[1] DE LUNA P, HAHN C, HIGGINS D, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364(6438): eaav3506.
[2] BARRIO J, PEDERSEN A, FAVERO S, et al. Bioinspired and bioderived aqueous electrocatalysis[J]. Chemical Reviews, 2022, 123(5): 2311-2348.
[3] WORDSWORTH J, BENEDETTI T M, SOMERVILLE S V, et al. The influence of nanoconfinement on electrocatalysis[J]. Angewandte Chemie International Edition, 2022, 61(28): 202200755.
[4] TIAN X, ZHAO X, SU Y Q, et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells[J]. Science, 2019, 366(6467): 850-856.
[5] YUAN Y, WANG J, ADIMI S, et al. Zirconium nitride catalysts surpass platinum for oxygen reduction[J]. Nature Materials, 2019, 19(3): 282-286.
[6] CHOI Y, CHA S K, HA H, et al. Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes[J]. Nature Nanotechnology, 2019, 14(3): 245-251.
[7] JIAO Y, ZHENG Y, JARONIEC M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44(8): 2060-2086.
[8] STAMENKOVIC V R, STRMCNIK D, LOPES P P, et al. Energy and fuels from electrochemical interfaces[J]. Nature Materials, 2016, 16(1): 57-69.
[9] WANG H, CHEN B H, LIU D J. Metal-organic frameworks and metal-organic gels for oxygen electrocatalysis: structural and compositional considerations[J]. Advanced Materials, 2021, 33(25): 2008023.
[10] ZHOU G, LIU G, LIU X, et al. 1D/3D heterogeneous assembling body as trifunctional electrocatalysts enabling zinc-air battery and self-powered overall water splitting[J]. Advanced Functional Materials, 2021, 32(4): 2107608.
[11] YIN Q, TAN J M, BESSON C, et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals[J]. Science, 2010, 328(5976): 342-345.
[12] LI H, LI G. Novel palladium-based nanomaterials for multifunctional ORR/OER/HER electrocatalysis[J]. Journal of Materials Chemistry A, 2023, 11(17): 9383-9400.
[13] QU H-Y, HE X, WANG Y, et al. Electrocatalysis for the oxygen evolution reaction in acidic media: progress and challenges[J]. Applied Sciences, 2021, 11(10): 4320.
[14] CHONG L, WEN J, KUBAL J, et al. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks[J]. Science, 2018, 362(6420): 1276-1281.
[15] ZENG K, ZHENG X, LI C, et al. Recent advances in non-noble bifunctional oxygen electrocatalysts toward large-scale production[J]. Advanced Functional Materials, 2020, 30(27): 2000503.
[16] WANG J, ZHAO C-X, LIU J-N, et al. Dual-atom catalysts for oxygen electrocatalysis[J]. Nano Energy, 2022, 104: 107927.
[17] KULKARNI A, SIAHROSTAMI S, PATEL A, et al. Understanding catalytic activity trends in the oxygen reduction reaction[J]. Chemical Reviews, 2018, 118(5): 2302-2312.
[18] XIA W, MAHMOOD A, LIANG Z, et al. Earth-abundant nanomaterials for oxygen reduction[J]. Angewandte Chemie International Edition, 2016, 55(8): 2650-2676.
[19] LU X F, XIA B Y, ZANG S Q, et al. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2020, 59(12): 4634-4650.
[20] 全力. 金属有机框架衍生钴基电催化材料的设计及性能研究[D]. 北京: 中国地质大学(北京)材料工程学科硕士学位论文, 2022.
[21] YU L, PAN X, CAO X, et al. Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study[J]. Journal of Catalysis, 2011, 282(1): 183-190.
[22] SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365.
[23] GU P, ZHENG M, ZHAO Q, et al. Rechargeable zinc-air batteries: a promising way to green energy[J]. Journal of Materials Chemistry A, 2017, 5(17): 7651-7666.
[24] LI Z, GAO R, FENG M, et al. Modulating metal-organic frameworks as advanced oxygen electrocatalysts[J]. Advanced Energy Materials, 2021, 11(16): 2003291.
[25] YAGHI O M, LI H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 2002, 117(41): 10401-10402.
[26] YAGHI O M, LI G, LI H. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706.
[27] LI C, DONG S, WANG P, et al. Metal-organic frameworks‐derived tunnel structured Co3(PO4)2@C as cathode for new generation high-performance Al-ion batteries[J]. Advanced Energy Materials, 2019, 9(41): 1902352.
[28] WU H, ALMALKI M, XU X, et al. MXene derived metal-organic frameworks[J]. Journal of the American Chemical Society, 2019, 141(51): 20037-20042.
[29] FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444.
[30] LI W-H, DENG W-H, WANG G-E, et al. Conductive MOFs[J]. EnergyChem, 2020, 2(2): 100029.
[31] LI G, ZHAO S, ZHANG Y, et al. Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: recent progress and perspectives[J]. Advanced Materials, 2018, 30(51): 1800702.
[32] LI Z, ZHANG L, GE X, et al. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries[J]. Nano Energy, 2017, 32: 494-502.
[33] MAO J, YANG L, YU P, et al. Electrocatalytic four-electron reduction of oxygen with copper (II)-based metal-organic frameworks[J]. Electrochemistry Communications, 2012, 19: 29-31.
[34] IWASE K, YOSHIOKA T, NAKANISHI S, et al. Copper-modified covalent triazine frameworks as non-noble-metal electrocatalysts for oxygen reduction[J]. Angewandte Chemie International Edition, 2015, 54(38): 11068-11072.
[35] ZHAO S, TAN C, HE C-T, et al. Structural transformation of highly active meta-organic framework electrocatalysts during the oxygen evolution reaction[J]. Nature Energy, 2020, 5(11): 881-890.
[36] WANG T, KOU Z, MU S, et al. 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries[J]. Advanced Functional Materials, 2018, 28(5): 1705048.
[37] SARKAR S, BISWAS A, SIDDHARTHAN E E, et al. Strategic modulation of target-specific isolated Fe,Co single-atom active sites for oxygen electrocatalysis impacting high power zn-air battery[J]. ACS Nano, 2022, 16(5): 7890-7903.
[38] TU T-X, ZHOU X, ZHANG P-F, et al. Co7Fe3 nanoparticles confined in N-doped carbon nanocubes for highly efficient, rechargeable zinc-air batteries[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(27): 8694-8703.
[39] YANG L, ZENG X, WANG W, et al. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells[J]. Advanced Functional Materials, 2018, 28(7): 1704537.
[40] LIU B, SHIOYAMA H, AKITA T, et al. Metal-organic framework as a template for porous carbon synthesis[J]. Journal of the American Chemical Society, 2008, 130(16): 5390-5391.
[41] MA S, GOENAGA G A, CALL A V, et al. Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts[J]. Chemistry-A European Journal, 2011, 17(7): 2063-2067.
[42] PROIETTI E, JAOUEN F, LEFEVRE M, et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells[J]. Nature Communications, 2011, 2: 416.
[43] JAHAN M, LIU Z, LOH K P. A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR[J]. Advanced Functional Materials, 2013, 23(43): 5363-5372.
[44] ZHANG P, SUN F, XIANG Z, et al. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction[J]. Energy & Environmental Science, 2014, 7(1): 442-450.
[45] LI J, CHEN Y, TANG Y, et al. Metal-organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Journal of Materials Chemistry A, 2014, 2(18): 6316-6319.
[46] LIU J, ZHANG H, QIU M, et al. A review of non-precious metal single atom confined nanomaterials in different structural dimensions (1D-3D) as highly active oxygen redox reaction electrocatalysts[J]. Journal of Materials Chemistry A, 2020, 8(5): 2222-2245.
[47] LIANG Z, QIU T, GAO S, et al. Multi-scale design of metal-organic framework-derived materials for energy electrocatalysis[J]. Advanced Energy Materials, 2021, 12(4): 2003410.
[48] WANG P, HAYASHI T, MENG Q A, et al. Highly boosted oxygen reduction reaction activity by tuning the underwater wetting state of the superhydrophobic electrode[J]. Small, 2016, 13(4): 1601250.
[49] ZHANG H, HWANG S, WANG M, et al. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation[J]. Journal of the American Chemical Society, 2017, 139(40): 14143-14149.
[50] YU C, WANG Y, CUI J, et al. MOF-74 derived porous hybrid metal oxide hollow nanowires for high-performance electrochemical energy storage[J]. Journal of Materials Chemistry A, 2018, 6(18): 8396-8404.
[51] CAO F, ZHAO M, YU Y, et al. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application[J]. Journal of the American Chemical Society, 2016, 138(22): 6924-6927.
[52] HOU C C, ZOU L, XU Q. A hydrangea-like superstructure of open carbon cages with hierarchical porosity and highly active metal sites[J]. Advanced Materials, 2019, 31(46): 1904689.
[53] HONG H, LIU J, HUANG H, et al. Ordered macro-microporous metal-organic framework single crystals and their derivatives for rechargeable aluminum-ion batteries[J]. Journal of the American Chemical Society, 2019, 141(37): 14764-14771.
[54] ZHAO R, LIANG Z, GAO S, et al. Puffing up energetic metal-organic frameworks to large carbon networks with hierarchical porosity and atomically dispersed metal sites[J]. Angewandte Chemie International Edition, 2019, 58(7): 1975-1979.
[55] WU M, WANG K, YI M, et al. A facile activation strategy for an MOF-derived metal-free oxygen reduction reaction catalyst: direct access to optimized pore structure and nitrogen species[J]. ACS Catalysis, 2017, 7(9): 6082-6088.
[56] XIA B Y, YAN Y, LI N, et al. A metal-organic framework-derived bifunctional oxygen electrocatalyst[J]. Nature Energy, 2016, 1(1): 15006.
[57] DONG Y, ZHOU M, TU W, et al. Hollow loofah-like N, O-co-doped carbon tube for electrocatalysis of oxygen reduction[J]. Advanced Functional Materials, 2019, 29(18): 1900015.
[58] WEI Y S, ZHANG M, KITTA M, et al. A single-crystal open-capsule metal-organic framework[J]. Journal of the American Chemical Society, 2019, 141(19): 7906-7916.
[59] WANG X, YU L, GUAN B Y, et al. Metal-organic framework hybrid-assisted formation of Co3O4/Co-Fe oxide double-shelled nanoboxes for enhanced oxygen evolution[J]. Advanced Materials, 2018: 1801211.
[60] ZHANG Y, WU J, ZHANG S, et al. MOF-on-MOF nanoarchitectures for selectively functionalized nitrogen-doped carbon-graphitic carbon/carbon nanotubes heterostructure with high capacitive deionization performance[J]. Nano Energy, 2022, 97: 107146.
[61] HU M, JU Y, LIANG K, et al. Void engineering in metal-organic frameworks via synergistic etching and surface functionalization[J]. Advanced Functional Materials, 2016, 26(32): 5827-5834.
[62] JASINSKI R. A new fuel cell cathode catalyst[J]. Nature, 1964, 201(4925): 1212-1213.
[63] WU B, MENG H, MORALES D M, et al. Nitrogen-rich carbonaceous materials for advanced oxygen electrocatalysis: synthesis, characterization, and activity of nitrogen sites[J]. Advanced Functional Materials, 2022, 32(31): 2204137.
[64] LI J, XIA W, TANG J, et al. MOF nanoleaves as new sacrificial templates for the fabrication of nanoporous Co-Nx/C electrocatalysts for oxygen reduction[J]. Nanoscale Horizons, 2019, 4(4): 1006-1013.
[65] CHEN X, WANG N, SHEN K, et al. MOF-derived isolated Fe atoms implanted in N-doped 3D hierarchical carbon as an efficient ORR electrocatalyst in both alkaline and acidic media[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 25976-25985.
[66] FENG X, BAI Y, LIU M, et al. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials[J]. Energy & Environmental Science, 2021, 14(4): 2036-2089.
[67] JIN S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts?[J]. ACS Energy Letters, 2017, 2(8): 1937-1938.
[68] LIU H, GUAN J, YANG S, et al. Metal-organic-framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst[J]. Advanced Materials, 2020, 32(36): 2003649.
[69] WANG X, NA Z, YIN D, et al. Phytic acid-assisted formation of hierarchical porous CoP/C nanoboxes for enhanced lithium storage and hydrogen generation[J]. ACS Nano, 2018, 12(12): 12238-12246.
[70] JEON I Y, ZHANG S, ZHANG L, et al. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect[J]. Advanced Materials, 2013, 25(42): 6138-6145.
[71] WU R, WANG D P, RUI X, et al. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries[J]. Advanced Materials, 2015, 27(19): 3038-3044.
[72] ZHU Q L, XIA W, AKITA T, et al. Metal-organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction[J]. Advanced Materials, 2016, 28(30): 6391-6398.
[73] EJIMA H, RICHARDSON J J, LIANG K, et al. One-step assembly of coordination complexes for versatile film and particle engineering[J]. Science, 2013, 341(6142): 154-157.
[74] SUN S, TANG Y, WU C, et al. Phytic acid functionalized ZIF-67 decorated graphene nanosheets with remarkably boosted electrochemical sensing performance[J]. Analytica Chimica Acta, 2020, 1107: 55-62.
[75] GAO J, HU Y, WANG Y, et al. MOF structure engineering to synthesize CoNC catalyst with richer accessible active sites for enhanced oxygen reduction[J]. Small, 2021, 17(49): 2104684.
[76] CHEN Y Z, WANG C, WU Z Y, et al. From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis[J]. Advanced Materials, 2015, 27(34): 5010-5016.
[77] WANG Y, KANG W, PU X, et al. Template-directed synthesis of Co2/MoSe2 in a N-doped carbon hollow structure for efficient and stable sodium/potassium ion storage[J]. Nano Energy, 2022, 93: 106897.
[78] YIN P, YAN Q Q, LIANG H W. Strong metal-support interactions through sulfur-anchoring of metal catalysts on carbon supports[J]. Angewandte Chemie, 2023, 135(24): 202302819.
[79] YIN P, LUO X, MA Y, et al. Sulfur stabilizing metal nanoclusters on carbon at high temperatures[J]. Nature Communications, 2021, 12(1): 3135.
[80] YANG C-L, WANG L-N, YIN P, et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells[J]. Science, 2021, 374(6566): 459-464.
[81] SU K, YANG S, YANG A, et al. Customizing the anisotropic electronic states of janus-distributive FeN4 and NiN4 dual-atom sites for reversible oxygen electrocatalysis[J]. Applied Catalysis B: Environmental, 2023, 331: 122694.
[82] ZHANG W, LI M, LUO J, et al. Modulating the coordination environment of Co single-atom catalysts through sulphur doping to efficiently enhance peroxymonosulfate activation for degradation of carbamazepine[J]. Chemical Engineering Journal, 2023, 474: 145377.
[83] CHEN Z, NIU H, DING J, et al. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: effect of iron spin-state tuning[J]. Angewandte Chemie International Edition, 2021, 60(48): 25404-25410.
[84] TONG X, ZHAN X, GAO Z, et al. Effect of the metal-support interaction in platinum anchoring on heteroatom-doped graphene for enhanced oxygen reduction reaction[J]. Chemical Communications, 2022, 58(82): 11519-11522.
[85] YAN Q-Q, WU D-X, CHU S-Q, et al. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution[J]. Nature Communications, 2019, 10(1): 4977.
修改评论