中文版 | English
题名

一种适用于智能家居的分布式网络架构设计与实现

其他题名
THE DESIGN AND IMPLEMENTATION OF A DISTRIBUTED NETWORK ARCHITECTURE FOR SMART HOME
姓名
姓名拼音
ZHOU Chaoqi
学号
12133095
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
汪漪
导师单位
未来网络研究院
外机构导师
段经璞
外机构导师单位
鹏城实验室
论文答辩日期
2024-05-07
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着智能家居的普及,越来越多的设备需要连接到家庭网络中,传统的家庭 网络以集中式组网为主,集中式的网络拓扑中,设备接入数量过多会增大中心路 由器的压力,进而可能降低通信时延等网络性能指标。 为了解决传统家庭网络接入设备数量受限的问题,本文根据家庭网络特点设 计并实现了DHNet分群组网系统。DHNet组网系统解决了现有家庭网络节点数量 组网延迟高、查表转发开销大、服务访问延迟高的问题:采用分群组网的方式去中 心化,将家庭网络中的节点分成多个群,每个群选举一个网首来管理群,降低了中 心路由器的压力;采用分布式组网的方式将上百个节点30s以上的组网时间降低 到10s内;通过新增一个携带路径矢量的包头的方式,实现无表转发,将转发效率 提升15%左右;通过服务主动推送与服务被动请求相结合,以及在更底层实现服 务发现的方式,将家庭网络中服务访问的平均时延降低50%左右。此外,DHNet 系统能对现有IP网络做到向后兼容。 我们基于Linux容器技术实现了一个通用的网络拓扑模拟工具,并在仿真环 境下测试了DHNet在上百个节点下的网络性能表现。同时,我们将DHNet系统移 植到台式机、手机、路由器等众多不同的设备,使用二十台以上的实物设备搭建 实物环境测试了DHNet的性能。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] 中共中央. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. (2021-03-11)
[2023-12]. https://www.gov.cn/zhuanti/shisiwuguihua/.
[2] FOROUZANBA. TCP/IP protocol suite[M]. McGraw-Hill Higher Education, 2002.
[3] 童晓渝,房秉毅,张云勇. 物联网智能家居发展分析[J]. 移动通信,2010,34(9): 16-20.
[4] 李东. 智能家居一体化的发展及其意义探究[J]. 科技与创新,2015(10): 17-18.
[5] 赵一鸣,朱奕蓉,吴林容. 智能语音助手的知识服务能力评价研究[J]. 图书与情报,2019, 39(04): 132-140.
[6] 徐鸿,石文鹏. 智能家电舒适,健康发展之路[J]. 家电科技,2020(1): 24-27.
[7] 刘松,赵忠,孙学磊. 基于GSM的远程家庭智能监控系统设计[J].电子测量技术,2009(1): 88-91.
[8] 张少华, 魏志远. 基于蓝牙4.0技术智能灯泡的设计与实现[J]. 物联网技术,2015,5(4): 90-93.
[9] 胡越,周腾鹤,梁东升. 基于蓝牙的安卓平台智能灯控制系统设计与实现[J]. 物联网技术, 2016, 6(5): 14-16.
[10] 孙皓楠,梁东云. 智能手环心率监测系统设计[J]. 无线互联科技,2022.
[11] 蒿莹莹,张琳,马晓凯,等. 运动智能手环监测身体活动量的效度研究进展[J]. 上海体育学院学报,2019,43(4): 73-83.
[12] 陈楚婷,黎静雯,梁仲良,等. 基于Arduino的碰撞报警与监测智能头盔[J]. 科技创新与应用,2021.
[13] 宋友林. 基于物联网技术的运动身体指标监测系统设计[J]. 自动化与仪器仪表,2021.
[14] 林建和. 智慧生活,用“芯”“智”造解决方案——浅谈智能家居市场现状和技术方案[J].中国电子商情(基础电子),2020.
[15] 樊静静. 2021 年中国智能家居市场将达4369亿这个标准很关键[J]. 中国建设信息化, 2020.
[16] 李诚. 互联网科技趋势下智能家居设计研究[D]. 广东工业大学,2021.
[17] WINGD. Network address translation: Extending the internet address space[J]. IEEE internet computing, 2010, 14(4): 66-70.
[18] 陈任,蒋昊等. GB/T30246.1-2013. 家庭网络第1部分:系统体系结构及参考模型[S]. 中国国家标准化管理委员会,2013.
[19] DROMSR. RFC1541: Dynamic Host Configuration Protocol[M]. RFC Editor, 1993.
[20] ARENDS R, AUSTEIN R, LARSON M, et al. RFC 4033: DNS security introduction and requirements[M]. RFC Editor, 2005.
[21] RAVI KUMAR M, et al. Network-Attached Storage: Data Storage Applications[J]. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 2021, 12(12): 2385-2396.
[22] XIAOMI. XM:AX3600 Datasheet[EB/OL]. 2020
[2023-12]. https://www.router-switch.com/pdf2html/pdf/xm:ax3600-datasheet.pdf.
[23] WIKIPEDIA. Wide area network[EB/OL]. 2023
[2024-03]. https://en.wikipedia.org/wiki/Wide_area_network.
[24] WIKIPEDIA. Data center network architectures[EB/OL]. 2023
[2024-03]. https://en.wikipedia.org/wiki/Data_center_network_architectures.
[25] CHESHIRES. RFC5227: IPv4 Address conflict detection[M]. RFC Editor, 2008.
[26] JOHNM. OSPFSpecification[J]. RFC 2178, 1997.
[27] REKHTER Y, LI T, HARES S. RFC 4271: A border gateway protocol 4 (BGP-4)[M]. RFC Editor, 2006.
[28] PLUMMER D. An ethernet address resolution protocol: or converting network protocol addresses to 48. bit ethernet address for transmission on ethernet hardware[R]. 1982.
[29] SUNSHINECA. Sourcerouting in computer networks[J]. ACM SIGCOMM Computer Communication Review, 1977, 7(1): 29-33.
[30] GASPARYANM. Service-Centric Networking[D]. Institut für Informatik, 2020.
[31] GOOGLE. gvisor[EB/OL]. 2024
[2024-03]. https://github.com/google/gvisor.
[32] KERRISKM. PacketSocket[EB/OL]. 2024
[2024-03]. https://man7.org/linux/man-pages/man7/packet.7.html.
[33] WIKIPEDIA. Virtual private network[EB/OL]. 2024
[2024-03]. https://en.wikipedia.org/wiki/Virtual_private_network.
[34] KRASNYANSKY M. Universal TUN/TAP device driver[EB/OL]. 2002
[2024-03]. https://docs.kernel.org/networking/tuntap.html.
[35] MININET. Mininet: Rapid Prototyping for Software Defined Networks[EB/OL]. 2024
[202404]. https://github.com/mininet/mininet.
[36] PAHLC,BROGIA,SOLDANIJ,etal. Cloud container technologies: a state-of-the-art review[J]. IEEE Transactions on Cloud Computing, 2017, 7(3): 677-692.
[37] PRABHU R. Ethernet Bridging[EB/OL]. 2022
[2024-03]. https://docs.kernel.org/networking/bridge.html.
[38] KERRISK M. Virtual Ethernet Device[EB/OL]. 2023
[2024-03]. https://man7.org/linux/man-pages/man4/veth.4.html.
[39] DEERING S, HINDEN R. RFC 8200: Internet protocol, version 6 (IPv6) specification[M]. RFCEditor, 2017.
[40] MADAKAMS,RAMASWAMYR,TRIPATHIS. InternetofThings(IoT):Aliteraturereview[J]. Journal of Computer and Communications, 2015, 3(5): 164-173.
[41] HAWKINSON J, BATES T. Guidelines for creation, selection, and registration of an Autonomous System (AS)[R]. 1996.
[42] RAGHAVENDRA C S, SIVALINGAM K M, ZNATI T. Wireless sensor networks[M]. Springer, 2006.
[43] CHITNIS S, DESHPANDEN,SHALIGRAMA. Aninvestigative study for smart home security: Issues, challenges and countermeasures[J]. Wireless Sensor Network, 2016, 8(4): 61-68.
[44] BEN GOUISSEM B, GANTASSI R, HASNAOUI S. Energy efficient grid based k-means clustering algorithm for large scale wireless sensor networks[J]. International Journal of Communication Systems, 2022, 35(14): e5255.
[45] ABDULZAHRA A MK,AL-QURABAT A KM,ABDULZAHRA SA. Optimizing energy consumption in WSN-based IoT using unequal clustering and sleep scheduling methods[J]. Internet of Things, 2023, 22: 100765.
[46] WGCIS. SourcePacket Routing in Networking[M]. October, 2018.
[47] MANICKAM A M, SIMON J S, CHANDRAN V. TABLE FREE FORWARDING FOR IN TERNET PROTOCOL VERSION 6 SEGMENT ROUTING[Z]. 2018.
[48] JOHNSON D, HU Y C, MALTZ D. RFC 4728: The dynamic source routing protocol (DSR) for mobile ad hoc networks for IPv4[M]. RFC Editor, 2007.
[49] JOHNSONDB,MALTZDA,BROCHJ,etal. DSR:The dynamic source routing protocol for multi-hop wireless ad hoc networks[J]. Ad hoc networking, 2001, 5(1): 139-172.
[50] MIRZA S, BAKSHI S Z. Introduction to MANET[J]. International research journal of engineering and technology, 2018, 5(1): 17-20.
[51] DAY J D, ZIMMERMANN H. The OSI reference model[J]. Proceedings of the IEEE, 1983, 71(12): 1334-1340.
[52] CLARKD,SOLLINSK,WROCLAWSKIJ,etal. Newarch: Future generation internet architecture[J]. Defense Advanced Research Project Agency, Tech. Rep, 2003.
[53] ANDERSEN D G, BALAKRISHNAN H, FEAMSTER N, et al. Accountable internet protocol (AIP)[C]//Proceedings of the ACM SIGCOMM 2008 conference on Data communication. 2008: 339-350.
[54] ZHANG X, HSIAO H C, HASKER G, et al. SCION: Scalability, control, and isolation on next-generation networks[C]//2011 IEEE Symposium on Security and Privacy. IEEE, 2011:212-227.
[55] SESKARI,NAGARAJAK,NELSONS,etal. Mobility first future internet architecture project[C]//Proceedings of the 7th Asian Internet Engineering Conference. 2011: 1-3.
[56] NORDSTRÖME,SHUED,GOPALANP,etal.Serval: An End-Host Stack for Service-Centric Networking.[C]//NSDI: April. 2012.
[57] GODFREY P B, GANICHEV I, SHENKER S, et al. Pathlet routing[J]. ACM SIGCOMM Computer Communication Review, 2009, 39(4): 111-122.
[58] YANG X, CLARK D, BERGER A W. NIRA: a new inter-domain routing architecture[J]. IEEE/ACM transactions on networking, 2007, 15(4): 775-788.
[59] JACOBSON V, SMETTERS D K, THORNTON J D, et al. Networking named content[C]//Proceedings of the 5th international conference on Emerging networking experiments and technologies. 2009: 1-12.
[60] KOPONENT,CHAWLAM,CHUNBG,etal.A data-oriented (and beyond) network architecture[C]//Proceedings of the 2007 conference on Applications, technologies, architectures, and protocols for computer communications. 2007: 181-192.
[61] CROWCROFTJ, HANDS,MORTIERR,et al. Plutarch: an argument for network pluralism[J]. ACM SIGCOMM Computer Communication Review, 2003, 33(4): 258-266.
[62] ANDERSONT,BIRMANK,BROBERGR,etal. The nebula future internet architecture[M]. Springer, 2013.
[63] HAND,ANANDA,DOGARF,etal. {XIA}: Efficient support for evolvable internetworking[C]//9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12). 2012: 309-322.
[64] NAYLOR D, MUKERJEE M K, AGYAPONG P, et al. XIA: architecting a more trustworthy and evolvable internet[J]. ACM SIGCOMM Computer Communication Review, 2014, 44(3): 50-57.
[65] ROUSKAS G N, BALDINE I, CALVERT K, et al. Choicenet: Network innovation through choice[C]//2013 17th International Conference on Optical Networking Design and Modeling (ONDM). IEEE, 2013: 1-6.
[66] WOLFT,GRIFFIOEN J, CALVERT K L, et al. ChoiceNet: toward an economy plane for the Internet[J]. ACM SIGCOMM Computer Communication Review, 2014, 44(3): 58-65.
[67] MCCAULEY J, HARCHOL Y, PANDA A, et al. Enabling a permanent revolution in internet architecture[M]//Proceedings of the ACM Special Interest Group on Data Communication. 2019: 1-14.
[68] BALAKRISHNANH,BANERJEES,CIDONI,etal. Revitalizing the public internet by making it extensible[J]. ACM SIGCOMM Computer Communication Review, 2021, 51(2): 18-24.
[69] LI X, XIE R, YU F R, et al. Advancing software-defined service-centric networking towardin-network intelligence[J]. IEEE Network, 2021, 35(5): 210-218.
[70] ALLMANM,PAXSONV,BLANTONE.RFC5681: TCP congestion control[M]. RFCEditor, 2009.
[71] AVALLONE S, AKYILDIZ I F, VENTRE G. A channel and rate assignment algorithm and a layer-2.5 forwarding paradigm for multi-radio wireless mesh networks[J]. IEEE/ACM Transactions on Networking, 2008, 17(1): 267-280.
[72] WUH,LIUY,ZHANGQ,etal.SoftMAC:layer2.5 collaborative MAC for multimedia support in multihop wireless networks[J]. IEEE Transactions on Mobile Computing, 2006, 6(1): 12-25.
[73] WUH,WANGX,LIUY,etal. SoftMAC:Layer2.5 MAC for VoIP support in multi-hop wireless networks[C]//2005 Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2005. IEEE SECON 2005. Citeseer, 2005: 441 451.
[74] SETHOMK,AFIFIH,PUJOLLEG. Wireless MPLS: a new layer 2.5 micro-mobility scheme[C]//Proceedings of the second international workshop on Mobility management & wireless access protocols. 2004: 64-71.
[75] AVALLONE S, D’ELIA F P, VENTRE G. Layer-2.5 routing in multi-radio wireless mesh networks[C]//2009 6th IEEE Annual Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks Workshops. IEEE, 2009: 1-6.
[76] SONGA. Piconetii-a wireless ad hoc network for mobile handheld devices[J]. Undergraduate Thesis, October, 2001.
[77] ZEC M, et al. Implementing a Clonable Network Stack in the FreeBSD Kernel.[C]//USENIX Annual Technical Conference, FREENIX Track. 2003: 137-150.
[78] CARDWELLN,CHENGY,BRAKMOL,etal. packetdrill: Scriptable network stack testing, from sockets to packets[C]//2013 USENIX Annual Technical Conference (USENIX ATC 13). 2013: 213-218.
[79] MARINOS I, WATSON R N, HANDLEY M. Network stack specialization for performance[J]. ACM SIGCOMMComputer Communication Review, 2014, 44(4): 175-186.
[80] CAI Q, CHAUDHARY S, VUPPALAPATI M, et al. Understanding host network stack over heads[C]//Proceedings of the 2021 ACM SIGCOMM 2021 Conference. 2021: 65-77.
[81] LUO X, REN F, ZHANG T. High performance userspace networking for containerized microservices[C]//International Conference on Service-Oriented Computing. Springer, 2018: 5772.
[82] ABRANCHESM,KELLERE. Auserspace transport stack doesn’t have to mean losing linux processing[C]//2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). IEEE, 2020: 84-90.
[83] MARIANT, LEEKS,WEATHERSPOONH. Netslices: Scalable multi-core packet processing in user-space[C]//Proceedings of the eighth ACM/IEEE symposium on Architectures for networking and communications systems. 2012: 27-38.
[84] LIB,CUIT,WANGZ,etal. SocksDirect: Datacenter sockets can be fast and compatible[M]//Proceedings of the ACM Special Interest Group on Data Communication. 2019: 90-103.
[85] LUOX,LIUD,WUX,etal. Making Userspace TCP Stacks Transparent to Applications[C]//2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). IEEE, 2018: 651-658.
[86] LOGAN L, GARCIA J C, LOFSTEAD J, et al. LabStor: A modular and extensible platform for developing high-performance, customized I/O stacks in userspace[C]//SC22: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2022: 1-15.
[87] RIZZO L. netmap: a novel framework for fast packet I/O[C]//21st USENIX Security Symposium (USENIX Security 12). 2012: 101-112.
[88] LI J, LI D, JIANG H, et al. Light: A Compatible, high-performance and scalable user-level network stack[J]. Computer Networks, 2023, 229: 109756.
[89] DERIL,etal. PFRING:High-speed packetcapture, filtering and analysis[J]. Pisa: ntop, 2016.
[90] INTEL D. Intel DPDK: Data Plane Development Kit[M]. Intel, 2016.
[91] GILLIGANR. Basic transition mechanisms for IPv6 hosts and routers[J]. RFC 4213, 2005.
[92] PESTEREVA,STRAUSSJ,ZELDOVICHN,etal. Improving network connection locality on multicore systems[C]//Proceedings of the 7th ACM european conference on Computer Systems. 2012: 337-350.
[93] LIN X, CHEN Y, LI X, et al. Scalable kernel tcp design and implementation for short-lived connections[J]. ACM SIGARCH Computer Architecture News, 2016, 44(2): 339-352.
[94] GUOC,WUH,DENGZ,etal. RDMA over commodity ethernet at scale[C]//Proceedings of the 2016 ACM SIGCOMM Conference. 2016: 202-215.
[95] LU Y, CHEN G, LI B, et al. {Multi-Path} transport for {RDMA} in datacenters[C]//15th USENIX symposium on networked systems design and implementation (NSDI18). 2018: 357 371.
[96] JEONG E, WOOD S, JAMSHED M, et al. {mTCP}: a Highly Scalable User-level {TCP} Stack for Multicore Systems[C]//11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14). 2014: 489-502.
[97] NETGEAR. NETGEAR SUPPORT[EB/OL]. 2024
[2024-04]. http://support.netgear.cn/.
[98] TP-LINK. TP-LINK 资料中心[EB/OL]. 2024
[2024-04]. https://resource.tp-link.com.cn/.
[99] HUAWEI. HUAWEI技术文档[EB/OL]. 2024
[2024-04]. https://support.huawei.com/enterprise/zh/category/routers-pid-1482607112869?submodel=.
[100] WIKIPEDIA. Wireless ad hoc network[EB/OL]. 2024
[2024-04]. https://en.wikipedia.org/wiki/Wirelessadhocnetwork.

所在学位评定分委会
电子科学与技术
国内图书分类号
TP393.0
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765989
专题南方科技大学
未来网络研究院
推荐引用方式
GB/T 7714
周超奇. 一种适用于智能家居的分布式网络架构设计与实现[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12133095-周超奇-未来网络研究院(5949KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周超奇]的文章
百度学术
百度学术中相似的文章
[周超奇]的文章
必应学术
必应学术中相似的文章
[周超奇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。