中文版 | English
题名

基于P(NIPAM-AA)的多刺激响应智能水凝胶的设计及其应用研究

其他题名
DESIGN OF MULTIPLE STIMULI-RESPONSIVE INTELLIGENT HYDROGEL BASED ON P(NIPAM-AA) AND THEIR APPLICATION
姓名
姓名拼音
QIU Xiaojing
学号
12232085
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
何振
导师单位
材料科学与工程系
论文答辩日期
2024-05-08
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

智能响应水凝胶能够对多种外界刺激(如温度、压力、pH值、光照和磁场)产生基础物性的变化(亲疏水性、光透过率、力学性能、体积),因而被广泛应用于组织工程修复、仿生柔性传感器件和生物医用领域。近年来,凭借其优异的柔韧性、导电性及对刺激的响应驱动能力,智能响应水凝胶在智能化器件领域的应用得到了进一步拓展。然而,传统响应性水凝胶刺激响应性通常较为单一,其响应机制不够明确且响应的重复性较差,逐渐无法满足复杂场景的应用需求。因此,开发一种能够响应多种刺激兼具优异力学性能的水凝胶,对拓宽其应用场景具有重要的研究意义和研究挑战。本论文以聚(N-异丙基丙烯酰胺)(PNIPAM)复合水凝胶为研究目标,提出了光引发的共聚合方法,实现系列不同响应复合水凝胶的制备。取得的主要研究结果如下:

1. 发展了一种简易高效的光固化方法,通过引入丙烯酸(AA)单体,制备得到兼具热和pH双重响应的光谱调控P(NIPAM-AA)水凝胶。该水凝胶在较宽的温度范围下展现出良好的近红外隔绝率,在20℃和40℃之间的可见光调制效率为56.5%。同时该凝胶在环境从碱性变化到酸性时,可调制颜色从透明到模糊。

2.发展了掺杂壳聚糖(CS)策略,制备了CS/P(NIPAM-AA)复合水凝胶,实现力学性能的增强。研究结果表明掺杂复合水凝胶的拉伸强度提升了13.5倍,断裂拉伸应变提升了2倍,且其保湿性能、抗冻性能、响应性能得到增强。此外,基于CS/P(NIPAM-AA)复合水凝胶构筑的智能窗器件展现出优异的红外光谱调节特性,即在阳光充足时具有4-6℃的智能降温效果,且在阴天时则几乎不对温度做出调节,

3. 发展了原位还原法制备多组分AgNPs/CS/P(NIPAM-AA)复合水凝胶。研究结果表明,该复合水凝胶在0-600%拉伸应变下的灵敏度系数GF为5.06,R2=0.97。同时其在20℃和50℃温度变化下有着稳定且灵敏的温度变化,响应时间为0.69 s。基于该水凝胶构筑的传感器件在力学传感、温度传感、指关节运动监测的应用中都展现出了良好的应用前景。

其他摘要

Intelligent responsive hydrogels can change in basic physical properties (hydrophilicity, hydrophobicity, light transmittance, mechanical properties, and volume) in response to a variety of external stimuli (such as temperature, pressure, pH, light, and magnetic field). Therefore, intelligent responsive hydrogels are widely used in tissue engineering repair, biomimetic flexible sensor devices, and biomedical fields. In recent years, the application of smart responsive hydrogels in intelligent devices has been further expanded due to their excellent flexibility, electrical conductivity, and ability to respond to stimuli. However, the stimulus responsiveness of traditional responsive hydrogels is usually single, and their response mechanism is not clear and the repeatability of response is poor, which gradually cannot meet the application needs of complex scenarios. Therefore, it is of great research significance and research challenge to develop a hydrogel that can respond to a variety of stimuli and has excellent mechanical properties to broaden its application scenarios.

In this thesis, poly (N-isopropyl acrylamide) (PNIPAM) composite hydrogels were studied, and a photoinitiated copolymerization method was proposed to fabricate a series of composite hydrogels with different responses. Key findings were as follows:

1. A simple and efficient light-curing method was developed to prepare spectrally regulated P(NIPAM-AA) hydrogel with both thermal and pH response by introducing acrylic acid monomer. The hydrogel exhibited excellent NIR isolation over a wide temperature range, with a visible light modulation efficiency of 56.5% between 20 ℃ and 40 ℃. At the same time, the color of the gel can be modulated from transparent to fuzzy when the environment changes from alkaline to acidic.

2. The strategy of doped chitosan was developed and CS/P(NIPAM-AA) composite hydrogel was prepared to achieve enhanced mechanical properties. The results show that the tensile strength of the doped composite hydrogel is increased by 13.5 times, the tensile strain is increased by 2 times, and its moisture retention, freezing resistance, and response properties are enhanced. In addition, the smart window device based on CS/P(NIPAM-AA) composite hydrogel shows excellent infrared spectral adjustment characteristics, it has an intelligent cooling effect of 4-6 ℃ in sunny days, and almost no temperature adjustment in cloudy days.

3. In situ reduction method was developed to prepare multi-component AgNPs/CS/P(NIPAM-AA) composite hydrogel. The results showed that the sensitivity coefficient of the composite hydrogel under 0-600% tensile strain was 5.06, and R2=0.97. At the same time, it has a stable and sensitive temperature change under the temperature change of 20℃ and 50℃, and the response time is 0.69 s. The sensor based on the hydrogel has shown good application prospects in mechanical sensing, temperature sensing, and finger joint motion monitoring.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] LI S-L, HAN M, ZHANG Y, et al. X-ray and UV dual photochromism, thermochromism, electrochromism, and amine-selective chemochromism in an anderson-like Zn7 cluster-based 7-fold interpenetrated framework[J]. Journal of the American Chemical Society, 2019, 141: 12663-12672.
[2] LIU Z, WANG Y, REN Y, et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper[J]. Materials Horizons, 2020, 7: 919-927.
[3] LI J, GU P, PAN H, et al. A facile yet versatile strategy to construct liquid hybrid energy-saving windows for strong solar modulation[J]. Advanced Science, 2023, 10: e2206044.
[4] LIU H, JIA X, LIU R, et al. Multifunctional gradient hydrogel with ultrafast thermo-responsive actuation and ultrahigh conductivity[J]. Journal of Materials Chemistry A, 2022, 10: 21874-21883.
[5] TIAN B, LIU J. Smart stimuli-responsive chitosan hydrogel for drug delivery: A review[J]. International Journal of Biological Macromolecules, 2023, 235: 123902.
[6] REN H, ZHANG Z, CHEN X, et al. Stimuli‐responsive hydrogel adhesives for wound closure and tissue regeneration[J]. Macromolecular Bioscience, 2023: 2300379.
[7] FENG Y, WANG S, LI Y, et al. Entanglement in smart hydrogels: Fast response time, anti‐freezing and anti‐drying[J]. Advanced Functional Materials, 2023, 33: 2211027.
[8] CHEN Z, LIU J, CHEN Y, et al. Multiple-stimuli-responsive and cellulose conductive ionic hydrogel for smart wearable devices and thermal actuators[J]. ACS Applied Materials & Interfaces, 2020, 13: 1353-1366.
[9] YUAN X, ZHU Z, XIA P, et al. Tough gelatin hydrogel for tissue engineering[J]. Advanced Science, 2023, 10: 2301665.
[10] LI H, ZHU X, WANG M, et al. Drug sustained release from degradable drug-loaded in-situ hydrogels in the posterior eye: A mechanistic model and analytical method[J]. Journal of Biomechanics, 2022, 136: 111052.
[11] SHAHI S, ROGHANI-MAMAQANI H, TALEBI S, et al. Chemical stimuli-induced reversible bond cleavage in covalently crosslinked hydrogels[J]. Coordination Chemistry Reviews, 2022, 455: 214368.
[12] LIU Z, WEI H, LIU Y, et al. Fabrication and characterization of interpenetrating network hydrogels based on sequential amine-anhydride reaction and photopolymerization in water[J]. Polymer Engineering & Science, 2022, 62: 917-928.
[13] EMAM H E, SHAHEEN T I. Design of a dual pH and temperature responsive hydrogel based on esterified cellulose nanocrystals for potential drug release[J]. Carbohydrate Polymers, 2022, 278: 118925.
[14] WANG Z J, LI C Y, ZHAO X Y, et al. Thermo- and photo-responsive composite hydrogels with programmed deformations[J]. Journal of Materials Chemistry B, 2019, 7: 1674-1678.
[15] VALES T P, BADON I W T, KIM H-J. Multi-responsive hydrogels functionalized with a photochromic spiropyran-conjugated chitosan network[J]. Macromolecular Research, 2018, 26: 950-953.
[16] WEI X, MA K, CHENG Y, et al. Adhesive, conductive, self-healing, and antibacterial hydrogel based on chitosan–polyoxometalate complexes for wearable strain sensor[J]. ACS Applied Polymer Materials, 2020, 2: 2541-2549.
[17] KIM Y, JEONG D, SHINDE V V, et al. Azobenzene-grafted carboxymethyl cellulose hydrogels with photo-switchable, reduction-responsive and self-healing properties for a controlled drug release system[J]. International Journal of Biological Macromolecules, 2020, 163: 824-832.
[18] YAN H, JIANG Q, WANG J, et al. A triple-stimuli responsive supramolecular hydrogel based on methoxy-azobenzene-grafted poly(acrylic acid) and β-cyclodextrin dimer[J]. Polymer, 2021, 221: 123617.
[19] ZHOU Y, HAUSER A W, BENDE N P, et al. Waveguiding microactuators based on a photothermally responsive nanocomposite hydrogel[J]. Advanced Functional Materials, 2016, 26: 5447-5452.
[20] WEI X, CHEN L, WANG Y, et al. An electrospinning anisotropic hydrogel with remotely-controlled photo-responsive deformation and long-range navigation for synergist actuation[J]. Chemical Engineering Journal, 2022, 433: 134258.
[21] DENG Z, YU R, GUO B. Stimuli-responsive conductive hydrogels: design, properties, and applications[J]. Materials Chemistry Frontiers, 2021, 5: 2092-2123.
[22] SUN C, LUO J, YAN S, et al. Thermally responsive fibers for versatile thermoactivated protective fabrics[J]. Advanced Functional Materials, 2022, 33: 2200135.
[23] SUGAWARA A, ASOH T-A, TAKASHIMA Y, et al. Mechano-responsive hydrogels driven by the dissociation of a host–guest complex[J]. ACS Macro Letters, 2021, 10: 971-977.
[24] DANG X, FU Y, WANG X. A temperature and pressure dual-responsive, stretchable, healable, adhesive, and biocompatible carboxymethyl cellulose-based conductive hydrogels for flexible wearable strain sensor[J]. Biosensors and Bioelectronics, 2024, 246: 115893.
[25] QIN J, GUO J, TANG G, et al. Multiplex identification of post-translational modifications at point-of-care by deep learning-assisted hydrogel sensors[J]. Angewandte Chemie International Edition, 2023, 62: e202218412.
[26] ZHOU Q, DONG X, XIONG Y, et al. Multi-responsive lanthanide-based hydrogel with encryption, naked eye sensing, shape memory, self-healing, and antibacterial activity[J]. ACS Applied Materials & Interfaces, 2020, 12: 28539-28549.
[27] ZHOU Y, CAI Y, HU X, et al. VO2/hydrogel hybrid nanothermochromic material with ultra-high solar modulation and luminous transmission[J]. Journal of Materials Chemistry A, 2015, 3: 1121-1126.
[28] WANG S, XU Z, WANG T, et al. Warm/cool-tone switchable thermochromic material for smart windows by orthogonally integrating properties of pillar
[6]arene and ferrocene[J]. Nature Communications, 2018, 9: 1737.
[29] LI X-H, LIU C, FENG S-P, et al. Broadband light management with thermochromic hydrogel microparticles for smart windows[J]. Joule, 2019, 3: 290-302.
[30] WU B-Y, LE X-X, JIAN Y-K, et al. pH and thermo dual-responsive fluorescent hydrogel actuator[J]. Macromolecular Rapid Communications, 2021, 42: 2100527.
[31] CHENG R, XU M, ZHANG X, et al. Hydrogen bonding enables polymer hydrogels with pH‐induced reversible dynamic responsive behaviors[J]. Angewandte Chemie International Edition, 2023, 62: e202302900.
[32] LIU B, LI J, ZHANG Z, et al. pH responsive antibacterial hydrogel utilizing catechol–boronate complexation chemistry[J]. Chemical Engineering Journal, 2022, 441: 135808.
[33] YIN Y, GU Q, LIU X, et al. Double network hydrogels: Design, fabrication, and application in biomedicines and foods[J]. Advances in Colloid and Interface Science, 2023, 320: 102999.
[34] MEANS A K, EHRHARDT D A, WHITNEY L V, et al. Thermoresponsive double network hydrogels with exceptional compressive mechanical properties[J]. Macromolecular Rapid Communications, 2017, 38: 1700351.
[35] RODIN M, LI J, KUCKLING D. Dually cross-linked single networks: structures and applications[J]. Chemical Society Reviews, 2021, 50: 8147-8177.
[36] WANG X-H, SONG F, QIAN D, et al. Strong and tough fully physically crosslinked double network hydrogels with tunable mechanics and high self-healing performance[J]. Chemical Engineering Journal, 2018, 349: 588-594.
[37] YANG J, FENG Y, WANG B, et al. Tough, multifunctional, and green double-network binary solvent eutectogel with in-situ generation of lignin nanoparticles based on one-step dual phase separations for wearable flexible strain sensors[J]. Chemical Engineering Journal, 2023, 474: 145544.
[38] JI D, KIM J. Recent strategies for strengthening and stiffening tough hydrogels[J]. Advanced NanoBiomed Research, 2021, 1: 2100026.
[39] YAN J, XIA Y, LAI J, et al. Stretchable and thermally responsive semi-Interpenetrating nanocomposite hydrogel for wearable strain sensors and thermal switch[J]. Macromolecular Materials and Engineering, 2022, 307: 2100765.
[40] NI J, LIN S, QIN Z, et al. Strong fatigue-resistant nanofibrous hydrogels inspired by lobster underbelly[J]. Matter, 2021, 4: 1919-1934.
[41] ZHOU Y, WAN C, YANG Y, et al. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics[J]. Advanced Functional Materials, 2019, 29: 1806220.
[42] HUA M, WU S, MA Y, et al. Strong tough hydrogels via the synergy of freeze-casting and salting out[J]. Nature, 2021, 590: 594-599.
[43] WANG K, CHEN G, WENG S, et al. Thermo-responsive poly(N-isopropylacrylamide)/hydroxypropylmethyl cellulose hydrogel with high luminous transmittance and solar modulation for smart windows[J]. ACS Appl Mater Interfaces, 2023, 15: 4385-4397.
[44] CHEN Q, SOCHOR B, CHUMAKOV A, et al. Cellulose‐reinforced programmable and stretch‐healable actuators for smart packaging[J]. Advanced Functional Materials, 2022, 32: 2208074.
[45] LI W, GUAN Q, LI M, et al. Nature-inspired strategies for the synthesis of hydrogel actuators and their applications[J]. Progress in Polymer Science, 2023, 140: 101665.
[46] FAN W, SHAN C, GUO H, et al. Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials[J]. Science Advances, 2019, 5: eaav7174.
[47] CHEN P, RUAN Q, NASSERI R, et al. Light-fueled hydrogel actuators with controlled deformation and photocatalytic activity[J]. Advanced Science, 2022, 9: 2204730.
[48] DUAN J, LIANG X, ZHU K, et al. Bilayer hydrogel actuators with tight interfacial adhesion fully constructed from natural polysaccharides[J]. Soft Matter, 2017, 13: 345-354.
[49] BRAAKMANN-FOLGMANN A, SHEPHERD A, GERRISH L, et al. Observing the disintegration of the A68A iceberg from space[J]. Remote Sensing of Environment, 2022, 270: 112855.
[50] GONZáLEZ-TORRES M, PéREZ-LOMBARD L, CORONEL J F, et al. A review on buildings energy information: Trends, end-uses, fuels and drivers[J]. Energy Reports, 2022, 8: 626-637.
[51] ZHAI H, FAN D, LI Q. Dynamic radiation regulations for thermal comfort[J]. Nano Energy, 2022, 100: 107435.
[52] ZHOU Y, CAI Y, HU X, et al. Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for “smart window” applications[J]. Journal of Materials Chemistry A, 2014, 2: 13550-13555.
[53] ZHOU Y, WANG S, PENG J, et al. Liquid thermo-responsive smart window derived from hydrogel[J]. Joule, 2020, 4: 2458-2474.
[54] CHEN G, WANG K, YANG J, et al. Printable thermochromic hydrogel-based smart window for all-weather building temperature regulation in diverse climates[J]. Advanced Materials, 2023, 35: 2211716.
[55] TIAN J, PENG H, DU X, et al. Durable, broadband-light-manageable thermochromic hydrogel with adjustable LCST for smart windows application[J]. Progress in Organic Coatings, 2021, 157: 106287.
[56] OWUSU-NKWANTABISAH S, GILLMOR J, SWITALSKI S, et al. Synergistic thermoresponsive optical properties of a composite self-healing hydrogel[J]. Macromolecules, 2017, 50: 3671-3679.
[57] ZHANG Q, JIANG Y, CHEN L, et al. Ultra-compliant and tough thermochromic polymer for self-regulated smart windows[J]. Advanced Functional Materials, 2021, 31: 2100686.
[58] WU J, WEI Y, DING H, et al. Green synthesis of 3D chemically functionalized graphene hydrogel for high-performance NH3 and NO2 detection at room temperature[J]. ACS Applied Materials & Interfaces, 2020, 12: 20623-20632.
[59] JUNG C, KIM S-J, JANG J, et al. Disordered-nanoparticle–based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counterfeiting displays[J]. Science Advances, 2022, 8: eabm8598.
[60] GE W, CAO S, YANG Y, et al. Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions[J]. Chemical Engineering Journal, 2021, 408: 127306.
[61] ZHANG Z, ZHANG L, ZHOU Y, et al. Thermochromic energy efficient windows: fundamentals, recent advances, and perspectives[J]. Chemical Reviews, 2023, 123: 7025-7080.
[62] CHENG Y, REN K, YANG D, et al. Bilayer-type fluorescence hydrogels with intelligent response serve as temperature/pH driven soft actuators[J]. Sensors and Actuators B: Chemical, 2018, 255: 3117-3126.
[63] IŞıKLAN N, EROL Ü H. Design and evaluation of temperature-responsive chitosan/hydroxypropyl cellulose blend nanospheres for sustainable flurbiprofen release[J]. International Journal of Biological Macromolecules, 2020, 159: 751-762.
[64] RAZA M A, GULL N, LEE S-W, et al. Development of stimuli-responsive chitosan based hydrogels with anticancer efficacy, enhanced antibacterial characteristics, and applications for controlled release of benzocaine[J]. Journal of Industrial and Engineering Chemistry, 2022, 109: 210-220.
[65] ZHU J, GUAN S, HU Q, et al. Tough and pH-sensitive hydroxypropyl guar gum/polyacrylamide hybrid double-network hydrogel[J]. Chemical Engineering Journal, 2016, 306: 953-960.
[66] WEN J, WU Y, GAO Y, et al. Nanofiber composite reinforced organohydrogels for multifunctional and wearable electronics[J]. Nano-Micro Letters, 2023, 15: 174.
[67] TIAN LI, HAOBO QI, YIJING ZHAO, et al. Robust and sensitive conductive nanocomposite hydrogel with bridge cross- linking–dominated hierarchical structural design[J]. 2024, 10: eadk6643.
[68] XU Q, WU Z, ZHAO W, et al. Strategies in the preparation of conductive polyvinyl alcohol hydrogels for applications in flexible strain sensors, flexible supercapacitors, and triboelectric nanogenerator sensors: an overview[J]. Advanced Composites and Hybrid Materials, 2023, 6: 203.
[69] ZHANG Y, REN E, LI A, et al. A porous self-healing hydrogel with an island-bridge structure for strain and pressure sensors[J]. Journal of Materials Chemistry B, 2021, 9: 719-730.
[70] WANG H, LI Z, ZUO M, et al. Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding[J]. Carbohydrate Polymers, 2022, 280: 119018.

所在学位评定分委会
材料与化工
国内图书分类号
TQ314
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765981
专题南方科技大学
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
邱小京. 基于P(NIPAM-AA)的多刺激响应智能水凝胶的设计及其应用研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232085-邱小京-材料科学与工程(4834KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[邱小京]的文章
百度学术
百度学术中相似的文章
[邱小京]的文章
必应学术
必应学术中相似的文章
[邱小京]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。