中文版 | English
题名

基于流量调节的水下轻巧软体机械臂的液压驱动与控制

其他题名
Hydraulic Actuation and Control of an Underwater Lightweight Soft Robotic Arm Based on Flow Regulation
姓名
姓名拼音
WU Shijian
学号
12132305
学位类型
硕士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
戴建生
导师单位
机械与能源工程系
论文答辩日期
2024-05-10
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

海洋中蕴藏着总量巨大的自然资源,对于人类有着不可替代的经济和科学价值。在海洋的探索和开发中,水下机械臂是理想的工具。新兴的水下软体机械臂凭借自身的高柔顺性和高适应性等特点,尽管能够克服目前主流的水下刚性机械臂存在的质量大、成本高、安全性和自由度有限等局限性,但是固有的极高自由度带来的非期望形变也给建模造成了较大的困难,从而影响了其在实际应用场景的表现。在不同的水下软体机械臂驱动原理中,液压驱动不仅在响应速度、负载能力、控制精度等方面取得了良好的平衡,而且具备对于水下环境的适应性。然而,主流的基于泵-阀系统开关控制的液压驱动方法受限于离散状态切换的不连续特性,难以兼顾软体机器人的精确控制和快速响应。

为提升水下软体机械臂的性能表现,推动其走向实际应用,本研究课题完成了以下三方面的工作:首先,针对主流液压驱动方法的局限性,本研究课题提出了基于流量调节的液压驱动方法,借助蠕动泵实现了相应的液压驱动框架,并且通过实现同时具备精确控制和快速响应特性的软体驱动器位置/输出力控制,验证了方法的有效性。其次,针对水下软体机械臂高自由度导致的建模困难,本研究课题提出了平面绑定过约束设计,提高了软体机械臂的抗屈曲与剪切形变能力,进而提升了建模的精度。最终,本研究课题通过将基于流量调节的液压驱动方法和平面绑定过约束设计结合,实现了软体机械臂关节位置的轨迹跟踪。

其他摘要

The ocean harbors vast resources with irreplaceable economic and scientific value for humanity. In the exploration and exploitation of the ocean, underwater robotic arms serve as ideal tools. Emerging underwater soft robotic arms, with characteristics including high flexibility and adaptability, can overcome the limitations of mainstream rigid underwater robotic arms, such as heavy weight, high cost, limited safety, and degrees of freedom (DoFs). However, the inherent high DoFs also introduce unexpected deformations, posing significant challenges in modeling and affecting their performance in real-world applications. Among various actuation principles for underwater soft robotic arms, hydraulic actuation achieves a good balance in terms of response speed, load capacity, and control precision, while also demonstrating adaptability to the underwater environment. Nevertheless, the prevailing hydraulic actuation methods based on pump-valve systems with switch control are constrained by the discontinuous nature of discrete state transitions, making it difficult to balance precise control and rapid response of soft robots.

To enhance the performance of underwater soft robotic arms and promote their practical application, this research addresses three main issues as follows. Firstly, to overcome the limitations of prevailing hydraulic actuation methods, a flow-regulating hydraulic actuation method was proposed. Utilizing peristaltic pumps, a hydraulic actuation framework is implemented, validating the proposed method by enabling precise control and rapid response in position/force control of soft actuators. Secondly, to overcome the modeling difficulty caused by high DoFs, a planar-bundled and overly-constrained (PBOC) design was proposed, which improves the arm’s resistance to buckling and shearing, thereby enhancing modeling accuracy. Eventually, position trajectory tracking of the soft robotic arm joints was implemented by integrating the flow-regulating hydraulic actuation method and the PBOC design.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1]BARKER L D L, JAKUBA M V, BOWEN A D, et al. Scientific Challenges and Present Capa-bilities in Underwater Robotic Vehicle Design and Navigation for Oceanographic ExplorationUnder-Ice[J]. Remote Sensing, 2020, 12(16): 2588.
[2]中华人民共和国自然资源部. 2022 年中国自然资源统计公报[R]. 2023.
[3]中华人民共和国国家统计局. 中华人民共和国2022 年国民经济和社会发展统计公报[R].2023.
[4]中华人民共和国自然资源部海洋战略规划与经济司. 2022 年中国海洋经济统计公报[R].2023.
[5]ZHAO S, YUH J.Experimental Study on Advanced Underwater Robot Control[J]. IEEETransactions on Robotics, 2005, 21(4): 695-703.
[6]HUANG H, TANG Q, LI J, et al. A Review on Underwater Autonomous Environmental Per-ception and Target Grasp, the Challenge of Robotic Organism Capture[J]. Ocean Engineering,2020, 195: 106644.
[7]SAHOO A, DWIVEDY S K, ROBI P S. Advancements in the Field of Autonomous UnderwaterVehicle[J]. Ocean Engineering, 2019, 181: 145-160.
[8]MAZZEO A, AGUZZI J, CALISTI M, et al. Marine Robotics for Deep-Sea Specimen Collec-tion: A Taxonomy of Underwater Manipulative Actions[J]. Sensors, 2022, 22(4): 1471.
[9]SIVČEV S, COLEMAN J, OMERDIĆ E, et al. Underwater Manipulators: A Review[J]. OceanEngineering, 2018, 163: 431-450.
[10]RUS D, TOLLEY M T. Design, Fabrication and Control of Soft Robots[J]. Nature, 2015, 521(7553): 467-475.
[11]LASCHI C, MAZZOLAI B, CIANCHETTI M.Soft Robotics: Technologies and SystemsPushing the Boundaries of Robot Abilities[J]. Science Robotics, 2016, 1(1): eaah3690.
[12]DOU W, ZHONG G, CAO J, et al. Soft Robotic Manipulators: Designs, Actuation, StiffnessTuning, and Sensing[J]. Advanced Materials Technologies, 2021, 6(9): 2100018.
[13]WANG H, TOTARO M, BECCAI L. Toward Perceptive Soft Robots: Progress and Challenges[J]. Advanced Science, 2018, 5(9): 1800541.
[14]El-Atab N, MISHRA R B, Al-Modaf F, et al. Soft Actuators for Soft Robotic Applications: AReview[J]. Advanced Intelligent Systems, 2020, 2(10): 2000128.
[15]LI G, WONG T W, SHIH B, et al. Bioinspired Soft Robots for Deep-Sea Exploration[J]. NatureCommunications, 2023, 14(1): 7097.
[16]TAN Y J, MENGALDO G, LASCHI C. Artificial Muscles for Underwater Soft Robots: Mate-rials and Their Interactions[J]. Annual Review of Condensed Matter Physics, 2024, 15: 45-61.
[17]QU J, XU Y, LI Z, et al. Recent Advances on Underwater Soft Robots[J]. Advanced IntelligentSystems, 2023, 6(2): 2300299.
[18]KATZSCHMANN R K, DELPRETO J, MACCURDY R, et al. Exploration of Underwater Lifewith an Acoustically Controlled Soft Robotic Fish[J]. Science Robotics, 2018, 3(16): eaar3449.
[19]LI G, CHEN X, ZHOU F, et al. Self-Powered Soft Robot in the Mariana Trench[J]. Nature,2021, 591(7848): 66-71.
[20]SHINTAKE J, CACUCCIOLO V, SHEA H, et al. Soft Biomimetic Fish Robot Made of Di-electric Elastomer Actuators[J]. Soft Robotics, 2018, 5(4): 466-474.
[21]CHEN X, ZHANG X, HUANG Y, et al. A Review of Soft Manipulator Research, Applications,and Opportunities[J]. Journal of Field Robotics, 2022, 39(3): 281-311.
[22]GEORGE THURUTHEL T, ANSARI Y, FALOTICO E, et al.Control Strategies for SoftRobotic Manipulators: A Survey[J]. Soft Robotics, 2018, 5(2): 149-163.
[23]MCMAHAN W, CHITRAKARAN V, CSENCSITS M, et al.Field Trials and Testing ofthe OctArm Continuum Manipulator[C]//Proceedings 2006 IEEE International Conference onRobotics and Automation, 2006. ICRA 2006. 2006: 2336-2341.
[24]HAWKES E W, BLUMENSCHEIN L H, GREER J D, et al. A Soft Robot That Navigates ItsEnvironment through Growth[J]. Science Robotics, 2017, 2(8): eaan3028.
[25]AMANOV E, NGUYEN T D, Burgner-Kahrs J. Tendon-Driven Continuum Robots with Exten-sible Sections—A Model-Based Evaluation of Path-Following Motions[J]. The InternationalJournal of Robotics Research, 2021, 40(1): 7-23.
[26]DENG T, WANG H, CHEN W, et al. Development of a New Cable-Driven Soft Robot for Car-diac Ablation[C]//2013 IEEE International Conference on Robotics and Biomimetics (ROBIO).2013: 728-733.
[27]KIM W, BYUN J, KIM J K, et al. Bioinspired Dual-Morphing Stretchable Origami[J]. ScienceRobotics, 2019, 4(36): eaay3493.
[28]XING Z, ZHANG J, MCCOUL D, et al. A Super-Lightweight and Soft Manipulator Driven byDielectric Elastomers[J]. Soft Robotics, 2020, 7(4): 512-520.
[29]WANG Z, CUI W. For Safe and Compliant Interaction: An Outlook of Soft Underwater Ma-nipulators[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engi-neering for the Maritime Environment, 2021, 235(1): 3-14.
[30]WANG L, IIDA F. Deformation in Soft-Matter Robotics: A Categorization and QuantitativeCharacterization[J]. IEEE Robotics & Automation Magazine, 2015, 22(3): 125-139.
[31]LIN Z, WANG Z, ZHAO W, et al. Recent Advances in Perceptive Intelligence for Soft Robotics[J]. Advanced Intelligent Systems, 2023, 5(5): 2200329.
[32]XU F, WANG H, WANG J, et al. Underwater Dynamic Visual Servoing for a Soft Robot ArmWith Online Distortion Correction[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 979-989.
[33]GONG Z, FANG X, CHEN X, et al. A Soft Manipulator for Efficient Delicate Grasping inShallow Water: Modeling, Control, and Real-World Experiments[J]. The International Journalof Robotics Research, 2021, 40(1): 449-469.
[34]PHILLIPS B T, BECKER K P, KURUMAYA S, et al. A Dexterous, Glove-Based Teleopera-ble Low-Power Soft Robotic Arm for Delicate Deep-Sea Biological Exploration[J]. ScientificReports, 2018, 8(1): 14779.
[35]LASCHI C, CIANCHETTI M, MAZZOLAI B, et al. Soft Robot Arm Inspired by the Octopus[J]. Advanced Robotics, 2012, 26(7): 709-727.
[36]YOUSSEF S M, SOLIMAN M, SALEH M A, et al. Underwater Soft Robotics: A Review ofBioinspiration in Design, Actuation, Modeling, and Control[J]. Micromachines, 2022, 13(1):110.
[37]YASA O, TOSHIMITSU Y, MICHELIS M Y, et al. An Overview of Soft Robotics[J]. AnnualReview of Control, Robotics, and Autonomous Systems, 2023, 6(1): 1-29.
[38]WANG J, CHORTOS A. Control Strategies for Soft Robot Systems[J]. Advanced IntelligentSystems, 2022, 4(5): 2100165.
[39]QU J, YU Z, TANG W, et al. Advanced Technologies and Applications of Robotic Soft Grippers[J]. Advanced Materials Technologies, 2024, Early View: 2301004.
[40]XU F, WANG H, AU K W S, et al. Underwater Dynamic Modeling for a Cable-Driven SoftRobot Arm[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(6): 2726-2738.
[41]YANG H, XU M, LI W, et al. Design and Implementation of a Soft Robotic Arm Driven bySMA Coils[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6108-6116.
[42]SHEN Z, ZHONG H, XU E, et al. An Underwater Robotic Manipulator with Soft Bladders andCompact Depth-Independent Actuation[J]. Soft Robotics, 2020, 7(5): 535-549.
[43]ALLARD J, COTIN S, FAURE F, et al. SOFA - an Open Source Framework for MedicalSimulation[C]//MMVR 15 - Medicine Meets Virtual Reality: Vol. 125. IOP Press, 2007: 13.
[44]DU T, WU K, MA P, et al. DiffPD: Differentiable Projective Dynamics[J]. ACM Transactionson Graphics, 2021, 41(2): 13:1-13:21.
[45]HU Y, LIU J, SPIELBERG A, et al. ChainQueen: A Real-Time Differentiable Physical Simula-tor for Soft Robotics[C]//2019 International Conference on Robotics and Automation (ICRA).2019: 6265-6271.
[46]DELLA SANTINA C, BICCHI A, RUS D. On an Improved State Parametrization for SoftRobots With Piecewise Constant Curvature and Its Use in Model Based Control[J].IEEERobotics and Automation Letters, 2020, 5(2): 1001-1008.
[47]KATZSCHMANN R K, SANTINA C D, TOSHIMITSU Y, et al. Dynamic Motion Control ofMulti-Segment Soft Robots Using Piecewise Constant Curvature Matched with an AugmentedRigid Body Model[C]//2019 2nd IEEE International Conference on Soft Robotics (RoboSoft).2019: 454-461.
[48]RENDA F, BOYER F, DIAS J, et al. Discrete Cosserat Approach for Multisection Soft Manip-ulator Dynamics[J]. IEEE Transactions on Robotics, 2018, 34(6): 1518-1533.
[49]BRUDER D, FU X, GILLESPIE R B, et al. Data-Driven Control of Soft Robots Using KoopmanOperator Theory[J]. IEEE Transactions on Robotics, 2021, 37(3): 948-961.
[50]JIANG H, WANG Z, JIN Y, et al. Hierarchical Control of Soft Manipulators towards Unstruc-tured Interactions[J]. The International Journal of Robotics Research, 2021, 40(1): 411-434.
[51]MCDONALD K, RANZANI T. Hardware Methods for Onboard Control of Fluidically Actu-ated Soft Robots[J]. Frontiers in Robotics and AI, 2021, 8.
[52]LINDENROTH L, BANO S, STILLI A, et al. A Fluidic Soft Robot for Needle Guidance andMotion Compensation in Intratympanic Steroid Injections[J]. IEEE Robotics and AutomationLetters, 2021, 6(2): 871-878.
[53]ROGATINSKY J, RECCO D, FEICHTMEIER J, et al. A Multifunctional Soft Robot for Car-diac Interventions[J]. Science Advances, 2023, 9(43): eadi5559.
[54]PASSARONI A C, SILVA M A D M, YOSHIDA W B. Cardiopulmonary Bypass: Developmentof John Gibbon’s Heart-Lung Machine[J]. Brazilian Journal of Cardiovascular Surgery, 2015-Mar-Apr, 30: 235-245.
[55]TAN Q, CHEN Y, LIU J, et al. Underwater Crawling Robot With Hydraulic Soft Actuators[J].Frontiers in Robotics and AI, 2021, 8.
[56]BELL M A, GORISSEN B, BERTOLDI K, et al. A Modular and Self-Contained Fluidic Enginefor Soft Actuators[J]. Advanced Intelligent Systems, 2022, 4(1): 2100094.
[57]XIE Q, WANG T, ZHU S.Simplified Dynamical Model and Experimental Verification ofan Underwater Hydraulic Soft Robotic Arm[J]. Smart Materials and Structures, 2022, 31(7):075011.
[58]MCINTYRE M P, van Schoor G, UREN K R, et al. Modelling the Pulsatile Flow Rate andPressure Response of a Roller-Type Peristaltic Pump[J]. Sensors and Actuators A: Physical,2021, 325: 112708.
[59]RUS D, TOLLEY M T. Design, Fabrication and Control of Origami Robots[J]. Nature ReviewsMaterials, 2018, 3(6): 101-112.
[60]NGUYEN K D, NG T C, CHEN I M. On Algorithms for Planning S-Curve Motion Profiles[J].International Journal of Advanced Robotic Systems, 2008, 5(1): 11.
[61]ILIEVSKI F, MAZZEO A D, SHEPHERD R F, et al. Soft Robotics for Chemists[J]. Ange-wandte Chemie International Edition, 2011, 50(8): 1890-1895.
[62]ZHAI Y, DE BOER A, YAN J, et al. Desktop Fabrication of Monolithic Soft Robotic Deviceswith Embedded Fluidic Control Circuits[J]. Science Robotics, 2023, 8(79): eadg3792.
[63]DONG X, WANG Y, LIU X J, et al. Development of Modular Multi-Degree-of-Freedom Hy-brid Joints and Robotic Flexible Legs via Fluidic Elastomer Actuators[J]. Smart Materials andStructures, 2022, 31(3): 035034.
[64]WEBSTER R J, JONES B A. Design and Kinematic Modeling of Constant Curvature Con-tinuum Robots: A Review[J]. The International Journal of Robotics Research, 2010, 29(13):1661-1683.
[65]GIORELLI M, RENDA F, CALISTI M, et al. Neural Network and Jacobian Method for Solvingthe Inverse Statics of a Cable-Driven Soft Arm With Nonconstant Curvature[J]. IEEE Transac-tions on Robotics, 2015, 31(4): 823-834.
[66]SHEN Y, DENG L, YUAN Y, et al. Kinematic Control for Crossed-Fiber-Reinforced SoftManipulator Using Sparse Bayesian Learning[J]. IEEE/ASME Transactions on Mechatronics,2022, 27(2): 611-622.
[67]GUO Y, CHEN X, WANG Z. Environmental Insulation of 3D Printable Origamic Soft Actuators[C]//2019 IEEE 9th Annual International Conference on CYBER Technology in Automation,Control, and Intelligent Systems (CYBER). 2019: 364-369.
[68]CAPOCCI R, DOOLY G, OMERDIĆ E, et al. Inspection-Class Remotely Operated Vehicles—A Review[J]. Journal of Marine Science and Engineering, 2017, 5(1): 13.
[69]SHINTAKE J, CACUCCIOLO V, FLOREANO D, et al. Soft Robotic Grippers[J]. AdvancedMaterials, 2018, 30(29): 1707035.

所在学位评定分委会
力学
国内图书分类号
TP242.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766001
专题南方科技大学
工学院_机械与能源工程系
推荐引用方式
GB/T 7714
吴诗剑. 基于流量调节的水下轻巧软体机械臂的液压驱动与控制[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132305-吴诗剑-机械与能源工程(16589KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴诗剑]的文章
百度学术
百度学术中相似的文章
[吴诗剑]的文章
必应学术
必应学术中相似的文章
[吴诗剑]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。