中文版 | English
题名

基于氮化镓收发一体集成光电器件的逻辑电路及微气压传感研究

其他题名
LOGIC CIRCUIT AND MICRO AIR PRESSURE SENSING BASED ON GALLIUM NITRIDE INTEGRATED PHOTOELECTRIC DEVICE
姓名
姓名拼音
GUI Sizhe
学号
12132442
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
李携曦
导师单位
深港微电子学院
论文答辩日期
2024-05-06
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

氮化镓(Gallium Nitride,GaN)作为第三代半导体,相对于传统的半导体材料具有很多优势。它的带隙宽,电子迁移率高,热稳定性高,电子漂移速度高,在光电领域有出色的表现。通过加入铟(Indium,In)组分而形成的铟镓氮/氮化镓(InGaN/GaN)多量子阱(Multi-quantum Wells, MQWs),既可以作为光电二极管(Light-Emitted Diode,LED),通过注入正向偏置电流使电子和空穴复合发出光,也可以作为光电探测器(Photodetector,PD),接收光线而产生光电流。利用这种特性,将LED和PD同质集成在蓝宝石衬底上,即可组成收发一体集成的光电器件。由于斯托克斯位移的存在,LED的发射光谱和PD的吸收光谱存在一定重叠,因此通过蓝宝石界面的反射,PD可以对LED发出的光产生响应。利用这一原理,该集成芯片可以组成一个完整的传感系统,且更小型化和集成化。
本工作提出了一种基于GaN收发一体集成光电芯片的逻辑电路实现方法。通过特定的电路设计实现逻辑功能,并在输出端以电流的形式输出。该方案实现了包括非、与、与非、或、或非、异或门和半加法器等逻辑功能。该器件对输入信号的响应速度表现优异,响应时间可以达到7.2 μs。
本论文提出在蓝光GaN光电芯片上集成柔性反光薄膜的方案。通过高分子液滴在水溶液中铺展成膜技术和喷涂工艺,该薄膜与蓝光GaN光电芯片实现了低成本的高效集成。利用环境微气压的变化引起芯片上方反光薄膜的形变,从而快速转变为光学信号的改变。该微气压传感器实现了-35 kPa到35 kPa的压力检测范围,低至4.3 Pa和-7.8 Pa的正、负压力检测极限,以及分别对应于0.1 s和0.22 s的正、负压力变化的响应时间。通过将该传感器安装在口罩上,在检测人类不同呼吸模式方面表现出应用潜力。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] CHEN C C, WU C Y, CHEN Y M, et al. Sequential Color LED Backlight Driving System for LCD Panels[J]. IEEE Transactions on Power Electronics, 2007, 22(3): 919-925.
[2] XU W, CHAHINE N, SULCHEK T. Extreme Hardening of PDMS Thin Films Due to High Compressive Strain and Confined Thickness[J]. Langmuir, 2011, 27(13): 8470-8477.
[3] WU H, ZHAO X, SONG D, et al. Progress and prospects of aberration-corrected STEM for functional materials[J]. Ultramicroscopy, 2018, 194: 182-192.
[4] JUNG D, KIM M, CHOI U, et al. Effects of Si-doped GaN insert layer in AlGaN/GaN/GaN:Si/AlN DH-HEMT structure[J]. Solid-State Electronics, 2023, 199: 108482.
[5] LI K H, FU W Y, CHOI H W. Chip-scale GaN integration[J]. Progress in Quantum Electronics, 2020, 70: 100247.
[6] DAY J, LI J, LIE D Y C, et al. III-Nitride full-scale high-resolution microdisplays[J]. Applied Physics Letters, 2011, 99(3): 031116.
[7] MCKENDRY J J D, MASSOUBRE D, ZHANG S, et al. Visible-Light Communications Using a CMOS-Controlled Micro-Light- Emitting-Diode Array[J]. Journal of Lightwave Technology, 2012, 30(1): 61-67.
[8] LIU C, CAI Y, JIANG H, et al. Monolithic integration of III-nitride voltage-controlled light emitters with dual-wavelength photodiodes by selective-area epitaxy[J]. Optics Letters, 2018, 43(14): 3401.
[9] LI K H, LU H, FU W Y, et al. Intensity-Stabilized LEDs With Monolithically Integrated Photodetectors[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9): 7426-7432.
[10] GUO D, WANG X, WANG H, et al. Realization of in-Plane GaN Microwire Array Based Ultraviolet Photodetector with High Responsivity on a Si(100) Substrate[J]. ACS Photonics, 2018, 5(12): 4810-4816.
[11] HOU Y, JING J, LUO Y, et al. A Versatile, Incubator‐Compatible, Monolithic GaN Photonic Chipscope for Label‐Free Monitoring of Live Cell Activities[J]. Advanced Science, 2022, 9(17): 2200910.
[12] YE Z, YAN J, GAO X, et al. Miniaturized III‐Nitride Asymmetric Optical Link for the Monitoring of Vascular Heart Rate and Cardiac‐Related Pulse Activity[J]. Advanced Engineering Materials, 2022, 24(3): 2100829.
[13] ANDRÉASSON J, PISCHEL U, STRAIGHT S D, et al. All-Photonic Multifunctional Molecular Logic Device[J]. Journal of the American Chemical Society, 2011, 133(30): 11641-11648.
[14] YANG M, DENG Y, WU Z, et al. Spin Logic Devices via Electric Field Controlled Magnetization Reversal by Spin-Orbit Torque[J]. IEEE Electron Device Letters, 2019, 40(9): 1554-1557.
[15] LIU L, HONG F, LIU H, et al. A localized DNA finite-state machine with temporal resolution[J]. Science Advances, 2022, 8(12): eabm9530.
[16] LUO Y, WANG D, KANG Y, et al. Reprogrammable Binary and Ternary Optoelectronic Logic Gates Composed of Nanostructured GaN Photoelectrodes with Bipolar Photoresponse Characteristics[J]. Advanced Optical Materials, 2023, 11(13): 2300129.
[17] WILD G. Optimising the design of a pressure transducer for aircraft altitude measurement using optical fibre Bragg grating sensors[C]//2015 IEEE Metrology for Aerospace (MetroAeroSpace). Benevento, Italy: IEEE, 2015: 123-128
[2024-02-11].
[18] AN L, LU T, XU J, et al. Soft sensor for measuring wind pressure[J]. International Journal of Mechanical Sciences, 2018, 141: 386-392.
[19] LIU Y, JING Z, LIU Q, et al. Differential-pressure fiber-optic airflow sensor for wind tunnel testing[J]. Optics Express, 2020, 28(17): 25101.
[20] BAI P, ZHU G, JING Q, et al. Membrane‐Based Self‐Powered Triboelectric Sensors for Pressure Change Detection and Its Uses in Security Surveillance and Healthcare Monitoring[J]. Advanced Functional Materials, 2014, 24(37): 5807-5813.
[21] FANG Y, XU J, XIAO X, et al. A Deep‐Learning‐Assisted On‐Mask Sensor Network for Adaptive Respiratory Monitoring[J]. Advanced Materials, 2022, 34(24): 2200252.
[22] GAO F, LIN J, GE Y, et al. A Mechanism and Method of Leak Detection for Pressure Vessel: Whether, When, and How[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6004-6015.
[23] SANTOSH KUMAR S, TANWAR A. Development of a MEMS-based barometric pressure sensor for micro air vehicle (MAV) altitude measurement[J]. Microsystem Technologies, 2020, 26(3): 901-912.
[24] ZHOU X, XUE Z, CHEN X, et al. Nanomaterial-based gas sensors used for breath diagnosis[J]. Journal of Materials Chemistry B, 2020, 8(16): 3231-3248.
[25] DAS S, PAL M. Review—Non-Invasive Monitoring of Human Health by Exhaled Breath Analysis: A Comprehensive Review[J]. Journal of The Electrochemical Society, 2020, 167(3): 037562.
[26] FETTERMAN M R. Design for High-Speed Optoelectronic Boolean Logic[J]. IEEE Photonics Technology Letters, 2009, 21(23): 1740-1742.
[27] ZHONG J, LI Z, TAKAKUWA M, et al. Smart Face Mask Based on an Ultrathin Pressure Sensor for Wireless Monitoring of Breath Conditions[J]. Advanced Materials, 2022, 34(6): 2107758.
[28] LI Z, WANG Z L. Air/Liquid‐Pressure and Heartbeat‐Driven Flexible Fiber Nanogenerators as a Micro/Nano‐Power Source or Diagnostic Sensor[J]. Advanced Materials, 2011, 23(1): 84-89.
[29] ONO Y, MOHAMED D, KOBAYASHI M, et al. Piezoelectric membrane sensor and technique for breathing monitoring[C]//2008 IEEE Ultrasonics Symposium. Beijing, China: IEEE, 2008: 795-798
[2024-02-11].
[30] CHEN M, LUO W, XU Z, et al. An ultrahigh resolution pressure sensor based on percolative metal nanoparticle arrays[J]. Nature Communications, 2019, 10(1): 4024.
[31] HAN Z, LI H, XIAO J, et al. Ultralow-Cost, Highly Sensitive, and Flexible Pressure Sensors Based on Carbon Black and Airlaid Paper for Wearable Electronics[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33370-33379.
[32] CUI X, ZHANG H, CAO S, et al. Tube-based triboelectric nanogenerator for self-powered detecting blockage and monitoring air pressure[J]. Nano Energy, 2018, 52: 71-77.
[33] ZHANG Z, BAI Z, CHEN Y, et al. Versatile triboelectric nanogenerator with a hermetic structure by air supporting for multiple energy collection[J]. Nano Energy, 2019, 58: 759-767.
[34] SHI H, AL‐RUBAIAI M, HOLBROOK C M, et al. Screen‐Printed Soft Capacitive Sensors for Spatial Mapping of Both Positive and Negative Pressures[J]. Advanced Functional Materials, 2019, 29(23): 1809116.
[35] XIONG W, GUO D, YANG Z, et al. Conformable, programmable and step-linear sensor array for large-range wind pressure measurement on curved surface[J]. Science China Technological Sciences, 2020, 63(10): 2073-2081.
[36] WANG Q H, LIU X, WANG D N. Ultra-sensitive gas pressure sensor based on vernier effect with controllable amplification factor[J]. Optical Fiber Technology, 2021, 61: 102404.
[37] CHENG X, LIU Y, YU C. Gas Pressure Sensor Based on BDK-Doped Polymer Optical Fiber[J]. Micromachines, 2019, 10(11): 717.
[38] LIU Y, WANG Y, YANG D, et al. Hollow-Core Fiber-Based All-Fiber FPI Sensor for Simultaneous Measurement of Air Pressure and Temperature[J]. IEEE Sensors Journal, 2019, 19(23): 11236-11241.
[39] YANG D, MA D. Development of Organic Semiconductor Photodetectors: From Mechanism to Applications[J]. Advanced Optical Materials, 2019, 7(1): 1800522.
[40] LI Z, LIAO C, WANG Y, et al. Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer[J]. Optics Express, 2015, 23(5): 6673.
[41] MAO C, HUANG B, WANG Y, et al. High-sensitivity gas pressure sensor based on hollow-core photonic bandgap fiber Mach-Zehnder interferometer[J]. Optics Express, 2018, 26(23): 30108.
[42] LUO Y, AN X, CHEN L, et al. Chip-scale optical airflow sensor[J]. Microsystems & Nanoengineering, 2022, 8(1): 4.
[43] YANG H, LUO Y, LU G, et al. Viscosity Sensors Based on III-Nitride Optical Devices Integrated With Droplet Sliding Channels[J]. IEEE Electron Device Letters, 2022, 43(12): 2169-2172.
[44] MARTIN R W, MIDDLETON P G, O’DONNELL K P, et al. Exciton localization and the Stokes’ shift in InGaN epilayers[J]. Applied Physics Letters, 1999, 74(2): 263-265.
[45] LI K H, CHEUNG Y F, JIN W, et al. InGaN RGB Light-Emitting Diodes With Monolithically Integrated Photodetectors for Stabilizing Color Chromaticity[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 5154-5160.
[46] YUAN X, PAN D, ZHOU Y, et al. Selective area epitaxy of III–V nanostructure arrays and networks: Growth, applications, and future directions[J]. Applied Physics Reviews, 2021, 8(2): 021302.
[47] SONG T, ESHRA A, SHAH S, et al. Fast and compact DNA logic circuits based on single-stranded gates using strand-displacing polymerase[J]. Nature Nanotechnology, 2019, 14(11): 1075-1081.
[48] LIU C, CHEN H, HOU X, et al. Small footprint transistor architecture for photoswitching logic and in situ memory[J]. Nature Nanotechnology, 2019, 14(7): 662-667.
[49] KIM W, KIM H, YOO T J, et al. Perovskite multifunctional logic gates via bipolar photoresponse of single photodetector[J]. Nature Communications, 2022, 13(1): 720.
[50] KIM J, LEE H C, KIM K H, et al. Photon-triggered nanowire transistors[J]. Nature Nanotechnology, 2017, 12(10): 963-968.
[51] KANG E, RYOO J, JEONG G S, et al. Large‐Scale, Ultrapliable, and Free‐Standing Nanomembranes[J]. Advanced Materials, 2013, 25(15): 2167-2173.
[52] THANGAWNG A L, RUOFF R S, SWARTZ M A, et al. An ultra-thin PDMS membrane as a bio/micro–nano interface: fabrication and characterization[J]. Biomedical Microdevices, 2007, 9(4): 587-595.
[53] PENG F, JIANG Z, HU C, et al. Removing benzene from aqueous solution using CMS-filled PDMS pervaporation membranes[J]. Separation and Purification Technology, 2006, 48(3): 229-234.
[54] KIM C, GURAU M C, CREMER P S, et al. Chain Conformation of Poly(dimethyl siloxane) at the Air/Water Interface by Sum Frequency Generation[J]. Langmuir, 2008, 24(18): 10155-10160.
[55] EL HAITAMI A, BACKUS E H G, CANTIN S. Synthesis at the Air–Water Interface of a Two-Dimensional Semi-Interpenetrating Network Based on Poly(dimethylsiloxane) and Cellulose Acetate Butyrate[J]. Langmuir, 2014, 30(40): 11919-11927.
[56] OKAHATA Y, TSURUTA T, IJIRO K, et al. Preparations of Langmuir-Blodgett films of enzyme-lipid complexes: A glucose sensor membrane[J]. Thin Solid Films, 1989, 180(1-2): 65-72.
[57] GAO J, GUO D, SANTHANAM S, et al. Material Characterization and Transfer of Large-Area Ultra-Thin Polydimethylsiloxane Membranes[J]. Journal of Microelectromechanical Systems, 2015, 24(6): 2170-2177.
[58] SARRAZIN B, BROSSARD R, GUENOUN P, et al. Investigation of PDMS based bi-layer elasticity via interpretation of apparent Young’s modulus[J]. Soft Matter, 2016, 12(7): 2200-2207.
[59] PLEIL J D, ARIEL GEER WALLACE M, DAVIS M D, et al. The physics of human breathing: flow, timing, volume, and pressure parameters for normal, on-demand, and ventilator respiration[J]. Journal of Breath Research, 2021, 15(4): 042002.

所在学位评定分委会
电子科学与技术
国内图书分类号
TP212.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765973
专题南方科技大学
南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
桂思哲. 基于氮化镓收发一体集成光电器件的逻辑电路及微气压传感研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132442-桂思哲-南方科技大学-(4471KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[桂思哲]的文章
百度学术
百度学术中相似的文章
[桂思哲]的文章
必应学术
必应学术中相似的文章
[桂思哲]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。