[1] NAKAO Y. Metal-mediated C–CN bond activation in organic synthesis[J]. Chemical Reviews, 2021, 121(1): 327 -344.
[2] BUGLIONI L, RAYMENANTS F, SLATTERY A, et al. Technological innovations in photochemistry for organic synthesis: flow chemistry, highthroughputexperimentation, scale -up, and photoelectrochemistry[J]. Chemical Reviews, 2022, 122(2): 2752 -2906.
[3] CASTELLINO N J, MONTGOMERY A P, DANON J J, et al. Late -stage functionalization for improving drug -like molecular properties[J]. Chemical Reviews, 2023, 123(13): 8127-8153.
[4] EMMANUEL M A, BENDER S G, BILODEAU C, et al. Photobiocatalytic strategies for organic synthesis[J]. Chemical Reviews, 2023, 123(9): 5459 -5520.
[5] LEIFERT D, STUDER A. Organic synthesis using nitroxides[J]. Chemical Reviews, 2023, 123(16): 10302-10380.
[6] AROCKIAM P B, BRUNEAU C, DIXNEUF P H. Ruthenium(II)-catalyzed C–H bond activation and functionalization [J]. Chemical Reviews, 2012, 112(11): 5879-5918.
[7] LI B, DIXNEUF P H. Sp2 C–H bond activation in water and catalytic crosscoupling reactions[J]. Chemical Society Reviews, 2013, 42(13): 5744 -5767.
[8] GENSCH T, HOPKINSON M N, GLORIUS F, et al. Mild metal-catalyzed C–H activation: Examples and concepts[J]. Chemical Society Reviews, 2016, 45(10): 2900-2936.
[9] DAVIES D L, MACGREGOR S A, MCMULLIN C L. Computational studies of carboxylate -assisted C–H activation and functionalization at group 8 –10 transition metal centers[J]. Chemical Reviews, 2017, 117(13): 8649 -8709.
[10] DONG Z, REN Z, THOMPSON S J, et al. Transition -metal-catalyzed C–H alkylation using alkenes[J]. Chemical Reviews, 2017, 117(13): 9333 -9403.
[11] GUSTAVSON W A, EPSTEIN P S, CURTIS M D. Homogeneous activation of the carbon-hydrogen bond. Formation of phenylsiloxanes from benzene and silicon hydrides[J]. Organometallics, 1982, 1(6): 884 -885.
[12] CHENG C, HARTWIG J F. Rhodium-catalyzed intermolecular C–H silylation of arenes with high steric regiocontrol[J]. Science, 2014, 343(6173): 853 -857.
[13] CHENG C, HARTWIG J F. Catalytic silylation of unactivated C–H bonds[J]. Chemical Reviews, 2015, 115(17): 8946 -8975.
[14] XU Z, HUANG W-S, ZHANG J, et al. Recent advances in transition -metalcatalyzedsilylations of arenes with hydrosilanes: C–X bond cleavage or C–H bond activation- synchronized with Si–H bond activation[J]. Synthesis, 2015, 47(23): 3645-3668.
[15] LIN Y, JIANG K-Z, CAO J, et al. Iridium- catalyzed intramolecular C–H silylation of siloxane -tethered arene and hydrosilane: facile and catalytic synthesis of cyclic siloxanes[J]. Advanced Synthesis & Catalysis, 2017, 359(13): 2247-2252.
[16] SU B, HARTWIG J F. Ir-catalyzed enantioselective, intramolecular silylation of methyl C–H bonds[J]. Journal of the American Chemical Society, 2017, 139(35): 12137-12140.
[17] SU B, ZHOU T-G, LI X-W, et al. A chiral nitrogen ligand for enantioselective, iridium-catalyzed silylation of aromatic C–H bonds[J]. Angewandte Chemie International Edition, 2017, 56(4): 1092 -1096.
[18] SU B, LEE T, HARTWIG J F. Iridium-catalyzed, β-selective C(sp3)–H silylation of aliphatic amines to form silapyrrolidines and 1,2 -amino alcohols[J]. Journal of the American Chemical Society, 2018, 140(51): 18032 -18038.
[19] WOŹNIAK Ł, TAN J-F, NGUYEN Q-H, et al. Catalytic enantioselective functionalizations of C–H bonds by chiral iridium complexes[J]. Chemical Reviews, 2020, 120(18): 10516-10543.
[20] ZHANG M, GAO S, TANG J, et al. Asymmetric synthesis of chiral organosilicon compounds via transition metal- catalyzed stereoselective C–H activation and silylation [J]. Chemical Communications, 2021, 57(67): 8250 -8263.
[21] LEE T, HARTWIG J F. Mechanistic studies on rhodium-catalyzed enantioselective silylation of aryl C–H bonds[J]. Journal of the American Chemical Society, 2017, 139(13): 4879 -4886.
[22] ZHANG L, AN K, WANG Y, et al. A combined computational and experimental study of Rh-catalyzed C–H silylation with silacyclobutanes: insights leading to a more efficient catalyst system[J]. Journal of the American Chemical Society, 2021, 143(9): 3571-3582.
[23] XU L-W. Desymmetrization catalyzed by transition -metal complexes: Enantioselective formation of silicon -stereogenic silanes[J]. Angewandte Chemie International Edition, 2012, 51(52): 12932 -12934.
[24] ZHENG L, NIE X-X, WU Y, et al. Construction of Si-stereogenic silanes through C–H activation approach[J]. European Journal of Organic Chemistry, 2021, 2021(44): 6006-6014.
[25] GE Y, HUANG X, KE J, et al. Transition -metal-catalyzed enantioselective C–H silylation[J]. Chem Catalysis, 2022, 2(11): 2898 -2928.
[26] SU B, HARTWIG J F. Development of chiral ligands for the transition -metalcatalyzed enantioselective silylation and borylation of C–H bonds[J]. Angewandte Chemie International Edition, 2022, 61(9): e202113343.
[27] YUAN W, HE C. Enantioselective C–H functionalization toward silicon -stereogenic silanes[J]. Synthesis, 2022, 54(08): 1939-1950.
[28] LI L, HUANG W-S, XU Z, et al. Catalytic asymmetric silicon -carbon bondforming transformations based on Si-H functionalization [J]. Science China Chemistry, 2023, 66(6): 1654-1687.
[29] SPECKMAN D M, KNOBLER C B, HAWTHORNE M F. A stable 16-electron rhodium(III) rhodacarborane derived from an intermediate containing an agostic hydrogen atom. Molecular structure of closo -3-(η3-C8H1 3 )-1,2-(CH3 )2-3,1,2-RhC2B9H9 [J]. Organometallics, 1985, 4(2): 426 -428.
[30] CARR N, DUNNE B J, ORPEN A G, et al. Co-ordinatively unsaturated diphosphine platinum(II) alkyl cations: a new c lass of β-agostic complexes[J]. Journal of the Chemical Society, Chemical Communications, 1988, (14): 926 -928.
[31] CARR N, DUNNE B J, MOLE L, et al. Ligand control of agostic M–H–C threecentre, two-electron bonding in bicyclo
[2.2.1]hept-2-yl complexes of platinum and palladium. X-ray crystal structures of [Pt(η2-C7H1 0 ){tBu2P(CH2 ) 2PtBu2 }] and [Pt(C7H1 1 ){tBu2P(CH2 ) 2PtBu2 }][BPh4 ][J]. Journal of the Chemical Society, Dalton Transactions, 1991, (S): 863 -871.
[32] PISAREVA I V, DOLGUSHIN F M, GODOVIKOV I A, et al. Synthesis and structural characterization of isomeric monocarbon (η-dicyclopentenyl)-closo-rhodacarboranes stabilized by the agostic bonding interaction [J]. Inorganic Chemistry Communications, 2008, 11(10): 1202 -1204.
[33] ZAYYA A I, SPENCER J L. Coordination chemistry of a bicyclic 3 -aza-7-phosphabicyclo
[3.3.1]nonan-9-one ligand[J]. Organometallics, 2012, 31(7): 2841-2853.
[34] CHENG C, HARTWIG J F. Mechanism of the rhodium-catalyzed silylation of arene C–H bonds[J]. Journal of the American Chemical Society, 2014, 136(34): 12064-12072.
[35] SHIBATA T, SHIZUNO T, SASAKI T. Enantioselective synthesis of planar -chiral benzosiloloferrocenes by Rh-catalyzed intramolecular C–H silylation[J]. Chemical Communications, 2015, 51(37): 7802 -7804.
[36] MURAI M, MATSUMOTO K, TAKEUCHI Y, et al. Rhodium-catalyzed synthesis of benzosilolometallocenes via the dehydrogenative silylation of C(sp2)–H bonds[J]. Organic Letters, 2015, 17(12): 3102 -3105.
[37] ZHANG Q-W, AN K, LIU L-C, et al. Rhodium-catalyzed enantioselective intramolecular C–H silylation for the syntheses of planar-chiral metallocene siloles[J]. Angewandte Chemie International Edition, 2015, 54(23): 6918 -6921.
[38] ZHAO W-T, LU Z-Q, ZHENG H, et al. Rhodium-catalyzed 2-arylphenolderivedsix-membered silacyclization: str aightforward access toward dibenzooxasilines and silicon-containing plana r chiral metallocenes[J]. ACS Catalysis, 2018, 8(9): 7997-8005.
[39] MURAI M, TAKESHIMA H, MORITA H, e t al. Acceleration effects of phosphine ligands on the rhodium-catalyzed dehydrogenative silylation and germylation of unactivated C(sp3)–H bonds[J]. The Journal of Organic Chemistry, 2015, 80(11): 5407-5414.
[40] LEE T, HARTWIG J F. Rhodium-catalyzed enantioselective silylation of cyclopropyl C–H bonds[J]. Angewandte Chemie International Edition, 2016, 55(30): 8723-8727.
[41] ZHANG M, LIANG J, HUANG G. Mechanism and origins of enantioselectivity of iridium-catalyzed intramolecular silylation of unactivated C(sp3)–H bonds[J]. The Journal of Organic Chemistry, 2019, 84(4): 2372 -2376.
[42] ZHANG H, ZHAO D. Synthesis of silicon -stereogenic silanols involving iridium-catalyzed enantioselective C–H silylation leading to a new ligand scaffold[J]. ACS Catalysis, 2021, 11(17): 10748 -10753.
[43] SANGTRIRUTNUGUL P, TILLEY T D. Silyl derivatives of [bis(8 -quinolyl)methylsilyl]iridium(III) complexes: catalytic redistribution of arylsilanes and dehydrogenative arene silylation [J]. Organometallics, 2007, 26(23): 5557-5568.
[44] KOMURO T, KITANO T, YAMAHIRA N, et al. Directed ortho -C–H silylation coupled with trans-selective hydrogenation of arylalkynes catalyzed by ruthenium complexes of a xanthene -based Si,O,Si-chelate ligand, “xantsil” [J]. Organometallics, 2016, 35(9): 1209 -1217.
[45] KITANO T, KOMURO T, ONO R, et al. Tandem hydrosilylation/ O-C–H silylation of arylalkynes catalyzed by ruthenium bis(silyl) aminophosphine complexes[J]. Organometallics, 2017, 36(15): 2710 -2713.
[46] YANG B, GAO J, TAN X, et al. Chiral PSiSi-ligand enabled iridium-catalyzed atroposelective intermolecular C−H silylation[J]. Angewandte Chemie International Edition, 2023, 62(36): e202307812.
[47] CHOI G, TSURUGI H, MASHIMA K. Hemilabile n-xylyl-n’-methylperimidine carbene iridium complexes as catalysts for C–H activation and dehydrogenative silylation: dual role of n-xylyl moiety for ortho-C–H bond activation and reductive bond cleavage [J]. Journal of the American Chemical Society, 2013, 135(35): 13149-13161. 参考文献 72
[48] KARMEL C, HARTWIG J F. Mechanism of the iridium-catalyzed silylation of aromatic C–H bonds[J]. Journal of the American Chemical Society, 2020, 142(23): 10494-10505.
[49] YAN Z-B, PENG M, CHEN Q-L, et al. An effective and versatile strategy for the synthesis of structurally diverse heteroarylsilanes via Ir(III)-catalyzed C–H silylation[J]. Chemical Science, 2021, 12(28): 9748 -9753.
[50] KOMURO T, MOCHIZUKI D, HASHIMOTO H, et al. Iridium and rhodium complexes bearing a silyl-bipyridine pincer ligand: Synthesis, structures and catalytic activity for C–H borylation of arenes[J]. Dalton Transactions, 2022, 51(26): 9983-9987.
[51] GOLINO C M, BUSH R D, SOMMER L H. Silicon-carbon multiple -bonded (p π -p π ) intermediates. First generation and reactions of silaethene [ H2Si = CH2 ] and silanone [H2Si = O][J]. Journal of the American Chemical Society, 1975, 97(25): 7371-7372.
[52] MYERS A G, KEPHART S E, CHEN H. Silicon -directed aldol reactions. Rate acceleration by small rings[J]. Journal of the American Chemical Society, 1992, 114(20): 7922-7923.
[53] MATSUMOTO K, OSHIMA K, UTIMOTO K. Noncatalyzed stereoselective allylation of carbonyl compounds with allylsilacyclobutanes[J]. The Journal of Organic Chemistry, 1994, 59(23): 7152 -7155.
[54] ZHANG Q-W, AN K, LIU L-C, et al. Construction of chiral tetraorganosilicons by tandem desymmetrization of silacyclobutanes/intermolecular dehydrogenative silylation [J]. Angewandte Chemie International Edition, 2017, 56(4): 1125 -1129.
[55] AN K, MA W, LIU L-C, et al. Rhodium hydride enabled enantioselective intermolecular C–H silylation to access acyclic stereogenic Si–H[J]. Nature Communications, 2022, 13(1): 847.
[56] KUNINOBU Y, YAMAUCHI K, TAMURA N, et al. Rhodium-catalyzed asymmetric synthesis of spirosilabifluorene derivatives[J]. Angewandte Chemie International Edition, 2013, 52(5): 1520 -1522.
[57] MURAI M, TAKEUCHI Y, YAMAUCHI K, et al. Rhodium-catalyzed synthesis of chiral spiro-9-silabifluorenes by dehydrogenative silylation: mechanistic insights into the construction of tetraorganosilicon stereocenters[J]. Chemistry – A European Journal, 2016, 22(17): 6048 -6058.
[58] MU D, YUAN W, CHEN S, et al. Streamlined construction of silicon -stereogenic silanes by tandem enantioselective C–H silylation/alkene hydrosilylation [J]. Journal of the American Chemical Society, 2020, 142(31): 13459-13468.
[59] CHEN S, ZHU J, KE J, et al. Enantioselective intermolecular C−H silylation 参考文献 73 of heteroarenes for the synthesis of acyclic Si-stereogenic silanes[J]. Angewandte Chemie International Edition, 2022, 61(21): e202117820.
[60] CHEN S, MU D, MAI P-L, et al. Enantioselective construction of six - and seven-membered triorgano-substituted silicon-stereogenic heterocycles[J]. Nature Communications, 2021, 12(1): 1249.
[61] GUO Y, LIU M-M, ZHU X, et al. Catalytic asymmetric synthesis of silicon -stereogenic dihydrodibenzosilines: silicon central-to-axial chirality relay[J]. Angewandte Chemie International Edition, 2021, 60(25): 13887 -13891.
[62] YUAN W, YOU L, LIN W, et al. Asymmetric synthesis of silicon-stereogenic monohydrosilanes by dehydrogenative C–H silylation [J]. Organic Letters, 2021, 23(4): 1367-1372.
[63] MA W, LIU L-C, AN K, et al. Rhodium-catalyzed synthesis of chiral monohydrosilanes by intramolecular C−H functionalization of dihydrosilanes[J]. Angewandte Chemie International Edition, 2021, 60(8): 4245-4251.
[64] WU Y, WANG P. Silicon-stereogenic monohydrosilane: synthesis and applications[J]. Angewandte Chemie International Edition, 2022, 61(36): e202205382.
[65] WESTHEIMER F H. The magnitude of the primary kinetic isotope effect for compounds of hydrogen and deuterium[J]. Chemical Reviews, 1961, 61(3): 265-273.
[66] BELL R P. Liversidge lecture. Recent advances in the study of kinetic hydrogen isotope effects[J]. Chemical Society Reviews, 1974, 3(4): 513 -544.
[67] KWART H. Temperature dependence of the primary kinetic hydrogen isotope effect as a mechanistic criterion [J]. Accounts of Chemical Research, 1982, 15(12): 401-408.
[68] SIMMONS E M, HARTWIG J F. On the interpretation of deuterium kinetic isotope effects in C–H bond functionalizations by transition -metal complexes[J]. Angewandte Chemie International Edition, 2012, 51(13): 3066 -3072.
修改评论