[
[1] 刘传正, 陈春利. 中国地质灾害成因分析 [J]. 地质论评, 2020, 66(05): 1334-48.
[2] 陈运泰 . 地 震 预 测 : 回顾与展望 [J]. 中 国 科 学 ( 地 球 科 学 ), 2009, 39(12): 1633-58.
[3] JOHNSON P A, JIA X. Nonlinear dynamics, granular media and dynamic earthquake triggering [J]. Nature, 2005, 437(7060): 871 -4.
[4] BRACE W, BYERLEE J. Stick-slip as a mechanism for earthquakes [J]. Science, 1966, 153(3739): 990 -2.
[5] BYERLEE J D, BRACE W. Stick slip, stable sliding, and earthquakes—effect of rock type, pressure, strain rate, and stiffness [J]. Journal of Geophysical Research, 1968, 73(18): 6031 -7.
[6] KANAMORI H, BRODSKY E E. The physics of earthquakes [J]. Reports on progress in physics, 2004, 67(8): 1429.
[7] 吕征. 含颗粒物模拟断层粘滑运动机制的实验研究 [D]; 清华大学, 2019.
[8] 宋义敏, 马少鹏, 杨小彬, et al. 断层黏滑动态变形过程的实验研究 [J]. 地球物理学报, 2012, 55(1): 171-9.
[9] ZHUO Y-Q, LIU P, CHEN S, et al. Laboratory Observations of Tremor-Like Events Generated During Preslip [J]. Geophys Res Lett, 2018, 45(14): 6926-34.
[10] BERGEN K J, JOHNSON P A, DE HOOP M V, BEROZA G C. Machine learning for data -driven discovery in solid Earth geoscience [J]. Science, 2019, 363(6433).
[11] JOHNSON P A, FERDOWSI B, KAPROTH B M, et al. Acoustic emission and microslip precursors to stick -slip failure in sheared granular material [J]. Geophys Res Lett, 2013, 40(21): 5627 -31.
[12] RIVIÈRE J, LV Z, JOHNSON P A, MARONE C. Evolution of b -value during the seismic cycle: Insights from laboratory experiments on simulated faults [J]. Earth and Planetary Science Letters, 2018, 482: 407-13.
[13] 马瑾. 从“是否存在有助于预报的地震先兆”说起 [J]. 科学通报, 2016, 61(Z1): 409-14.
[14] JOHNSON P A, ROUET-LEDUC B, PYRAK-NOLTE L J, et al. Laboratory earthquake forecasting: A machine learning competition [J]. Proceedings of the National Academy of Sciences, 2021, 118(5): e2011362118.
[15] GAO K, EUSER B J, ROUGIER E, et al. Modeling of Stick -Slip Behavior in Sheared Granular Fault Gouge Using the Combined Finite-Discrete Element Method [J]. J Geophys Res Solid Earth, 2018, 123: 5774– 92.
[16] ROUET-LEDUC B, HULBERT C, LUBBERS N, et al. Machine Learning Predicts Laboratory Earthquakes [J]. Geophysical Research Letters, 2017, 44(18): 9276-82.
[17] JASPERSON H, BOLTON D C, JOHNSON P, et al. Attention Network Forecasts Time-to-Failure in Laboratory Shear Experiments [J]. J Geophys Res Solid Earth, 2021, 126(11): e2021JB022195.
[18] MCBECK J A, AIKEN J M, MATHIESEN J, et al. Deformation Precursors to Catastrophic Failure in Rocks [J]. Geophys Res Lett, 2020, 47(24): e2020GL090255.
[19] SHREEDHARAN S, BOLTON D C, RIVIÈRE J, MARONE C. Machine Learning Predicts the Timing and Shear Stress Evolution of Lab Earthquakes Using Active Seismic Monitoring of Fault Zone Processes [J]. J Geophys Res Solid Earth, 2021, 126(7): e2020JB021588.
[20] CHAIPORNKAEW L, ELSTON H, COOKE M, et al. Predicting Off-Fault Deformation From Experimental Strike -Slip Fault Images Using Convolutional Neural Networks [J]. Geophys Res Lett, 2022, 49(2): e2021GL096854.
[21] HAYES G P, EARLE P S, BENZ H M, et al. National earthquake information center strategic plan, 2019 –23 [R]: US Geological Survey, 2019.
[22] 杨旭, 李永华, 盖增喜. 机器学习在地震学中的应用进展 [J]. 地球与行星物理论评, 2021, 52(01): 76-88.
[23] MIGNAN A, BROCCARDO M. Neural Network Applications in Earthquake Prediction (1994-2019): Meta-Analytic and Statistical Insights on Their Limitations [J]. Seismol Res Lett, 2020, 91(4): 2330-42.
[24] BEROZA G C, SEGOU M, MOSTAFA MOUSAVI S. Machine learning and earthquake forecasting—next steps [J]. Nature Communications, 2021, 12(1): 4761.
[25] VAN KLAVEREN S, VASCONCELOS I, NIEMEIJER A. Predicting laboratory earthquakes with machine learning [J]. arXiv preprint arXiv:201106669, 2020.
[26] ASIM K M, MARTÍNEZ-ÁLVAREZ F, BASIT A, IQBAL T. Earthquake magnitude prediction in Hindukush region using machine learning techniques [J]. Natural Hazards, 2016, 85(1): 471-86.
[27] RAMIREZ JR J, MEYER F G. Machine Learning for Seismic Signal Processing: Phase Classification on a Manifold [Z]. 2011 10th International Conference on Machine Learning and Applications and Workshops. 2011: 382 -8.10.1109/icmla.2011.91
[28] BIANCO M J, GERSTOFT P, OLSEN K B, LIN F C. High -resolution seismic tomography of Long Beach, CA using machine learning [J]. Sci Rep, 2019, 9(1): 14987.
[29] BAI T, TAHMASEBI P. Efficient and data -driven prediction of water breakthrough in subsurface systems using deep long short term memory machine learning [J]. Computational Geosciences, 2020, 25(1): 285-97.
[30] DEVRIES P M R, VIEGAS F, WATTENBERG M, MEADE B J. Deep learning of aftershock patterns following large earthquakes [J]. Nature, 2018, 560(7720): 632 -4.
[31] BREGMAN Y, RABIN N. Aftershock Identification Using Diffusion Maps [J]. Seismological Research Letters, 2018, 90(2A): 539-45.
[32] MEIER M A, ROSS Z E, RAMACHANDRAN A, et al. Reliable Real ‐ Time Seismic Signal/Noise Discrimination With Machine Learning [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 788-800.
[33] LI Z, MEIER M-A, HAUKSSON E, et al. Machine Learning Seismic Wave Discrimination: Application to Earthquake Early Warning [J]. Geophysical Research Letters, 2018, 45(10): 4773 -9.
[34] MOUSAVI S M, ELLSWORTH W L, ZHU W, et al. Earthquake transformer-an attentive deep-learning model for simultaneous earthquake detection and phase picking [J]. Nat Commun, 2020, 11(1): 3952.
[35] ROUET-LEDUC B, HULBERT C, JOHNSON P A. Continuous chatter of the Cascadia subduction zone revealed by machine learning [J]. Nature Geoscience, 2018, 12(1): 75 -9.
[36] JOHNSON C W, JOHNSON P A. Learning the Low Frequency Earthquake Activity on the Central San Andreas Fault [J]. Geophysical Research Letters, 2021, 48(13).
[37] ALLEN R M, MELGAR D. Earthquake Early Warning: Advances, Scientific Challenges, and Societal Needs [J]. Annual Review of Earth and Planetary Sciences, 2019, 47(1): 361 -88.
[38] JORDAN T H. Earthquake predictability, brick by brick [J]. Seismological Research Letters, 2006, 77(1): 3 -6.
[39] OGATA Y, ZHUANG J. Space–time ETAS models and an improved extension [J]. Tectonophysics, 2006, 413(1 -2): 13-23.
[40] ZHUANG J, OGATA Y, VERE‐JONES D. Analyzing earthquake clustering features by using stochastic reconstru ction [J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B5).
[41] ZHUANG J, OGATA Y, VERE-JONES D. Stochastic declustering of space-time earthquake occurrences [J]. Journal of the American Statistical Association, 2002, 97(458): 369 -80.
[42] MARZOCCHI W, ZHUANG J. Statistics between mainshocks and foreshocks in Italy and Southern California [J]. Geophysical Research Letters, 2011, 38(9).
[43] AKI K. A probabilistic synthesis of precursory phenomena [J]. Earthquake prediction: an international review, 1981, 4: 566 -74.
[44] UTSU T. Probabilities associated with earthquake prediction and their relationships [J]. Earthq Predict Res, 1983, 2: 105 -14.
[45] DING X, WANG X, WANG L, DOU A. Study on the development of seismic disaster prediction of lifeline systems based on ESRI ArcGIS engine 9; proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, F, 2007 [C]. IEEE.
[46] NISHIMURA T, FUJIWARA S, MURAKAMI M, et al. Fault model of the 2005 Fukuoka-ken Seiho-oki earthquake estimated from coseismic deformation observed by GPS and InSAR [J]. Earth, planets and space, 2006, 58(1): 51 -6.
[47] MORIKAWA N, FUJIWARA H. A new ground motion prediction equation for Japan applicable up to M9 mega -earthquake [J]. Journal of Disaster Research, 2013, 8(5): 878 -88.
[48] KAGAN Y Y, JACKSON D D. Long-term earthquake clustering [J]. Geophysical Journal International, 1991, 104(1): 117 -33.
[49] FIELD E H, GUPTA N, GUPTA V, et al. Hazard calculations for the WGCEP-2002 earthquake forecast using OpenSHA and distributed object technologies [J]. Seismological Research Letters, 2005, 76(2): 161-7.
[50] HUBERT ‐ FERRARI A, SUPPE J, VAN DER WOERD J, et al. Irregular earthquake cycle along the southern Tianshan front, Aksu area, China [J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B6).
[51] DAËRON M, AVOUAC J P, CHARREAU J. Modeling the shortening history of a fault tip fold using structural and geomorphic records of deformation [J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B3).
[52] 王芃, 邵志刚, 刘琦, et al. 基于多学科物理观测的地震概率预测方法在川滇地区的应用 [J]. 地球物理学报, 2019, 62(9): 3448-63.
[53] UTSU T, OGATA Y. The centenary of the Omori formula for a decay law of aftershock activity [J]. Journal of Physics of the Earth, 1995, 43(1): 1-33.
[54] SHI Y-L, LIU J, VERE-JONES D, et al. Application of mechanical and statistical models to the study of seismicity of synthetic earthquakes and the prediction of natural ones [J]. Acta Seismologica Sinica, 1998, 11: 421-30.
[55] 蒋长胜, 庄建仓. 基于时-空 ETAS 模型给出的川滇地区背景地震活动和强震潜在危险区 [J]. 地球物理学报, 2010, 53(2): 305-17.
[56] AGNEW D C, JONES L M. Prediction probabilities from foreshocks [J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B7): 11959-71.
[57] PANAKKAT A, ADELI H. Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators [J]. Computer ‐ Aided Civil and Infrastructure Engineering, 2009, 24(4): 280 -92.
[58] MORALES-ESTEBAN A, MARTÍNEZ-ÁLVAREZ F, REYES J. Earthquake prediction in seismogenic areas of the Iberian Peninsula based on computational intelligence [J]. Tectonophysics, 2013, 593: 121-34.
[59] ASENCIO-CORTÉS G, MARTÍNEZ-ÁLVAREZ F, MORALES ESTEBAN A, REYES J. A sensitivity study of seismicity indicators in supervised learning to improve earthquake prediction [J]. Knowledge-Based Systems, 2016, 101: 15-30.
[60] ASIM K M, IDRIS A, IQBAL T, MARTÍNEZ-ÁLVAREZ F. Earthquake prediction model using support vector regressor and hybrid neural networks [J]. PloS one, 2018, 13(7): e0199004.
[61] BRYKOV M N, PETRYSHYNETS I, PRUNCU C I, et al. Machine Learning Modelling and Feature Engineering in Seismology Experiment [J]. Sensors (Basel), 2020, 20(15).
[62] CORBI F, BEDFORD J, SANDRI L, et al. Predicting Imminence of Analog Megathrust Earthquakes With Machine Learning: Implications for Monitoring Subduction Zones [J]. Geophysical Research Letters, 2020, 47(7).
[63] DEVRIES P M, VIÉGAS F, WATTENBERG M, MEADE B J. Deep learning of aftershock patterns following large earthquakes [J]. Nature, 2018, 560(7720): 632-4.
[64] NIKSARLIOGLU S, KULAHCI F. An artificial neural network model for earthquake prediction and relations between environmental parameters and earthquakes [J]. International Journal of Geological and Environmental Engineering, 2013, 7(2): 87-90.
[65] SURATGAR A A, SETOUDEH F, SALEMI A H, NEGARESTANI A. Magnitude of earthquake prediction using neural network; proceedings of the 2008 Fourth International Conference on Natural Computation, F, 2008 [C]. IEEE.
[66] CORBI F, SANDRI L, BEDFORD J, et al. Machine learning can predict the timing and size of analog earthquakes [J]. Geophysical Research Letters, 2019, 46(3): 1303 -11.
[67] NICOLIS O, PLAZA F, SALAS R. Prediction of intensity and location of seismic events using deep learning [J]. Spatial Statistics, 2021, 42: 100442.
[68] ASIM K M, IDRIS A, IQBAL T, MARTÍNEZ-ÁLVAREZ F. Seismic indicators based earthquake predictor system using Genetic Programming and AdaBoost classification [J]. Soil Dynamics and Earthquake Engineering, 2018, 111: 1 -7.
[69] LI R, LU X, LI S, et al. DLEP: A deep learning model for earthquake prediction; proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), F, 2020 [C]. IEEE.
[70] KAIL R, BURNAEV E, ZAYTSEV A. Recurrent convolutional neural networks help to predict location of earthquakes [J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1 -5.
[71] HUANG J, WANG X, ZHAO Y, et al. LARGE EARTHQUAKE MAGNITUDE PREDICTION IN TAIWAN BASED ON DEEP LEARNING NEURAL NETWORK [J]. Neural Network World, 2018, (2).
[72] BORATE P, RIVIÈRE J, MARONE C, et al. Using a physics informed neural network and fault zone acoustic monitoring to predict lab earthquakes [J]. Nature Communications, 2023, 14(1): 3693.
[73] NIEMEIJER A, MARONE C, ELSWORTH D. Frictional strength and strain weakening in simulated fault gouge: Competition between geometrical weakening and chemical strengthening [J]. Journal of Geophysical Research, 2010, 115(B10).
[74] GELLER D A, ECKE R E, DAHMEN K A, BACKHAUS S. Stick -slip behavior in a continuum-granular experiment [J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2015, 92(6): 060201.
[75] TINTI E, SCUDERI M M, SCOGNAMIGLIO L, et al. On the evolution of elastic properties during laboratory stick ‐ slip experiments spanning the transition from slow slip to dynamic rupture [J]. Journal of Geophysical Research: Solid Earth, 2016, 121(12): 8569-94.
[76] LEEMAN J R, SAFFER D M, SCUDERI M M, MARONE C. Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes [J]. Nat Commun, 2016, 7: 11104.
[77] BOLTON D C, SHOKOUHI P, ROUET ‐ LEDUC B, et al. Characterizing Acoustic Signals and Searching for Precursors during the Laboratory Seismic Cycle Using Unsupervised Machine Learning [J]. Seismological Research Letters, 2019, 90(3): 1088-98.
[78] SHREEDHARAN S, BOLTON D C, RIVIÈRE J, MARONE C. Machine Learning Predicts the Timing and Shear Stress Evolution of Lab Earthquakes Using Active Seismic Monitoring of Fault Zone Processes [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(7).
[79] JASPERSON H, BOLTON D C, JOHNSON P, et al. Attention Network Forecasts Time ‐ to ‐ Failure in Laboratory Shear Experiments [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(11).
[80] ROUET-LEDUC B, HULBERT C, BOLTON D C, et al. Estimating Fault Friction From Seismic Signals in the Laboratory [J]. Geophysical Research Letters, 2018, 45(3): 1321 -9.
[81] GAO K, EUSER B J, ROUGIER E, et al. Modeling of Stick -Slip Behavior in Sheared Granular Fault Gouge Using the Combined Finite-Discrete Element Method [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(7): 5774-92.
[82] LUBBERS N, BOLTON D C, MOHD‐YUSOF J, et al. Earthquake Catalog ‐ Based Machine Learning Identification of Laboratory Fault States and the Effects of Magnitude of Completeness [J]. Geophysical Research Letters, 2018, 45(24).
[83] KHOSRAVIKIA F, CLAYTON P. Machine learning in ground motion prediction [J]. Computers & Geosciences, 2021, 148.
[84] WANG K, JOHNSON C W, BENNETT K C, JOHNSON P A. Predicting Future Laboratory Fault Friction Through Deep Learning Transformer Models [J]. Geophysical Research Letters, 2022, 49(19).
[85] ZHAO Q, GLASER S D. Relocating Acoustic Emission in Rocks with Unknown Velocity Structure with Machine Learning [J]. Rock Mechanics and Rock Engineering, 2019, 53(5): 2053 -61.
[86] XIE Y, EBAD SICHANI M, PADGETT J E, DESROCHES R. The promise of implementing machine learning in earthquake engineering: A state-of-the-art review [J]. Earthquake Spectra, 2020, 36(4): 1769-801.
[87] AHARONOV E, SPARKS D. Stick-slip motion in simulated granular layers [J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B9).
[88] FERDOWSI B, GRIFFA M, GUYER R A, et al. Three -dimensional discrete element modeling of triggered slip in sheared granular media [J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2014, 89(4): 042204.
[89] DRATT M, KATTERFELD A. Coupling of FEM and DEM simulations to consider dynamic deformations under particle load [J]. Granular Matter, 2017, 19(3).
[90] GAO K, GUYER R A, ROUGIER E, JOHNSON P A. Plate motion in sheared granular fault system [J]. Earth Planet Sc Lett, 2020, 548: 116481.
[91] GAO K, GUYER R, ROUGIER E, et al. From Stress Chains to Acoustic Emission [J]. Phys Rev Lett, 2019, 123(4): 048003.
[92] REN C X, DOROSTKAR O, ROUET‐LEDUC B, et al. Machine Learning Reveals the State of Intermittent Frictional Dynamics in a Sheared Granular Fault [J]. Geophysical Research Letters, 2019, 46(13): 7395-403.
[93] MA G, MEI J, GAO K, et al. Machine learning bridges microslips and slip avalanches of sheared granular gouges [J]. Earth and Planetary Science Letters, 2022, 579.
[94] GAO K, GUYER R A, ROUGIER E, JOHNSON P A. Plate motion in sheared granular fault system [J]. Earth and Planetary Science Letters, 2020, 548.
[95] JOHNSON P A, ROUET-LEDUC B, PYRAK-NOLTE L J, et al. Laboratory earthquake forecasting: A machine learning competition [J]. Proc Natl Acad Sci U S A, 2021, 118(5).
[96] MUNJIZA A, LEI Z, DIVIC V, PEROS B. Fracture and fragmentation of thin shells using the combined finite -discrete element method [J]. International Journal for Numerical Methods in Engineering, 2013, 95(6): 478 -98.
[97] WANG K, JOHNSON C W, BENNETT K C, JOHNSON P A. Predicting fault slip via transfer learning [J]. Nature communications, 2021, 12(1): 1-11.
[98] HE K, ZHANG X, REN S, SUN J. Deep residual learning for image recognition; proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, F, 2016 [C].
[99] POLIKAR R. Ensemble learning [M]. Ensemble machine learning. Springer. 2012: 1-34.
[100] DIETTERICH T G. Ensemble methods in machine learning; proceedings of the International workshop on multiple classifier systems, F, 2000 [C]. Springer.
[101] CHEN T, HE T, BENESTY M, et al. Xgboost: extreme gradient boosting [J]. R package version 04 -2, 2015, 1(4): 1-4.
[102] KE G, MENG Q, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree [Z]. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA; Curran Associates Inc. 2017: 3149–57
[103] MUNJIZA A. Discrete elements in transient dynamics of fractured media [D]; Swansea University, 1992.
[104] TRUGMAN D T, MCBREARTY I W, BOLTON D C, et al. The Spatiotemporal Evolution of Granular Microslip Precursors to Laboratory Earthquakes [J]. Geophysical Research Letters, 2020, 47(16).
[105] GUTENBERG B, RICHTER C F. Earthquake magnitude, intensity, energy, and acceleration: (Second paper) [J]. Bulletin of the seismological society of America, 1956, 46(2): 105 -45.
[106] LUNDBERG S M, ERION G G, LEE S-I. Consistent individualized feature attribution for tree ensembles [J]. arXiv preprint arXiv:180203888, 2018.
[107] REJEB S, DUVEAU C, REBAFKA T. Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values [J]. arXiv preprint arXiv:220207963, 2022.
[108] PELLEG D, MOORE A W. X-means: Extending k-means with efficient estimation of the number of clusters; proceedings of the Icml, F, 2000 [C].
[109] BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling [J]. arXiv preprint arXiv:180301271, 2018.
[110] HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural computation, 1997, 9(8): 1735-80.
[111] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [J]. Advances in neural information processing systems, 2017, 30.
[112] BADRINARAYANAN V, KENDALL A, CIPOLLA R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2481 -95.
[113] SENGUPTA A, YE Y, WANG R, et al. Going deeper in spiking neural networks: VGG and residual architectures [J]. Frontiers in neuroscience, 2019, 13: 95.
[114] AL-JAWFI R. Handwriting Arabic character recognition LeNet using neural network [J]. Int Arab J Inf Technol, 2009, 6(3): 304 -9.
[115] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size [J]. arXiv preprint arXiv:160207360, 2016.
[116] LIN M, CHEN Q, YAN S. Network in network [J]. arXiv preprint arXiv:13124400, 2013.
[117] MOUSAVI S M, BEROZA G C. A Machine ‐Learning Approach for Earthquake Magnitude Estimation [J]. Geophysica l Research Letters, 2020, 47(1).
[118] LAURENTI L, TINTI E, GALASSO F, et al. Deep learning for laboratory earthquake prediction and autoregressive forecasting of fault zone stress [J]. Earth and Planetary Science Letters, 2022, 598.
[119] SHREEDHARAN S, BOLTON D C, RIVIÈRE J, MARONE C. Preseismic Fault Creep and Elastic Wave Amplitude Precursors Scale With Lab Earthquake Magnitude for the Continuum of Tectonic Failure Modes [J]. Geophysical Research Letters, 2020, 47(8).
[120] REN C X, PELTIER A, FERRAZZINI V, et al. Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano [J]. Geophys Res Lett, 2020, 47(3): e2019GL085523.
[121] BERGSTRA J, BENGIO Y. Random search for hyper-parameter optimization [J]. Journal of machine learning research, 2012, 13(2).
[122] MARTINEZ-CANTIN R. BayesOpt: a Bayesian optimization library for nonlinear optimization, experimental design and bandits [J]. J Mach Learn Res, 2014, 15(1): 3735 -9.
[123] VICTORIA A H, MARAGATHAM G. Automatic tuning of hyperparameters using Bayesian optimization [J]. Evolving Systems, 2021, 12(1): 217-23.
[124] BORATE P, RIVIERE J, MARONE C, et al. Using a physics informed neural network and fault zone acoustic monitoring to predict lab earthquakes [J]. Nat Commun, 2023, 14(1): 3693.
[125] KEMNA K B, ROTH M P, WACHE R M, et al. Small Magnitude Events Highlight the Correlation Between Hydraulic Fracturing Injection Parameters, Geological Factors, and Earthquake Occurrence [J]. Geophysical Research Letters, 2022, 49(21).
[126] LI Y E, O ’ MALLEY D, BEROZA G, et al. Machine Learning Developments and Applications in Solid‐Earth Geosciences: Fad or Future? [J]. Journal of Geophysical Research: Solid Earth, 2023, 128(1).
[127] VAN HOUDT G, MOSQUERA C, NÁPOLES G. A review on the long short-term memory model [J]. Artificial Intelligence Review, 2020, 53(8): 5929-55.
[128] BEROZA G C, SEGOU M, MOSTAFA MOUSAVI S. Machine learning and earthquake forecasting -next steps [J]. Nat Commun, 2021, 12(1): 4761.
[129] WANG K, JOHNSON C W, BENNETT K C, JOHNSON P A. Predicting fault slip via transfer learning [J]. Nat Commun, 2021, 12(1): 7319.
[130] GAO P, JIANG Z, YOU H, et al. Dynamic fusion with intra -and inter-modality attention flow for visual question answering; proceedings of the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, F, 2019 [C].
[131] HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter efficient transfer learning for NLP; proceedings of the International Conference on Machine Learning, F, 2019 [C]. PMLR.
修改评论