tertiary-alkyl radical for copper-catalyzed tertiary-alkylative Mizoroki-Heck type Reaction[J]. Journal of the American Chemical Society, 2013, 135(44): 16372-16375.
[18] WALKER B R, SEVOV C S. An electrochemically promoted, Nickel-catalyzed Mizoroki–Heck reaction[J]. ACS Catalysis, 2019, 9(8): 7197-7203.
[19] BHOYARE V W, SOSA CARRIZO E D, CHINTAWAR C C, et al. Gold-catalyzed Heck reaction[J]. Journal of the American Chemical Society, 2023, 145(16): 8810-8816.
[20] VRIES J G D. The Heck reaction in the production of fine chemicals[J]. Canadian Journal of Chemistry, 2001, 79(5-6): 1086-1092.
[21] PICQUET M. “Organometallics as catalysts in the fine chemical industry”[J]. Platinum Metals Review, 2013, 57(4): 272-280.
[22] TSOUKALA A, BJøRSVIK H-R. Synthetic route discovery and introductory optimization of a novel process to idebenone[J]. Organic Process Research & Development, 2011, 15(3): 673-680.
[23] FU Y, HONG S, LI D, et al. Novel chemical synthesis of ginkgolic acid (13:0) and evaluation of its tyrosinase inhibitory activity[J]. Journal of Agricultural and Food Chemistry, 2013, 61(22): 5347-5352.
[24] CHEKAL B P, GUINNESS S M, LILLIE B M, et al. Development of an efficient Pd-catalyzed coupling process for axitinib[J]. Organic Process Research & Development, 2014, 18(1): 266-274.
[25] MASTERS J J, LINK J T, SNYDER L B, et al. A total synthesis of taxol[J]. Angewandte Chemie International Edition in English, 1995, 34(16): 1723-1726.
[26] SYMKENBERG G, KALESSE M. Structure elucidation and total synthesis of kulkenon[J]. Angewandte Chemie International Edition, 2014, 53(7): 1795-1798.
[27] WHITE L V, HU N, HE Y-T, et al. Expeditious access to morphinans by chemical synthesis[J]. Angewandte Chemie International Edition, 2022, 61(27): e202203186.
[28] SHEVLIN M. Practical High-Throughput experimentation for chemists[J]. ACS Medicinal Chemistry Letters, 2017, 8(6): 601-607.
[29] HOOK A L, ANDERSON D G, LANGER R, et al. High throughput methods applied in biomaterial development and discovery[J]. Biomaterials, 2010, 31(2): 187-198.
[30] BUITRAGO SANTANILLA A, REGALADO E L, PEREIRA T, et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules[J]. Science, 2015, 347(6217): 49-53.
[31] PERERA D, TUCKER J W, BRAHMBHATT S, et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow[J]. Science, 2018, 359(6374): 429-434.
[32] BELLOMO A, CELEBI-OLCUM N, BU X, et al. Rapid catalyst identification for the synthesis of the pyrimidinone core of HIV integrase inhibitors[J]. Angewandte Chemie International Edition, 2012, 51(28): 6912-6915.
[33] SHAABANI S, XU R, AHMADIANMOGHADDAM M, et al. Automated and accelerated synthesis of indole derivatives on a nano-scale[J]. Green Chemistry, 2019, 21(2): 225-232.
[34] MENNEN S M, ALHAMBRA C, ALLEN C L, et al. The evolution of high-throughput experimentation in pharmaceutical development and perspectives on the future[J]. Organic Process Research & Development, 2019, 23(6): 1213-1242.
[35] TROBE M, BURKE M D. The molecular industrial revolution: Automated synthesis of small molecules[J]. Angewandte Chemie International Edition, 2018, 57(16): 4192-4214.
[36] WONG H, CERNAK T. Reaction miniaturization in eco-friendly solvents[J]. Current Opinion in Green and Sustainable Chemistry, 2018, 11: 91-98.
[37] WANG Y, SHAABANI S, AHMADIANMOGHADDAM M, et al. Acoustic droplet ejection enabled automated reaction scouting[J]. ACS Central Science, 2019, 5(3): 451-457.
[38] BOGA S B, CHRISTENSEN M, PERROTTO N, et al. Selective functionalization of complex heterocycles via an automated strong base screening platform[J]. Reaction Chemistry & Engineering, 2017, 2(4): 446-450.
[39] LIN S, DIKLER S, BLINCOE W D, et al. Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS[J]. Science, 2018, 361(6402): eaar6236.
[40] MARTIN M C, GOSHU G M, HARTNELL J R, et al. Versatile methods to dispense submilligram quantities of solids using chemical-coated beads for High-Throughput Experimentation[J]. Organic Process Research & Development, 2019, 23(9): 1900-1907.
[41] TU N P, DOMBROWSKI A W, GOSHU G M, et al. High-Throughput Reaction screening with nanomoles of solid reagents coated on glass beads[J]. Angewandte Chemie International Edition, 2019, 58(24): 7987-7991.
[42] ISBRANDT E S, SULLIVAN R J, NEWMAN S G. High throughput strategies for the discovery and optimization of catalytic reactions[J]. Angewandte Chemie International Edition, 2019, 58(22): 7180-7191.
[43] BUGLIONI L, RAYMENANTS F, SLATTERY A, et al. Technological innovations in photochemistry for organic synthesis: Flow chemistry, high-throughput experimentation, scale-up, and photoelectrochemistry[J]. Chemical Reviews, 2022, 122(2): 2752-2906.
[44] YAYLA H G, PENG F, MANGION I K, et al. Discovery and mechanistic study of a photocatalytic indoline dehydrogenation for the synthesis of elbasvir[J]. Chemical Science, 2016, 7(3): 2066-2073.
[45] MCCARTHY J, MINSKY M, ROCHESTER N, et al. A Proposal for the dartmouth summer research project on artificial intelligence, August 31, 1955[J]. AI Mag, 2006, 27: 12-14.
[46] MAHESH B. Machine learning algorithms -A review[M]. 2019.
[47] MEUWLY M. Machine learning for chemical reactions[J]. Chemical Reviews, 2021, 121(16): 10218-10239.
[48] PANTELEEV J, GAO H, JIA L. Recent applications of machine learning in medicinal chemistry[J]. Bioorganic & Medicinal Chemistry Letters, 2018, 28(17): 2807-2815.
[49] WESTERMAYR J, GASTEGGER M, SCHüTT K T, et al. Perspective on integrating machine learning into computational chemistry and materials science[J]. The Journal of Chemical Physics, 2021, 154(23): 230903
[50] LIU Y D, YANG Q, LI Y, et al. Application of machine learning in organic chemistry[J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3812-3827.
[51] COLEY C W, GREEN W H, JENSEN K F. Machine learning in computer-aided synthesis planning[J]. Accounts of Chemical Research, 2018, 51(5): 1281-1289.
[52] RACCUGLIA P, ELBERT K C, ADLER P D F, et al. Machine-learning-assisted materials discovery using failed experiments[J]. Nature, 2016, 533(7601): 73-76.
[53] DAVID L, THAKKAR A, MERCADO R, et al. Molecular representations in AI-driven drug discovery: a review and practical guide[J]. Journal of Cheminformatics, 2020, 12(1): 56.
[54] RAGHUNATHAN S, PRIYAKUMAR U D. Molecular representations for machine learning applications in chemistry[J]. International Journal of Quantum Chemistry, 2022, 122(7): e26870.
[55] WEININGER D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules[J]. Journal of Chemical Information and Computer Sciences, 1988, 28(1): 31-36.
[56] KEARNES S, MCCLOSKEY K, BERNDL M, et al. Molecular graph convolutions: moving beyond fingerprints[J]. Journal of Computer-Aided Molecular Design, 2016, 30(8): 595-608.
[57] CERETO-MASSAGUé A, OJEDA M J, VALLS C, et al. Molecular fingerprint similarity search in virtual screening[J]. Methods, 2015, 71: 58-63.
[58] YANG J, CAI Y, ZHAO K, et al. Concepts and applications of chemical fingerprint for hit and lead screening[J]. Drug Discovery Today, 2022, 27(11): 103356.
[59] GOW S, NIRANJAN M, KANZA S, et al. A review of reinforcement learning in chemistry[J]. Digital Discovery, 2022, 1(5): 551-567.
[60] SARKER I H. Machine learning: Algorithms, real-world applications and research directions[J]. SN Computer Science, 2021, 2(3): 160.
[61] FRANçOIS-LAVET V, HENDERSON P, ISLAM R, et al. An introduction to deep reinforcement learning[J]. Foundations and Trends® in Machine Learning, 2018, 11(3-4): 219-354.
[62] MATER A C, COOTE M L. Deep learning in chemistry[J]. Journal of Chemical Information and Modeling, 2019, 59(6): 2545-2559.
[63] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[64] LO Y-C, RENSI S E, TORNG W, et al. Machine learning in chemoinformatics and drug discovery[J]. Drug Discovery Today, 2018, 23(8): 1538-1546.
[65] EYKE N S, KOSCHER B A, JENSEN K F. Toward machine learning-enhanced high-throughput experimentation[J]. Trends in Chemistry, 2021, 3(2): 120-132.
[66] COLEY C W, BARZILAY R, JAAKKOLA T S, et al. Prediction of organic reaction outcomes using machine learning[J]. ACS Central Science, 2017, 3(5): 434-443.
[67] ZHOU Z, LI X, ZARE R N. Optimizing chemical reactions with deep reinforcement learning[J]. ACS Central Science, 2017, 3(12): 1337-1344.
[68] COLEY CONNOR W, JIN W, ROGERS L, et al. A graph-convolutional neural network model for the prediction of chemical reactivity[J]. Chemical Science, 2019, 10(2): 370-377.
[69] SANDFORT F, STRIETH-KALTHOFF F, KüHNEMUND M, et al. A structure-based platform for predicting chemical reactivity[J]. Chem, 2020, 6(6): 1379-1390.
[70] COREY E J, WIPKE W T. Computer-assisted design of complex organic syntheses[J]. Science, 1969, 166(3902): 178-192.
[71] LIN K, XU Y, PEI J, et al. Automatic retrosynthetic route planning using template-free models[J]. Chemical Science, 2020, 11(12): 3355-3364.
[72] KLUCZNIK T, MIKULAK-KLUCZNIK B, MCCORMACK M P, et al. Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the laboratory[J]. Chem, 2018, 4(3): 522-532.
[73] CHRIST C D, ZENTGRAF M, KRIEGL J M. Mining electronic laboratory notebooks: analysis, retrosynthesis, and reaction based enumeration[J]. Journal of Chemical Information and Modeling, 2012, 52(7): 1745-1756.
[74] ZHENG S, RAO J, ZHANG Z, et al. Predicting retrosynthetic reactions using self-corrected transformer neural networks[J]. Journal of Chemical Information and Modeling, 2020, 60(1): 47-55.
[75] WANG X, LI Y, QIU J, et al. RetroPrime: A Diverse, plausible and transformer-based method for single-step retrosynthesis predictions[J]. Chemical Engineering Journal, 2021, 420: 129845.
[76] TETKO I V, KARPOV P, VAN DEURSEN R, et al. State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis[J]. Nature Communications, 2020, 11(1): 5575.
[77] SEGLER M H S, PREUSS M, WALLER M P. Planning chemical syntheses with deep neural networks and symbolic AI[J]. Nature, 2018, 555(7698): 604-610.
[78] AHNEMAN D T, ESTRADA J G, LIN S, et al. Predicting reaction performance in C–N cross-coupling using machine learning[J]. Science, 2018, 360(6385): 186-190.
[79] NIPPA D F, ATZ K, HOHLER R, et al. Enabling late-stage drug diversification by high-throughput experimentation with geometric deep learning[J]. Nature Chemistry, 2024, 16(2): 239-248.
[80] CHEN X, ENGLE K M, WANG D-H, et al. Palladium(II)-catalyzed C-H activation/C-C Cross-Coupling reactions: versatility and practicality[J]. Angewandte Chemie International Edition, 2009, 48(28): 5094-5115.
[81] HIERSO J-C. Palladium-catalyzed coupling reactions. Practical aspects and future developments[J]. Angewandte Chemie International Edition, 2014, 53(4): 920-922.
[82] KORANNE A, TURAKHIA S, JHA V K, et al. The Mizoroki–Heck reaction between in situ generated alkenes and aryl halides: cross-coupling route to substituted olefins[J]. RSC Advances, 2023, 13(32): 22512-22528.
[83] BIFFIS A, ZECCA M, BASATO M. Palladium metal catalysts in Heck CC coupling reactions[J]. Journal of Molecular Catalysis A: Chemical, 2001, 173(1): 249-274.
[84] XU Y, GAO Y, SU L, et al. High-Throughput experimentation and machine learning-assisted optimization of iridium-catalyzed cross-dimerization of sulfoxonium ylides[J]. Angewandte Chemie International Edition, 2023, 62(48): e202313638.
[85] QIU J, XIE J, SU S, et al. Selective functionalization of hindered meta-C–H bond of o-alkylaryl ketones promoted by automation and deep learning[J]. Chem, 2022, 8(12): 3275-3287.
[86] CHEN T, GUESTRIN C. XGBoost: A scalable tree boosting system[Z]. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and aata mining. San Francisco, California, USA; Association for Computing Machinery. 2016: 785–794.
[87] BERGSTRA J, BARDENET R, BENGIO Y, et al. Algorithms for hyper-parameter optimization; proceedings of the neural information processing systems, F, 2011 [C].
[88] FRIEDMAN J H. Stochastic gradient boosting[J]. Computational Statistics & Data Analysis, 2002, 38(4): 367-378.
[89] FRIEDMAN J H. Greedy function approximation: A gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232, 1144.
[90] BREIMAN L. Random Forests[J]. Machine learning, 2001, 45(1): 5-32.
[91] ERICKSON N, MUELLER J, SHIRKOV A, et al. Autogluon-tabular: Robust and accurate automl for structured data[J]. arXiv preprint arXiv:200306505, 2020
修改评论