中文版 | English
题名

沸石咪唑酯框架衍生碳基电催化剂的制备及其性能研究

其他题名
SYNTHESIS OF ZEOLITIC IMIDAZOLATE FRAMEWORK-DERIVED CARBON-BASED ELECTROCATALYSTS AND THEIR PERFORMANCE
姓名
姓名拼音
PAN Hao
学号
12132062
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
JOKYO(徐强)
导师单位
化学系
论文答辩日期
2024-04-24
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

发展新型能源技术如可逆金属-空气电池,为能源危机提供了可行的解决方案。氧还原反应(Oxygen reduction reaction, ORR)和析氧反应(Oxygen evolution reaction, OER)是这类体系的核心,决定能量转换效率。有着多级孔结构和丰富活性位点的金属有机框架(Metal-organic framework,MOF)衍生碳材料是理想的ORR/OER电催化剂,但热处理过程中的烧结现象不利于活性位点暴露,此外电子结构优化是提高催化剂性能的重要途径。本文利用金属-有机酸自组装技术实现MOF衍生碳材料的几何、电子结构双重调控,制备高效双功能氧电极反应催化剂。研究内容包括:

在二维叶状沸石咪唑酯框架(Leaf-like zeolitic imidazolate framework,ZIF-L)表面构建金属-植酸(Phytic acid cross-linked metal ion, M-PA)涂层,制备ZIF-L@M-PA复合结构,提升材料在热处理时的结构稳定性,并通过原位磷化策略调控衍生碳材料电子结构。所获得的Co2P@NPC呈现优异ORR/OER活性(E1/2 = 0.852 V vs. RHE,η10 = 336 mV),在锌-空气电池应用中表现出色。Co2P@NPC形貌特征与前驱体保持一致,良好的多级孔结构保障反应过程中的物质传输,原位磷化策略优化了材料的电子结构,从而实现Co2P@NPC高效双功能活性。

将甲硫氨酸(Methionine,Me)螯合在ZIF-L表面,构建ZIF-L-Me复合结构以制备硫掺杂碳基底(S-C),借助金属-载体相互作用锚定Co纳米颗粒。所获得的Co@NSC具有出色ORR/OER活性(E1/2 = 0.866 V vs. RHE,η10 = 340 mV),实现锌-空气电池250 h超长循环。S-C对Co的锚定作用有效抑制金属烧结倾向,改善活性位点暴露情况,并借助杂原子掺杂策略调控催化剂的电子结构,赋予Co@NSC高效双功能活性。

其他摘要

Developing renewable energy technologies, such as metal-air battery, offers a viable solution for energy crisis. As the core of these systems, oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) determine energy conversion efficiency. Metal-organic framework (MOF)-derived materials with multilevel pore structure and plenty of active sites are ideal electrocatalysts for ORR and OER. However, the obtained electrocatalysts normally suffer from noncontrollable sintering during the pyrolysis process, which is unfavorable for the exposure of active sites. In addition, the optimization of electronic structures is also a pivotal approach to improving the performance of catalysts. In this paper, we achieved dual-regulation on geometric and electronic structures of MOF-derived materials by using metal-organic acid self-assembly method, to prepare highly efficiency bifunctional electrocatalysts for oxygen electrode reaction.

Herein, the phytic acid cross-linked metal ion (M-PA) film was constructed on the surface of leaf-like zeolitic imidazolate framework (ZIF-L), to improve the structural stability of the material with in-situ phosphating during the pyrolysis process. The obtained Co2P@NPC showed excellent activity both in the ORR/OER test (E1/2 = 0.852 V vs. RHE, η10 = 336 mV), showing great performance in zinc-air battery. Co2P@NPC completely maintained the morphological characteristics of the precursor with optimized multilevel pore structure, guaranteeing the mass transfer during reaction. The in-situ phosphating strategy optimized the electronic structure of the material, thus realizing the efficient bifunctional activity of Co2P@NPC

In addition,ZIF-L-Me composite structure was designed by chelating methionine (Me) on the surface of ZIF-L, to construct sulfur-doped carbon (S-C), and Co nanoparticles were anchored on S-C due to metal-support interaction. The obtained Co@NSC exhibits high bifunctional activity towards ORR (E1/2 = 0.866 V vs. RHE) and OER (η10 = 340 mV), realizing the ultra-long cycle of zinc-air battery for 250 h. Interaction between Co and the S-C matrix largely suppressed NPs sintering, improving active site exposure. Meanwhile, the optimization of electronic structures was achieved by using heteroatom doping strategy, thus enabling efficient bifunctional activity of Co@NSC.

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] DE LUNA P, HAHN C, HIGGINS D, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364(6438): eaav3506.
[2] BARRIO J, PEDERSEN A, FAVERO S, et al. Bioinspired and bioderived aqueous electrocatalysis[J]. Chemical Reviews, 2022, 123(5): 2311-2348.
[3] WORDSWORTH J, BENEDETTI T M, SOMERVILLE S V, et al. The influence of nanoconfinement on electrocatalysis[J]. Angewandte Chemie International Edition, 2022, 61(28): 202200755.
[4] TIAN X, ZHAO X, SU Y Q, et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells[J]. Science, 2019, 366(6467): 850-856.
[5] YUAN Y, WANG J, ADIMI S, et al. Zirconium nitride catalysts surpass platinum for oxygen reduction[J]. Nature Materials, 2019, 19(3): 282-286.
[6] CHOI Y, CHA S K, HA H, et al. Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes[J]. Nature Nanotechnology, 2019, 14(3): 245-251.
[7] JIAO Y, ZHENG Y, JARONIEC M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44(8): 2060-2086.
[8] STAMENKOVIC V R, STRMCNIK D, LOPES P P, et al. Energy and fuels from electrochemical interfaces[J]. Nature Materials, 2016, 16(1): 57-69.
[9] WANG H, CHEN B H, LIU D J. Metal-organic frameworks and metal-organic gels for oxygen electrocatalysis: structural and compositional considerations[J]. Advanced Materials, 2021, 33(25): 2008023.
[10] ZHOU G, LIU G, LIU X, et al. 1D/3D heterogeneous assembling body as trifunctional electrocatalysts enabling zinc-air battery and self-powered overall water splitting[J]. Advanced Functional Materials, 2021, 32(4): 2107608.
[11] YIN Q, TAN J M, BESSON C, et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals[J]. Science, 2010, 328(5976): 342-345.
[12] LI H, LI G. Novel palladium-based nanomaterials for multifunctional ORR/OER/HER electrocatalysis[J]. Journal of Materials Chemistry A, 2023, 11(17): 9383-9400.
[13] QU H-Y, HE X, WANG Y, et al. Electrocatalysis for the oxygen evolution reaction in acidic media: progress and challenges[J]. Applied Sciences, 2021, 11(10): 4320.
[14] CHONG L, WEN J, KUBAL J, et al. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks[J]. Science, 2018, 362(6420): 1276-1281.
[15] ZENG K, ZHENG X, LI C, et al. Recent advances in non-noble bifunctional oxygen electrocatalysts toward large-scale production[J]. Advanced Functional Materials, 2020, 30(27): 2000503.
[16] WANG J, ZHAO C-X, LIU J-N, et al. Dual-atom catalysts for oxygen electrocatalysis[J]. Nano Energy, 2022, 104: 107927.
[17] KULKARNI A, SIAHROSTAMI S, PATEL A, et al. Understanding catalytic activity trends in the oxygen reduction reaction[J]. Chemical Reviews, 2018, 118(5): 2302-2312.
[18] XIA W, MAHMOOD A, LIANG Z, et al. Earth-abundant nanomaterials for oxygen reduction[J]. Angewandte Chemie International Edition, 2016, 55(8): 2650-2676.
[19] LU X F, XIA B Y, ZANG S Q, et al. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2020, 59(12): 4634-4650.
[20] 全力. 金属有机框架衍生钴基电催化材料的设计及性能研究[D]. 北京: 中国地质大学(北京)材料工程学科硕士学位论文, 2022.
[21] YU L, PAN X, CAO X, et al. Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study[J]. Journal of Catalysis, 2011, 282(1): 183-190.
[22] SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365.
[23] GU P, ZHENG M, ZHAO Q, et al. Rechargeable zinc-air batteries: a promising way to green energy[J]. Journal of Materials Chemistry A, 2017, 5(17): 7651-7666.
[24] LI Z, GAO R, FENG M, et al. Modulating metal-organic frameworks as advanced oxygen electrocatalysts[J]. Advanced Energy Materials, 2021, 11(16): 2003291.
[25] YAGHI O M, LI H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 2002, 117(41): 10401-10402.
[26] YAGHI O M, LI G, LI H. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706.
[27] LI C, DONG S, WANG P, et al. Metal-organic frameworks‐derived tunnel structured Co3(PO4)2@C as cathode for new generation high-performance Al-ion batteries[J]. Advanced Energy Materials, 2019, 9(41): 1902352.
[28] WU H, ALMALKI M, XU X, et al. MXene derived metal-organic frameworks[J]. Journal of the American Chemical Society, 2019, 141(51): 20037-20042.
[29] FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444.
[30] LI W-H, DENG W-H, WANG G-E, et al. Conductive MOFs[J]. EnergyChem, 2020, 2(2): 100029.
[31] LI G, ZHAO S, ZHANG Y, et al. Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: recent progress and perspectives[J]. Advanced Materials, 2018, 30(51): 1800702.
[32] LI Z, ZHANG L, GE X, et al. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries[J]. Nano Energy, 2017, 32: 494-502.
[33] MAO J, YANG L, YU P, et al. Electrocatalytic four-electron reduction of oxygen with copper (II)-based metal-organic frameworks[J]. Electrochemistry Communications, 2012, 19: 29-31.
[34] IWASE K, YOSHIOKA T, NAKANISHI S, et al. Copper-modified covalent triazine frameworks as non-noble-metal electrocatalysts for oxygen reduction[J]. Angewandte Chemie International Edition, 2015, 54(38): 11068-11072.
[35] ZHAO S, TAN C, HE C-T, et al. Structural transformation of highly active meta-organic framework electrocatalysts during the oxygen evolution reaction[J]. Nature Energy, 2020, 5(11): 881-890.
[36] WANG T, KOU Z, MU S, et al. 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries[J]. Advanced Functional Materials, 2018, 28(5): 1705048.
[37] SARKAR S, BISWAS A, SIDDHARTHAN E E, et al. Strategic modulation of target-specific isolated Fe,Co single-atom active sites for oxygen electrocatalysis impacting high power zn-air battery[J]. ACS Nano, 2022, 16(5): 7890-7903.
[38] TU T-X, ZHOU X, ZHANG P-F, et al. Co7Fe3 nanoparticles confined in N-doped carbon nanocubes for highly efficient, rechargeable zinc-air batteries[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(27): 8694-8703.
[39] YANG L, ZENG X, WANG W, et al. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells[J]. Advanced Functional Materials, 2018, 28(7): 1704537.
[40] LIU B, SHIOYAMA H, AKITA T, et al. Metal-organic framework as a template for porous carbon synthesis[J]. Journal of the American Chemical Society, 2008, 130(16): 5390-5391.
[41] MA S, GOENAGA G A, CALL A V, et al. Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts[J]. Chemistry-A European Journal, 2011, 17(7): 2063-2067.
[42] PROIETTI E, JAOUEN F, LEFEVRE M, et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells[J]. Nature Communications, 2011, 2: 416.
[43] JAHAN M, LIU Z, LOH K P. A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR[J]. Advanced Functional Materials, 2013, 23(43): 5363-5372.
[44] ZHANG P, SUN F, XIANG Z, et al. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction[J]. Energy & Environmental Science, 2014, 7(1): 442-450.
[45] LI J, CHEN Y, TANG Y, et al. Metal-organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Journal of Materials Chemistry A, 2014, 2(18): 6316-6319.
[46] LIU J, ZHANG H, QIU M, et al. A review of non-precious metal single atom confined nanomaterials in different structural dimensions (1D-3D) as highly active oxygen redox reaction electrocatalysts[J]. Journal of Materials Chemistry A, 2020, 8(5): 2222-2245.
[47] LIANG Z, QIU T, GAO S, et al. Multi-scale design of metal-organic framework-derived materials for energy electrocatalysis[J]. Advanced Energy Materials, 2021, 12(4): 2003410.
[48] WANG P, HAYASHI T, MENG Q A, et al. Highly boosted oxygen reduction reaction activity by tuning the underwater wetting state of the superhydrophobic electrode[J]. Small, 2016, 13(4): 1601250.
[49] ZHANG H, HWANG S, WANG M, et al. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation[J]. Journal of the American Chemical Society, 2017, 139(40): 14143-14149.
[50] YU C, WANG Y, CUI J, et al. MOF-74 derived porous hybrid metal oxide hollow nanowires for high-performance electrochemical energy storage[J]. Journal of Materials Chemistry A, 2018, 6(18): 8396-8404.
[51] CAO F, ZHAO M, YU Y, et al. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application[J]. Journal of the American Chemical Society, 2016, 138(22): 6924-6927.
[52] HOU C C, ZOU L, XU Q. A hydrangea-like superstructure of open carbon cages with hierarchical porosity and highly active metal sites[J]. Advanced Materials, 2019, 31(46): 1904689.
[53] HONG H, LIU J, HUANG H, et al. Ordered macro-microporous metal-organic framework single crystals and their derivatives for rechargeable aluminum-ion batteries[J]. Journal of the American Chemical Society, 2019, 141(37): 14764-14771.
[54] ZHAO R, LIANG Z, GAO S, et al. Puffing up energetic metal-organic frameworks to large carbon networks with hierarchical porosity and atomically dispersed metal sites[J]. Angewandte Chemie International Edition, 2019, 58(7): 1975-1979.
[55] WU M, WANG K, YI M, et al. A facile activation strategy for an MOF-derived metal-free oxygen reduction reaction catalyst: direct access to optimized pore structure and nitrogen species[J]. ACS Catalysis, 2017, 7(9): 6082-6088.
[56] XIA B Y, YAN Y, LI N, et al. A metal-organic framework-derived bifunctional oxygen electrocatalyst[J]. Nature Energy, 2016, 1(1): 15006.
[57] DONG Y, ZHOU M, TU W, et al. Hollow loofah-like N, O-co-doped carbon tube for electrocatalysis of oxygen reduction[J]. Advanced Functional Materials, 2019, 29(18): 1900015.
[58] WEI Y S, ZHANG M, KITTA M, et al. A single-crystal open-capsule metal-organic framework[J]. Journal of the American Chemical Society, 2019, 141(19): 7906-7916.
[59] WANG X, YU L, GUAN B Y, et al. Metal-organic framework hybrid-assisted formation of Co3O4/Co-Fe oxide double-shelled nanoboxes for enhanced oxygen evolution[J]. Advanced Materials, 2018: 1801211.
[60] ZHANG Y, WU J, ZHANG S, et al. MOF-on-MOF nanoarchitectures for selectively functionalized nitrogen-doped carbon-graphitic carbon/carbon nanotubes heterostructure with high capacitive deionization performance[J]. Nano Energy, 2022, 97: 107146.
[61] HU M, JU Y, LIANG K, et al. Void engineering in metal-organic frameworks via synergistic etching and surface functionalization[J]. Advanced Functional Materials, 2016, 26(32): 5827-5834.
[62] JASINSKI R. A new fuel cell cathode catalyst[J]. Nature, 1964, 201(4925): 1212-1213.
[63] WU B, MENG H, MORALES D M, et al. Nitrogen-rich carbonaceous materials for advanced oxygen electrocatalysis: synthesis, characterization, and activity of nitrogen sites[J]. Advanced Functional Materials, 2022, 32(31): 2204137.
[64] LI J, XIA W, TANG J, et al. MOF nanoleaves as new sacrificial templates for the fabrication of nanoporous Co-Nx/C electrocatalysts for oxygen reduction[J]. Nanoscale Horizons, 2019, 4(4): 1006-1013.
[65] CHEN X, WANG N, SHEN K, et al. MOF-derived isolated Fe atoms implanted in N-doped 3D hierarchical carbon as an efficient ORR electrocatalyst in both alkaline and acidic media[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 25976-25985.
[66] FENG X, BAI Y, LIU M, et al. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials[J]. Energy & Environmental Science, 2021, 14(4): 2036-2089.
[67] JIN S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts?[J]. ACS Energy Letters, 2017, 2(8): 1937-1938.
[68] LIU H, GUAN J, YANG S, et al. Metal-organic-framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst[J]. Advanced Materials, 2020, 32(36): 2003649.
[69] WANG X, NA Z, YIN D, et al. Phytic acid-assisted formation of hierarchical porous CoP/C nanoboxes for enhanced lithium storage and hydrogen generation[J]. ACS Nano, 2018, 12(12): 12238-12246.
[70] JEON I Y, ZHANG S, ZHANG L, et al. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect[J]. Advanced Materials, 2013, 25(42): 6138-6145.
[71] WU R, WANG D P, RUI X, et al. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries[J]. Advanced Materials, 2015, 27(19): 3038-3044.
[72] ZHU Q L, XIA W, AKITA T, et al. Metal-organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction[J]. Advanced Materials, 2016, 28(30): 6391-6398.
[73] EJIMA H, RICHARDSON J J, LIANG K, et al. One-step assembly of coordination complexes for versatile film and particle engineering[J]. Science, 2013, 341(6142): 154-157.
[74] SUN S, TANG Y, WU C, et al. Phytic acid functionalized ZIF-67 decorated graphene nanosheets with remarkably boosted electrochemical sensing performance[J]. Analytica Chimica Acta, 2020, 1107: 55-62.
[75] GAO J, HU Y, WANG Y, et al. MOF structure engineering to synthesize CoNC catalyst with richer accessible active sites for enhanced oxygen reduction[J]. Small, 2021, 17(49): 2104684.
[76] CHEN Y Z, WANG C, WU Z Y, et al. From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis[J]. Advanced Materials, 2015, 27(34): 5010-5016.
[77] WANG Y, KANG W, PU X, et al. Template-directed synthesis of Co2/MoSe2 in a N-doped carbon hollow structure for efficient and stable sodium/potassium ion storage[J]. Nano Energy, 2022, 93: 106897.
[78] YIN P, YAN Q Q, LIANG H W. Strong metal-support interactions through sulfur-anchoring of metal catalysts on carbon supports[J]. Angewandte Chemie, 2023, 135(24): 202302819.
[79] YIN P, LUO X, MA Y, et al. Sulfur stabilizing metal nanoclusters on carbon at high temperatures[J]. Nature Communications, 2021, 12(1): 3135.
[80] YANG C-L, WANG L-N, YIN P, et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells[J]. Science, 2021, 374(6566): 459-464.
[81] SU K, YANG S, YANG A, et al. Customizing the anisotropic electronic states of janus-distributive FeN4 and NiN4 dual-atom sites for reversible oxygen electrocatalysis[J]. Applied Catalysis B: Environmental, 2023, 331: 122694.
[82] ZHANG W, LI M, LUO J, et al. Modulating the coordination environment of Co single-atom catalysts through sulphur doping to efficiently enhance peroxymonosulfate activation for degradation of carbamazepine[J]. Chemical Engineering Journal, 2023, 474: 145377.
[83] CHEN Z, NIU H, DING J, et al. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: effect of iron spin-state tuning[J]. Angewandte Chemie International Edition, 2021, 60(48): 25404-25410.
[84] TONG X, ZHAN X, GAO Z, et al. Effect of the metal-support interaction in platinum anchoring on heteroatom-doped graphene for enhanced oxygen reduction reaction[J]. Chemical Communications, 2022, 58(82): 11519-11522.
[85] YAN Q-Q, WU D-X, CHU S-Q, et al. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution[J]. Nature Communications, 2019, 10(1): 4977.

所在学位评定分委会
化学
国内图书分类号
TM911.41
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765999
专题南方科技大学
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
潘皓. 沸石咪唑酯框架衍生碳基电催化剂的制备及其性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132062-潘皓-材料科学与工程系(10038KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[潘皓]的文章
百度学术
百度学术中相似的文章
[潘皓]的文章
必应学术
必应学术中相似的文章
[潘皓]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。