中文版 | English
题名

SHADOWS AND LIGHT: REINTERPRETING GRAVITATIONAL PHENOMENA THROUGH WEYL GEOMETRY AND CONFORMAL GRAVITY

其他题名
一种基于外尔几何和共形引力探讨引力现象 的新视角
姓名
姓名拼音
YAN Huyi
学号
12132948
学位类型
硕士
学位专业
070201 理论物理
学科门类/专业学位类别
07 理学
导师
叶飞
导师单位
物理系
论文答辩日期
2024-05-15
论文提交日期
2024-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

This thesis investigates the potential of Weyl geometry and conformal gravity to provide alternative explanations for phenomena traditionally attributed to dark matter and gravitational lensing. Through a rigorous examination of Weyl geometry's origins and development, alongside a detailed analysis of modified gravity theories incorporating local conformal symmetry, we explore the implications of these theories for cosmology and astrophysics. The work delves into the mathematical underpinnings of conformal rescaling in Minkowski spacetime and its impact on the geodesics of light and matter, shedding light on the geometric nature of spacetime itself.

Applying these theoretical insights, the thesis critically assesses the Bullet Cluster's gravitational lensing effects, suggesting that conformal gravity could offer a plausible alternative to the dark matter hypothesis. This proposition challenges the conventional understanding of cosmic mass and energy distribution, prompting a reevaluation of gravitational lensing phenomena.

None of modified gravity theory without dark matter have explain the discrepancy between the mass map in galaxy clusters reconstructed form X-ray and gravitational lensing effect to a satisfactory level before, and our result fill in this blanks by introducing a different mechanism of background image distortion, which can fit the galaxy image pattern around the Bullet Cluster well.  

The research presented not only contributes to theoretical physics by offering new perspectives on gravity and cosmology but also sets the stage for future investigations. It underscores the importance of exploring alternative theoretical frameworks in addressing some of the most pressing questions in modern physics, such as the nature of dark matter, the unification of gravity with quantum mechanics, and the fundamental structure of the universe.

关键词
语种
英语
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] AGHANIM N, et al. Planck 2018 results. VI. Cosmological parameters[J/OL]. Astron. Astro- phys., 2020, 641: A6. DOI: 10.1051/0004- 6361/201833910.
[2] HINSHAW G, et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observa- tions: Cosmological Parameter Results[J/OL]. Astrophys. J. Suppl., 2013, 208: 19. DOI: 10.1088/0067- 0049/208/2/19.
[3] CARR B, CLESSE S, GARCIA-BELLIDO J, et al. Observational evidence for primordial black holes: A positivist perspective[J/OL]. Phys. Rept., 2024, 1054: 1-68. DOI: 10.1016/j.physrep. 2023.11.005.
[4] MODESTO L, ZHOU T, LI Q. Geometric Origin of the Galaxies’ Dark Side[J/OL]. Universe, 2024, 10(1): 19. DOI: 10.3390/universe10010019.
[5] LI Q, MODESTO L. Galactic Rotation Curves in Conformal Scalar-Tensor Gravity[J/OL]. Grav. Cosmol., 2020, 26(2): 99-117. DOI: 10.1134/S0202289320020085.
[6] MANNHEIM P D, KAZANAS D. Exact Vacuum Solution to Conformal Weyl Gravity and Galactic Rotation Curves[J/OL]. Astrophys. J., 1989, 342: 635-638. DOI: 10.1086/167623.
[7] BAMBI C, MODESTO L, RACHWAŁ L. Spacetime completeness of non-singular black holes in conformal gravity[J/OL]. JCAP, 2017, 05: 003. DOI: 10.1088/1475- 7516/2017/05/003.
[8] MODESTO L, AKIL A, BAMBI C. Conformalons and Trans-Planckian problem[A]. 2021.arXiv: 2106.03914.
[9] WEYL H. Gravitation and electricity[J]. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ), 1918, 1918: 465.
[10] WEYL H. Reine Infinitesimalgeometrie[J/OL]. Math. Z., 1918, 2(3-4): 384-411. DOI: 10.1007/BF01199420.
[11] DRECHSLER W, TANN H. Broken Weyl invariance and the origin of mass[J/OL]. Found. Phys., 1999, 29: 1023-1064. DOI: 10.1023/A:1012851715278.
[12] PENROSE R. The road to reality[M]. Random house, 2006.
[13] BARS I, STEINHARDT P, TUROK N. Local Conformal Symmetry in Physics and Cosmology [J/OL]. Phys. Rev. D, 2014, 89(4): 043515. DOI: 10.1103/PhysRevD.89.043515.
[14] QUIROS I. Scale invariance: fake appearances[A]. 2014. arXiv: 1405.6668.
[15] LANDSMAN K. Penrose’s 1965 singularity theorem: from geodesic incompleteness to cosmic censorship[J/OL]. Gen. Rel. Grav., 2022, 54(10): 115. DOI: 10.1007/s10714- 022- 02973- w.
[16] WEINBERG S. The Quantum Theory of Fields, Volume I: Foundations[M]. Cambridge, U.K.: Cambridge University Press, 1995.
[17] MANNHEIM P D. Making the Case for Conformal Gravity[J/OL]. Found. Phys., 2012, 42:388-420. DOI: 10.1007/s10701- 011- 9608- 6.
[18] NESBET R K. Conformal Gravity: Dark Matter and Dark Energy[J/OL]. Entropy, 2013, 15:162. DOI: 10.3390/e15010162.
[19] MANNHEIM P D, O’BRIEN J G. Fitting galactic rotation curves with conformal gravity and a global quadratic potential[J/OL]. Phys. Rev. D, 2012, 85: 124020. DOI: 10.1103/PhysRevD .85.124020.
[20] GHOSH S, BHATTACHARYA M, SHERPA Y, et al. Test of conformal theory of gravity as an alternative paradigm to dark matter hypothesis from gravitational lensing studies[J/OL]. JCAP, 2023, 07: 008. DOI: 10.1088/1475- 7516/2023/07/008.
[21] SOLDNER V S, J. Ueber die Ablenkung eines Lichtstrals von seiner geradlinigen Bewegung [J]. Berliner Astronomisches Jahrbuch, 1804, 1804.
[22] DYSON F W, EDDINGTON A S, DAVIDSON C. A Determination of the Deflection of Light by the Sun’s Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919 [J/OL]. Phil. Trans. Roy. Soc. Lond. A, 1920, 220: 291-333. DOI: 10.1098/rsta.1920.0009.
[23] BARTELMANN M, SCHNEIDER P. Weak gravitational lensing[J/OL]. Phys. Rept., 2001, 340: 291-472. DOI: 10.1016/S0370- 1573(00)00082- X.
[24] REFREGIER A. Weak gravitational lensing by large scale structure[J/OL]. Ann. Rev. Astron. Astrophys., 2003, 41: 645-668. DOI: 10.1146/annurev.astro.41.111302.102207.
[25] CLOWE D, BRADAC M, GONZALEZ A H, et al. A direct empirical proof of the existence of dark matter[J/OL]. Astrophys. J. Lett., 2006, 648: L109-L113. DOI: 10.1086/508162.
[26] MODESTO L, RACHWAŁ L. Finite conformal quantum gravity and spacetime singularities [J/OL]. J. Phys. Conf. Ser., 2017, 942(1): 012015. DOI: 10.1088/1742- 6596/942/1/012015.
[27] WALD R M. General relativity[M]. University of Chicago press, 2010.
[28] SACHS R K. Gravitational waves in general relativity. 6. The outgoing radiation condition [J/OL]. Proc. Roy. Soc. Lond. A, 1961, 264: 309-338. DOI: 10.1098/rspa.1961.0202.
[29] SEITZ S, SCHNEIDER P, EHLERS J. Light propagation in arbitrary space-times and the gravitational lens approximation[J/OL]. Class. Quant. Grav., 1994, 11: 2345-2374. DOI: 10.1088/0264- 9381/11/9/016.
[30] JORDAN P, EHLERS J, SACHS R K. Republication of: Contributions to the theory of pure gravitational radiation. Exact solutions of the field equations of the general theory of relativity II[J/OL]. General Relativity and Gravitation, 2013, 45(12): 2691–2753. DOI: 10.1007/s10714 - 013- 1590- 1.
[31] BLANDFORD R D, SAUST A B, BRAINERD T G, et al. The distortion of distant galaxy images by large-scale structure[J/OL]. Mon. Not. Roy. Astron. Soc., 1991, 251(4): 600-627. DOI: 10.1093/mnras/251.4.600.
[32] PERLICK V. Gravitational lensing from a spacetime perspective[J/OL]. Living Rev. Rel., 2004,7: 9. DOI: 10.12942/lrr- 2004- 9.
[33] KERMACK M W, W.O., WHITTAKER E. Properties of null geodesics and their applications to the theory of radiation[J]. Proc. R. Soc. Edinburgh, 1932, 53.
[34] STARCK J L, THEMELIS K E, JEFFREY N, et al. Weak-lensing mass reconstruction using sparsity and a Gaussian random field[J/OL]. Astron. Astrophys., 2021, 649: A99. DOI: 10.1 051/0004- 6361/202039451.
[35] CLAMPITT J, JAIN B. Lensing measurements of the ellipticity of luminous red galaxies dark matter haloes[J/OL]. Mon. Not. Roy. Astron. Soc., 2016, 457(4): 4135-4146. DOI: 10.1093/ mnras/stw254.
[36] PIRES S, AMARA A. Weak Lensing Mass Reconstruction: Flexion vs Shear[J/OL]. Astrophys. J., 2010, 723: 1507-1511. DOI: 10.1088/0004- 637X/723/2/1507.
[37] HOEKSTRA H, FRANX M, KUIJKEN K. Hubble space telescope weak lensing study of thez=0.83 cluster ms 1054-03[J/OL]. Astrophys. J., 2000, 532: 88. DOI: 10.1086/308556.
[38] KAISER N, SQUIRES G. Mapping the dark matter with weak gravitational lensing[J/OL]. Astrophys. J., 1993, 404: 441-450. DOI: 10.1086/172297.
[39] CLOWE D, GONZALEZ A, MARKEVITCH M. Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter[J/OL]. Astro- phys. J., 2004, 604: 596-603. DOI: 10.1086/381970.
[40] DI MASCOLO L, et al. An ALMA+ACA measurement of the shock in the Bullet Cluster [J/OL]. Astron. Astrophys., 2019, 628: A100. DOI: 10.1051/0004- 6361/201936184

所在学位评定分委会
物理学
国内图书分类号
O412.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765978
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
Yan HY. SHADOWS AND LIGHT: REINTERPRETING GRAVITATIONAL PHENOMENA THROUGH WEYL GEOMETRY AND CONFORMAL GRAVITY[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132948-严虎翼-物理系.pdf(3661KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[严虎翼]的文章
百度学术
百度学术中相似的文章
[严虎翼]的文章
必应学术
必应学术中相似的文章
[严虎翼]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。