[1]KARATAS M A, GOKKAYA H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials[J]. Defence Technology, 2018, 14(4): 318-326.
[2]GAO T, LI C, JIA D, et al. Surface morphology assessment of CFRP transverse grinding using CNT nanofluid minimum quantity lubrication[J]. Journal of Cleaner Production, 2020, 277: 123328.
[3]WEI Q, ZHU L, ZHU J, et al. Characterization of impact fatigue damage in CFRP composites using nonlinear acoustic resonance method[J]. Composite Structures, 2020, 253: 112804.
[4]JIN T, MA Y, XIONG Z, et al. Bioinspired, Tree-Root-Like Interfacial Designs for Structural Batteries with Enhanced Mechanical Properties[J]. Advanced Energy Materials, 2021, 11(25): 2100997.
[5]SANCHEZ J S, XU J, XIA Z, et al. Electrophoretic coating of LiFePO4/Graphene oxide on carbon fibers as cathode electrodes for structural lithium ion batteries[J]. Composites Science and Technology, 2021, 208: 108768.
[6]WANG M, EMRE cA, TUNG S, et al. Biomimetic solid-state Zn2+ electrolyte for corrugated structural batteries[J]. ACS Nano, 2019, 13(2): 1107-1115.
[7]ZHANG Y, MA J, SINGH A K, et al. Multifunctional structural lithium-ion battery for electric vehicles[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(12): 1603-1613.
[8]ASP L E, BOUTON K, CARLSTEDT D, et al. A Structural Battery and its Multifunctional Performance[J]. Advanced Energy and Sustainability Research, 2021, 2(3): 2000093.
[9]DEKA B K, HAZARIKA A, KIM J, et al. Bimetallic copper cobalt selenide nanowire-anchored woven carbon fiber-based structural supercapacitors[J]. Chemical Engineering Journal, 2019, 355: 551-559.
[10]XU Y, LU W, XU G, et al. Structural supercapacitor composites: a review[J]. Composites Science and Technology, 2021, 204: 108636.
[11]ASP L E, GREENHALGH E S. Structural power composites[J]. Composites Science and Technology, 2014, 101: 41-61.
[12]YU Y, ZHANG B, FENG M, et al. Multifunctional structural lithium ion batteries based on carbon fiber reinforced plastic composites[J]. Composites Science and Technology, 2017, 147: 62-70.
[13]MUñOZ B, DEL BOSQUE A, SáNCHEZ M, et al. Epoxy resin systems modified with ionic liquids and ceramic nanoparticles as structural composites for multifunctional applications[J]. Polymer, 2021, 214: 123233.
[14]FU Y, ZHOU H, ZHOU L. Phase-microstructure-mechanical properties relationship of carbon fiber reinforced ionic liquid epoxy composites[J]. Composites Science and Technology, 2021, 207: 108711.
[15]HU Z, FU Y, HONG Z, et al. Composite structural batteries with Co3O4/CNT modified carbon fibers as anode: Computational insights on the interfacial behavior[J]. Composites Science and Technology, 2021, 201: 108495.
[16]TU V, ASP L E, SHIRSHOVA N, et al. Performance of bicontinuous structural electrolytes[J]. Multifunctional Materials, 2020, 3(2): 025001.
[17]JOHANNISSON W, IHRNER N, ZENKERT D, et al. Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries[J]. Composites Science and Technology, 2018, 168: 81-87.
[18]MENG C, MURALIDHARAN N, TEBLUM E, et al. Multifunctional structural ultrabattery composite[J]. Nano Letters, 2018, 18(12): 7761-7768.
[19]SUN J, GARGITTER V, PEI S, et al. Mechanical and electrochemical performance of hybrid laminated structural composites with carbon fiber/solid electrolyte supercapacitor interleaves[J]. Composites Science and Technology, 2020, 196: 108234.
[20]HAGBERG J, MAPLES H A, ALVIM K S, et al. Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries[J]. Composites Science and Technology, 2018, 162: 235-243.
[21]WU F, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614.
[22]TARASCON J-M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[23]LI H, ZHOU D, CAO J, et al. On the damage and performance degradation of multifunctional sandwich structure embedded with lithium-ion batteries under impact loading[J]. Journal of Power Sources, 2023, 581: 233509.
[24]LADPLI P, NARDARI R, KOPSAFTOPOULOS F, et al. Multifunctional energy storage composite structures with embedded lithium-ion batteries[J]. Journal of Power Sources, 2019, 414: 517-529.
[25]THOMAS J P, KEENNON M T, DUPASQUIER A, et al. Multifunctional structure-battery materials for enhanced performance in small unmanned air vehicles[C]. ASME International Mechanical Engineering Congress and Exposition, 2003, 289-292.
[26]CAPOVILLA G, CESTINO E, REYNERI L M, et al. Modular multifunctional composite structure for cubesat applications: Preliminary design and structural analysis[J]. Aerospace, 2020, 7(2): 17.
[27]SAIRAJAN K, AGLIETTI G, MANI K. A review of multifunctional structure technology for aerospace applications[J]. Acta Astronautica, 2016, 120: 30-42.
[28]ATTAR P, GALOS J, BEST A, et al. Compression properties of multifunctional composite structures with embedded lithium-ion polymer batteries[J]. Composite Structures, 2020, 237: 111937.
[29]PATTARAKUNNAN K, GALOS J, DAS R, et al. Tensile properties of multifunctional composites embedded with lithium-ion polymer batteries[J]. Composites Part A: Applied Science and Manufacturing, 2020, 136: 105966.
[30]ZHOU D, LI H, LI Z, et al. Toward the performance evolution of lithium-ion battery upon impact loading[J]. Electrochimica Acta, 2022, 432: 141192.
[31]MA S, JIANG M, TAO P, et al. Temperature effect and thermal impact in lithium-ion batteries: A review[J]. Progress in Natural Science: Materials International, 2018, 28(6): 653-666.
[32]JIANG Q, BEUTL A, KüHNELT H, et al. Structural composite batteries made from carbon fibre reinforced electrodes/polymer gel electrolyte prepregs[J]. Composites Science and Technology, 2023, 244: 110312.
[33]MAO Y-Q, DONG G-H, FU Y-T, et al. High performance shape-adjustable structural lithium-ion battery based on hybrid fiber reinforced epoxy composite[J]. Composite Structures, 2023, 325: 117598.
[34]THOMAS J P, QIDWAI M A. The design and application of multifunctional structure-battery materials systems[J]. Jom, 2005, 57(3): 18.
[35]CARLSON T. Multifunctional composite materials: Design, manufacture and experimental characterisation[D]. Luleå Tekniska Universitet, 2013.
[36]GALOS J, KHATIBI A A, MOURITZ A P. Vibration and acoustic properties of composites with embedded lithium-ion polymer batteries[J]. Composite Structures, 2019, 220: 677-686.
[37]GASCO F, FERABOLI P. Manufacturability of composite laminates with integrated thin film Li-ion batteries[J]. Journal of Composite Materials, 2014, 48(8): 899-910.
[38]LEE C, GREENHALGH E S, SHAFFER M S, et al. Optimized microstructures for multifunctional structural electrolytes[J]. Multifunctional Materials, 2019, 2(4): 045001.
[39]LADPLI P, NARDARI R, KOPSAFTOPOULOS F, et al. Multifunctional energy storage composite structures with embedded lithium-ion batteries[J]. Journal of Power Sources, 2019, 414: 517-529.
[40]JOHANNISSON W, ZENKERT D, LINDBERGH G. Model of a structural battery and its potential for system level mass savings[J]. Multifunctional Materials, 2019, 2(3): 035002.
[41]GALOS J, FREDRIKSSON C, DAS R. Multifunctional sandwich panel design with lithium-ion polymer batteries[J]. Journal of Sandwich Structures & Materials, 2021, 23(8): 3794-3813.
[42]MOYER K, MENG C, MARSHALL B, et al. Carbon fiber reinforced structural lithium-ion battery composite: Multifunctional power integration for CubeSats[J]. Energy Storage Materials, 2020, 24: 676-681.
[43]THOMAS J P, QIDWAI M A. Mechanical design and performance of composite multifunctional materials[J]. Acta Materialia, 2004, 52(8): 2155-2164.
[44]ASHBY M F, CEBON D. Materials selection in mechanical design[J]. Le Journal de Physique IV, 1993, 3(C7): C7-1-C7-9.
[45]O'BRIEN D, BAECHLE D, WETZEL E. Design and performance of multifunctional structural composite capacitors[J]. Journal of Composite Materials, 2011, 45(26): 2797-2809.
[46]SNYDER J, GIENGER E, WETZEL E. Performance metrics for structural composites with electrochemical multifunctionality[J]. Journal of Composite Materials, 2015, 49(15): 1835-1848.
[47]ZACKRISSON M, JöNSSON C, JOHANNISSON W, et al. Prospective life cycle assessment of a structural battery[J]. Sustainability, 2019, 11(20): 5679.
[48]DHARMASIRI B, STOJCEVSKI F, USMAN K A S, et al. Flexible carbon fiber based structural supercapacitor composites with solvate ionic liquid-epoxy solid electrolyte[J]. Chemical Engineering Journal, 2023, 455: 140778.
[49]HUBERT O, TODOROVIC N, GONZáLEZ L M R, et al. Sulfonated hypercrosslinked polymer enhanced structural composite supercapacitors[J]. Composites Science and Technology, 2023, 242: 110152.
[50]WANG C, PEI Z, MENG Q, et al. Toward flexible zinc‐ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt‐based electrolytes[J]. Angewandte Chemie International Edition, 2021, 60(2): 990-997.
[51]WEI F, TIAN H, CHEN P, et al. Construction of porous carbon nanosheets by dual-template strategy for zinc ion hybrid capacitor[J]. Applied Surface Science, 2023, 613: 156021.
[52]XIA L, TANG B, WEI J, et al. Recent advances in alkali metal‐ion hybrid supercapacitors[J]. Batteries & Supercaps, 2021, 4(7): 1108-1121.
[53]FAN L, LIN K, WANG J, et al. A nonaqueous potassium‐based battery–supercapacitor hybrid device[J]. Advanced Materials, 2018, 30(20): 1800804.
[54]SUN J, GARGITTER V, PEI S, et al. Mechanical and electrochemical performance of hybrid laminated structural composites with carbon fiber/solid electrolyte supercapacitor interleaves[J]. Composites Science and Technology, 2020, 196: 108234.
[55]BETZ J, BIEKER G, MEISTER P, et al. Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems[J]. Advanced Energy Materials, 2019, 9(6): 1803170.
[56]ZUO W, LI R, ZHOU C, et al. Battery‐supercapacitor hybrid devices: recent progress and future prospects[J]. Advanced Science, 2017, 4(7): 1600539.
[57]ZHENG X, AHMAD T, CHEN W. Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries[J]. Energy Storage Materials, 2021, 39: 365-394.
[58]KUNDU D, ADAMS B D, DUFFORT V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nature Energy, 2016, 1(10): 1-8.
[59]LI X, WANG J. One‐dimensional and two‐dimensional synergized nanostructures for high‐performing energy storage and conversion[J]. InfoMat, 2020, 2(1): 3-32.
[60]WANG C, KANETI Y V, BANDO Y, et al. Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion[J]. Materials Horizons, 2018, 5(3): 394-407.
[61]WEI Q, XIONG F, TAN S, et al. Porous one‐dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage[J]. Advanced Materials, 2017, 29(20): 1602300.
[62]HE H, LIAN J, CHEN C, et al. Super hydrophilic carbon fiber film for freestanding and flexible cathodes of zinc-ion hybrid supercapacitors[J]. Chemical Engineering Journal, 2021, 421: 129786.
[63]ROJAEE R, SHAHBAZIAN-YASSAR R. Two-dimensional materials to address the lithium battery challenges[J]. ACS Nano, 2020, 14(3): 2628-2658.
[64]ZHANG P, WANG F, YU M, et al. Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems[J]. Chemical Society Reviews, 2018, 47(19): 7426-7451.
[65]FENG W, LONG P, FENG Y, et al. Two‐dimensional fluorinated graphene: synthesis, structures, properties and applications[J]. Advanced Science, 2016, 3(7): 1500413.
[66]SUN G, XIAO Y, LU B, et al. Hybrid energy storage device: combination of zinc-ion supercapacitor and zinc–air battery in mild electrolyte[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7239-7248.
[67]PAN Z, LU Z, XU L, et al. A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications[J]. Applied Surface Science, 2020, 510: 145384.
[68]WANG D, CHEN G, PAN Z. A robust magnesiothermic reduction combined self-activation strategy towards highly-curved carbon nanosheets for advanced zinc-ion hybrid supercapacitors applications[J]. Nanotechnology, 2021, 32(18): 185403.
[69]WANG D, PAN Z, CHEN G, et al. Glycerol derived mesopore-enriched hierarchically carbon nanosheets as the cathode for ultrafast zinc ion hybrid supercapacitor applications[J]. Electrochimica Acta, 2021, 379: 138170.
[70]DONG L, MA X, LI Y, et al. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors[J]. Energy Storage Materials, 2018, 13: 96-102.
[71]CHANG N, LI T, LI R, et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices[J]. Energy & Environmental Science, 2020, 13(10): 3527-3535.
[72]WU S, CHEN Y, JIAO T, et al. An aqueous Zn‐ion hybrid supercapacitor with high energy density and ultrastability up to 80 000 cycles[J]. Advanced Energy Materials, 2019, 9(47): 1902915.
[73]JIANG C, ZOU Z. Waste polyurethane foam filler-derived mesoporous carbons as superior electrode materials for EDLCs and Zn-ion capacitors[J]. Diamond and Related Materials, 2020, 101: 107603.
[74]ZHAO P, YANG B, CHEN J, et al. A safe, high-performance, and long-cycle life zinc-ion hybrid capacitor based on three-dimensional porous activated carbon[J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904050.
[75]RAMAVATH J N, RAJA M, BALAKUMAR K, et al. An energy and power dense aqueous zinc-ion hybrid supercapacitor with low leakage current and long cycle life[J]. Journal of The Electrochemical Society, 2021, 168(1): 010538.
[76]XIONG T, SHEN Y, LEE W S V, et al. Metal Organic framework derived carbon for ultrahigh power and long cyclic life aqueous Zn ion capacitor[J]. Nano Materials Science, 2020, 2(2): 159-163.
[77]CHANG N, LI T, LI R, et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices[J]. Energy & Environmental Science, 2020, 13(10): 3527-3535.
[78]LEE Y-G, AN G-H. Synergistic effects of phosphorus and boron co-incorporated activated carbon for ultrafast zinc-ion hybrid supercapacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41342-41349.
[79]AN G-H. Ultrafast long-life zinc-ion hybrid supercapacitors constructed from mesoporous structured activated carbon[J]. Applied Surface Science, 2020, 530: 147220.
[80]XIN T, WANG Y, WANG N, et al. A high-capacity aqueous Zn-ion hybrid energy storage device using poly (4,4′-thiodiphenol)-modified activated carbon as a cathode material[J]. Journal of Materials Chemistry A, 2019, 7(40): 23076-23083.
[81]NI T, WANG S, SHI J, et al. Highly flexible and self‐healable zinc‐ion hybrid supercapacitors based on MWCNTs‐RGO fibers[J]. Advanced Materials Technologies, 2020, 5(9): 2000268.
[82]D/DM A. Standard test method for flexural properties of polymer matrix composite materials[J]. 2015
[83]D/DM A. Standard test method for tensile properties of polymer matrix composite materials[J]. 2000
[84]SLISERIS J, YAN L, KASAL B. Numerical modelling of flax short fibre reinforced and flax fibre fabric reinforced polymer composites[J]. Composites Part B: Engineering, 2016, 89: 143-154.
[85]RAO G V G, MAHAJAN P, BHATNAGAR N. Three-dimensional macro-mechanical finite element model for machining of unidirectional-fiber reinforced polymer composites[J]. Materials Science and Engineering: A, 2008, 498(1-2): 142-149.
[86]OLHAN S, BEHERA S K, KHATKAR V, et al. Investigating the impact of different machinability processes and fibre architecture on the bearing performance of pin-loaded textile structural composites for automotive applications: Experimental and finite element analysis[J]. Journal of Manufacturing Processes, 2023, 86: 30-55.
[87]BRANDAL A V. Development of a Modular Polyethylene Pipe Hull and GFRP Rudder System for an Autonomus Surface Vessel[D]. Norwegian University of Science and Technology, 2021.
[88]PHADNIS V, PANDYA K, NAIK N, et al. Ballistic impact behaviour of woven fabric composite: Finite element analysis and experiments; proceedings of the Journal of Physics: Conference Series, F, 2013 [C]. IOP Publishing.
[89]JIN T, MA Y, XIONG Z, et al. Bioinspired, tree‐root‐like interfacial designs for structural batteries with enhanced mechanical properties[J]. Advanced Energy Materials, 2021, 11(25): 2100997.
[90]LUO H, ZHU J, SAHRAEI E, et al. Adhesion strength of the cathode in lithium-ion batteries under combined tension/shear loadings[J]. RSC Advances, 2018, 8(8): 3996-4005.
修改评论