中文版 | English
题名

用于波导耦合的衍射光栅制备及优化

其他题名
PREPARATION AND OPTIMIZATION OF DIFFRACTION GRATINGS FOR WAVEGUIDE COUPLING
姓名
姓名拼音
BAI Ziyan
学号
12232169
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
刘言军
导师单位
电子与电气工程系
论文答辩日期
2024-05-07
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

增强现实显示作为一种穿戴式显示设备,是目前新型显示技术的热点。 光波导技术在增强现实显示领域展现出了巨大潜力。在光波导技术中,光 耦合元件决定了波导系统的性能。ᨀ高衍射效率和视场角是目前光学耦合 元件仍需解决的问题。因此开发具有高耦合效率的耦合元件,对于推动增 强现实技术的发展具有重要意义。本文从波导耦合光栅的角度出发,对光 聚合物光栅和偏振体全息光栅这两种波导耦合光栅进行了研究。 光聚合物光栅记录材料的性能直接影响了波导耦合效率和视场角的大 小,而传统的记录材料存在后处理工艺复杂、峰值衍射效率低等问题。本 文从光聚合的动力学原理出发,对已有的光聚合反应扩散模型进行分析。 在此基础上,对光栅形成过程中的暗反应这一特殊现象进行᧿述。实验研 究了一种具有高衍射效率的丙烯酸酯基光聚合物。通过优化曝光参数,样 品厚度以及后处理时间等工艺参数,基于该聚合物体系的光栅衍射效率可 达到 97.8%。 偏振体全息光栅由于其高衍射效率、大衍射角和宽响应带宽的优点受 到了广泛关注。然而其视场角仍然无法满足增强现实显示的需求。本文采 用时域有限差分法研究了偏振体全息光栅的耦合效率和响应带宽。在实验 过程中,优化了偏振体全息光栅的制备流程以及相关参数,制备了波长带 宽约为 50 nm,峰值衍射效率接近 100%的偏振体全息光栅。为了进一步扩 展偏振体全息光栅的波长带宽,本文ᨀ出了一种具有梯度渐变周期的偏振 体全息光栅设计方案。模拟结果表明,该方案能够显著增强光栅的波长响 应范围,最终得到的梯度渐变周期的偏振体全息光栅波长带宽为 135 nm, 远大于普通偏振体全息光栅的 50 nm 的波长带宽。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] BARTEN P G J. Contrast sensitivity of the human eye and its effects on image quality[M]. Bellingham: SPIE Press, 1999.
[2] CAKMAKCI O, ROLLAND J. Head-worn displays: a review[J]. Journal of Display Technology, 2006, 2(3): 199-216.
[3] ZHAN T, YIN K, XIONG J, et al. Augmented reality and virtual reality displays: perspectives and challenges[J]. iScience, 2020, 23(8): 101397.
[4] YIN K, HE Z, XIONG J, et al. Virtual reality and augmented reality displays: advances and future perspectives[J]. Journal of Physics: Photonics, 2021, 3(2): 022010.
[5] RENDON A A, LOHMAN E B, THORPE D, et al. The effect of virtual reality gaming on dynamic balance in older adults[J]. Age and Ageing, 2012, 41(4): 549-552.
[6] CHOI S S, JUNG K, NOH S D. Virtual reality applications in manufacturing industries: Past research, present findings, and future directions[J]. Concurrent Engineering, 2015, 23(1): 40-63.
[7] LI X, YI W, CHI H L, et al. A critical review of virtual and augmented reality (VR/AR) applications in construction safety[J]. Automation in Construction, 2018, 86: 150-162.
[8] FREEMAN M O. MEMS scanned laser head-up display[C]//MOEMS and Miniaturized Systems X. SPIE, 2011, 7930: 114-121.
[9] WENG C P, SU G D J. Using micro-projectors to realize large screen head-up display[C]//Current Developments in Lens Design and Optical Engineering XIII. SPIE, 2012, 8486: 138-146.
[10] WALDERN J D, GRANT A J, POPOVICH M M. DigiLens switchable Bragg grating waveguide optics for augmented reality applications[C]//Digital Optics for Immersive Displays. SPIE, 2018, 10676: 108-123.
[11] KRESS B C. Optical waveguide combiners for AR headsets: features and limitations[C]//Digital Optical Technologies 2019. SPIE, 2019, 11062: 75-100.
[12] CHARLTON D W, WATSON M A, WHITE H J. Body-worn optical wireless link to helmet mounted display[C]//Unmanned/Unattended Sensors and Sensor Networks VII. SPIE, 2010, 7833: 73-80.
[13] JU Y G, CHOI M H, LIU P, et al. Occlusion-capable optical-see-through near-eye display using a single digital micromirror device[J]. Optics Letters, 2020, 45(13): 3361-3364.
[14] HUANG Y, LIAO E, CHEN R, et al. Liquid-crystal-on-silicon for augmented reality displays[J]. Applied Sciences, 2018, 8(12): 2366.
[15] KANG C, LEE H. Recent progress of organic light-emitting diode microdisplays for augmented reality/virtual reality applications[J]. Journal of Information Display, 2022, 23(1): 19-32.
[16] PARK J, CHOI J H, KONG K, et al. Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses[J]. Nature Photonics, 2021, 15(6): 449-455.
[17] BLEHA JR W P, LEI L A. Advances in liquid crystal on silicon (LCOS) spatial light modulator technology[J]. Display Technologies and Applications for Defense, Security, and Avionics VII, 2013, 8736: 47-54.
[18] 刘迪萱, 钟锦耀, 唐彪, 等. 柔性与印刷 OLED 研究进展[J]. 液晶与显示, 2021,36(2): 217-228.
[19] LEE H, CHO H, BYUN C W, et al. 12‐3: Organic light‐emitting diode microdisplay with a 32: 9 aspect ratio for wide field of view[C]//SID Symposium Digest of Technical Papers. 2020, 51(1): 153-155.
[20] ZHUANG Z, CHENG Q, SURMAN P, et al. A compact and lightweight off-axis lightguide prism in near to eye display[J]. Optics Communications, 2017, 393: 143-151.
[21] YANG T, JIN G F, ZHU J. Automated design of freeform imaging systems[J]. Light: Science & Applications, 2017, 6(10): e17081-e17081.
[22] WEI L, LI Y, JING J, et al. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface[J]. Optics Express, 2018, 26(7): 8550-8565.
[23] TANG R, ZHANG B, JIN G, et al. Multiple surface expansion method for design of freeform imaging systems[J]. Optics Express, 2018, 26(3): 2983-2994.
[24] ZHENG Z, LIU X, LI H, et al. Design and fabrication of an off-axis see-through head mounted display with an x-y polynomial surface[J]. Applied Optics, 2010, 49(19): 3661-3668.
[25] CHENG D, WANG Y, XU C, et al. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics[J]. Optics Express, 2014, 22(17): 20705-20719.
[26] HAN J, LIU J, YAO X, et al. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms[J]. Optics Express, 2015, 23(3): 3534-3549.
[27] FUJIEDA I. Theoretical considerations for arrayed waveguide displays[J]. Applied Optics, 2002, 41(7): 1391-1399.
[28] LI H, ZHANG X, SHI G, et al. Review and analysis of avionic helmet-mounted displays[J]. Optical Engineering, 2013, 52(11): 110901.
[29] BORISOV V, OKUN R, ANGERVAKS A, et al. Wide field of view HOE-based waveguides system for AR display[C]//Digital Optics for Immersive Displays II. SPIE, 2020, 11350: 71-78.
[30] ZHANG N, LIU J, HAN J, et al. Improved holographic waveguide display system[J]. Applied Optics, 2015, 54(12): 3645-3649.
[31] AMITAI Y, FRIESEM A A, WEISS V. Holographic elements with high efficiency and low aberrations for helmet displays[J]. Applied Optics, 1989, 28(16): 3405-3416.
[32] CHENG D, WANG Q, LIU Y, et al. Design and manufacture AR head-mounted displays: A review and outlook[J]. Light: Advanced Manufacturing, 2021, 2(3): 350-369.
[33] YANG T, JIN G F, ZHU J. Automated design of freeform imaging systems[J]. Light: Science & Applications, 2017, 6(10): e17081-e17081.
[34] YANG J, TWARDOWSKI P, GÉRARD P, et al. Design of a large field-of-view see through near to eye display with two geometrical waveguides[J]. Optics Letters, 2016, 41(23): 5426-5429.
[35] PAN J W, HUNG H C. Optical design of a compact see-through head-mounted display with light guide plate[J]. Journal of Display Technology, 2015, 11(3): 223-228.
[36] ZHAO K W, PAN J W. Optical design for a see-through head-mounted display with high visibility[J]. Optics Express, 2016, 24(5): 4749-4760.
[37] XIONG J, HSIANG E L, HE Z, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives[J]. Light: Science & Applications, 2021, 10(1): 1-30.
[38] ÄYRÄS P, SAARIKKO P, LEVOLA T. Exit pupil expander with a large field of view based on diffractive optics[J]. Journal of the Society for Information Display, 2009, 17(8): 659-664.
[39] ZHANG W, WANG Z, XU J. Research on a surface-relief optical waveguide augmented reality display device[J]. Applied Optics, 2018, 57(14): 3720-3729.
[40] 翁一士. 彩色波导显示光学耦合技术研究[D]. 南京: 东南大学, 2019.
[41] CAMERON A A. Optical waveguide technology and its application in head-mounted displays[C]//Head-and Helmet-Mounted Displays XVII; and Display Technologies and Applications for Defense, Security, and Avionics VI. SPIE, 2012, 8383: 109-119.
[42] BIN G, MINGXUAN W, DIQIN Z, et al. Research progress of photopolymers for the preparation of holographic optical waveguide[J]. Acta Chimica Sinica, 2023, 81(4): 393.
[43] PRAMITHA V, DAS B, JOSEPH J, et al. High efficiency panchromatic photopolymer recording material for holographic data storage systems[J]. Optical Materials, 2016, 52: 212-218.
[44] ALIM M D, GLUGLA D J, MAVILA S, et al. High dynamic range (Δn) two-stage photopolymers via enhanced solubility of a high refractive index acrylate writing monomer[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 1217-1224.
[45] TOMITA Y, AOI T, HASEGAWA S, et al. Very high contrast volume holographic gratings recorded in photopolymerizable nanocomposite materials[J]. Optics Express, 2020, 28(19): 28366-28382.
[46] KOJIMA T, TOMITA Y, WADA T, et al. Dual-grating formation in methacrylate photopolymer films[C]//Applications of Photonic Technology 4. SPIE, 2000, 4087: 659-661.
[47] GUO J, GLEESON M R, LIU S, et al. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling[J]. Journal of Optics, 2011, 13(9): 095601.
[48] GUO J, GLEESON M R, LIU S, et al. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results[J]. Journal of Optics, 2011, 13(9): 095602.
[49] LIU Y, FAN F, HONG Y, et al. Volume holographic recording in Irgacure 784-doped PMMA photopolymer[J]. Optics Express, 2017, 25(17): 20654-20662.
[50] HONG K, YEOM J, JANG C, et al. Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality[J]. Optics Letters, 2014, 39(1): 127-130.
[51] YU C, PENG Y, ZHAO Q, et al. Highly efficient waveguide display with space-variant volume holographic gratings[J]. Applied Optics, 2017, 56(34): 9390-9397.
[52] YOSHIDA T, TOKUYAMA K, TAKAI Y, et al. A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses[J]. Journal of the Society for Information Display, 2018, 26(5): 280-286.
[53] CAKMAKCI O, QIN Y, BOSEL P, et al. Holographic pancake optics for thin and lightweight optical see-through augmented reality[J]. Optics Express, 2021, 29(22): 35206-35215.
[54] SHEN Z, ZHANG Y, LIU A, et al. Volume holographic waveguide display with large field of view using a Au-NPs dispersed acrylate-based photopolymer[J]. Optical Materials Express, 2020, 10(2): 312-322.
[55] SHEN Z, WENG Y, ZHANG Y, et al. Holographic recording performance of acrylate based photopolymer under different preparation conditions for waveguide display[J]. Polymers, 2021, 13(6): 936.
[56] 沈忠文. 波导显示用宽带全息记录材料及器件研究[D]. 南京: 东南大学, 2021.
[57] WENG Y, XU D, ZHANG Y, et al. Polarization volume grating with high efficiency and large diffraction angle[J]. Optics Express, 2016, 24(16): 17746-17759.
[58] KOBASHI J, YOSHIDA H, OZAKI M. Planar optics with patterned chiral liquid crystals[J]. Nature Photonics, 2016, 10(6): 389-392.
[59] ZHAN T, LEE Y H, TAN G, et al. Pancharatnam-Berry optical elements for head-up and near-eye displays[J]. Journal of the Optical Society of America B: Optical Physics, 2019, 36(5): D52-D65.
[60] YIN K, LEE Y H, HE Z, et al. Stretchable, flexible, rollable, and adherable polarization volume grating film[J]. Optics Express, 2019, 27(4): 5814-5823.
[61] CHEN P, MA L L, HU W, et al. Chirality invertible superstructure mediated active planar optics[J]. Nature Communications, 2019, 10(1): 2518.
[62] LI Y, SEMMEN J, YANG Q, et al. Switchable polarization volume gratings for augmented reality waveguide displays[J]. Journal of the Society for Information Display, 2023, 31(5): 328-335.
[63] LEVOLA T, LAAKKONEN P. Replicated slanted gratings with a high refractive index material for in and outcoupling of light[J]. Optics Express, 2007, 15(5): 2067-2074.
[64] COUFAL H J, PSALTIS D. Holographic data storage[M]. New York: Springer, 2000.
[65] FERRARA M A, STRIANO V, COPPOLA G. Volume holographic optical elements as solar concentrators: An Overview[J]. Applied Sciences, 2019, 9(1): 193.
[66] WU Y, RIVENSON Y, ZHANG Y, et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery[J]. Optica, 2018, 5(6): 704-710.
[67] JANG C, LEE C K, JEONG J, et al. Recent progress in see-through three-dimensional displays using holographic optical elements[J]. Applied Optics, 2016, 55(3): A71-A85.
[68] KURODA K, MATSUHASHI Y, FUJIMURA R, et al. Theory of polarization holography[J]. Optical Review, 2011, 18: 374-382.
[69] YAROSHCHUK O, REZNIKOV Y. Photoalignment of liquid crystals: basics and current trends[J]. Journal of Materials Chemistry, 2012, 22(2): 286-300.
[70] KOGELNIK H. Coupled wave theory for thick hologram gratings[J]. Bell System Technical Journal, 1969, 48(9): 2909-2947.
[71] LIN T, XIE J, ZHOU Y, et al. Recent advances in photoalignment liquid crystal polarization gratings and their applications[J]. Crystals, 2021, 11(8): 900.
[72] ZHAO G, MOUROULIS P. Diffusion model of hologram formation in dry photopolymer materials[J]. Journal of Modern Optics, 1994, 41(10): 1929-1939.
[73] GLEESON M R, KELLY J V, SABOL D, et al. Modeling the photochemical effects present during holographic grating formation in photopolymer materials[J]. Journal of Applied Physics, 2007, 102(2).
[74] SHERIDAN J T, LAWRENCE J R. Nonlocal-response diffusion model of holographic recording in photopolymer[J]. Journal of the Optical Society of America A 2000, 17(6): 1108-1114.
[75] VELTRI A, CAPUTO R, UMETON C, et al. Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials[J]. Applied Physics Letters, 2004, 84(18): 3492-3494.
[76] CAPUTO R, SUKHOV A V, UMETON C, et al. Dynamics of mass transfer caused by the photoinduced spatially inhomogeneous modulation of mobility in a multicomponent medium[J]. Journal of Experimental and Theoretical Physics, 2001, 92: 28-36.
[77] YIN D, PU H, GAO B, et al. Analytical rates determinations and simulations on diffusion and reaction processes in holographic photopolymerization[J]. Applied Physics Letters, 2009, 94(21).
[78] 刘鸿鹏. 菲醌掺杂的聚甲基丙烯酸甲酯聚合物全息光栅动力学研究[D]. 哈尔滨:哈尔滨工业大学,2010.
[79] VRENTAS J S, DUDA J L. Diffusion in polymer-solvent systems. I. Reexamination of the free-volume theory[J]. Journal of Polymer Science: Polymer Physics Edition, 1977, 15(3): 403-416.
[80] BRUDER F K, FÄCKE T, RÖLLE T. The chemistry and physics of Bayfol® HX film holographic photopolymer[J]. Polymers, 2017, 9(10): 472.
[81] WANG H, XU S, MA J, et al. Investigation of high thickness holographic gratings in acrylamide-based photopolymer[J]. Modern Physics Letters B, 2016, 30(32n33): 1650382.
[82] WANG H, WANG J, LIU H, et al. Study of effective optical thickness in photopolymer for application[J]. Optics Letters, 2012, 37(12): 2241-2243.
[83] YEE K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307.
[84] CHIGRINOV V G, KOZENKOV V M, KWOK H S. Photoalignment of liquid crystalline materials: physics and applications[M]. Hoboken: John Wiley & Sons, 2008.
[85] ZHAO X, BOUSSAID F, BERMAK A, et al. High-resolution thin “guest-host” micropolarizer arrays for visible imaging polarimetry[J]. Optics Express, 2011, 19(6): 5565-5573.
[86] KIM Y H, YOON D K, JEONG H S, et al. Smectic liquid crystal defects for self‐assembling of building blocks and their lithographic applications[J]. Advanced Functional Materials, 2011, 21(4): 610-627.
[87] YUN C J, SONG J K. Functional films using reactive mesogens for display applications[J]. Journal of Information Display, 2017, 18(3): 119-129.
[88] 崔静怡. 偏振体光栅全息波导系统的二维扩瞳研究[D]. 南京:东南大学,2021.
[89] LEE Y H, YIN K, WU S T. Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays[J]. Optics Express, 2017, 25(22): 27008-27014.

所在学位评定分委会
材料科学与工程
国内图书分类号
TN26
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765984
专题南方科技大学
工学院_电子与电气工程系
推荐引用方式
GB/T 7714
白梓嫣. 用于波导耦合的衍射光栅制备及优化[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232169-白梓嫣-电子与电气工程(5251KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[白梓嫣]的文章
百度学术
百度学术中相似的文章
[白梓嫣]的文章
必应学术
必应学术中相似的文章
[白梓嫣]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。