[1] HUANG P S, BOYKEN S E, BAKER D. The coming of age of de novo protein design[J]. Nature, 2016, 537(7620): 320-327.
[2] ROMERO P A, ARNOLD F H. Exploring protein fitness landscapes by directed evolution[J]. Nature Reviews Molecular Cell Biology, 2009, 10(12): 866 -876.
[3] ARNOLD F H. Directed evolution: bringing new chemistry to life[J]. Angewandte Chemie International Edition, 2018, 57(16): 4143-4148.
[4] ANAND N, EGUCHI R, MATHEWS I I, et al. Protein sequence design with a learned potential[J]. Nature Communications, 2022, 13(1): 746.
[5] LI Y, LI J, SUN J, et al. Bioinspired and mechanically strong fibers based on engineered non-spider chimeric proteins[J]. Angewandte Chemie International Edition, 2020, 59(21): 8148-8152.
[6] KUHLMAN B, BRADLEY P. Advances in protein structure prediction and design[J]. Nature Reviews Molecular Cell Biology, 2019, 20(11): 681-697.
[7] ARNOLD F H. Design by directed evolution[J]. Accounts of Chemical Research, 1998, 31(3): 125-131.
[8] CHEN I M A, MARKOWITZ V M, CHU K, et al. IMG/M: integrated genome and metagenome comparative data analysis system[J]. Nucleic Acids Research, 2017, 45(D1): D507-D516.
[9] WESTBROOK J D, BURLEY S K. How structural biologists and the protein data bank contributed to recent FDA new drug approvals[J]. Structure, 2019, 27(2): 211-217.
[10] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[11] TUNYASUVUNAKOOL K, ADLER J, WU Z, et al. Highly accurate protein structure prediction for the human proteome[J]. Nature, 2021, 596(7873): 590 -596.
[12] YANG J, ANISHCHENKO I, PARK H, et al. Improved protein structure prediction using predicted interresidue orientations[J]. Proceedings of the National Academy of Sciences, 2020, 117(3): 1496-1503.
[13] STROKACH A, BECERRA D, CORBI-VERGE C, et al. Fast and flexible protein design using peep graph neural networks[J]. Cell Systems, 2020, 11(4): 402-411.e4.
[14] WEI K Y, MOSCHIDI D, BICK M J, et al. Computational design of closely related proteins that adopt two well-defined but structurally divergent folds[J]. Proceedings of the National Academy of Sciences, 2020, 117(13): 7208-7215.
[15] BAEK M, DIMAIO F, ANISHCHENKO I, et al. Accurate prediction of protein structures and interactions using a three-track neural network[J]. Science, 2021, 373(6557): 871-876.
[16] CUNNINGHAM J M, KOYTIGER G, SORGER P K, et al. Biophysical prediction of protein–peptide interactions and signaling networks using machine learning[J]. Nature Methods, 2020, 17(2): 175-183.
[17] HOPF T A, INGRAHAM J B, POELWIJK F J, et al. Mutation effects predicted from sequence co-variation[J]. Nature Biotechnology, 2017, 35(2): 128-135.
[18] RIESSELMAN A J, INGRAHAM J B, MARKS D S. Deep generative models of genetic variation capture the effects of mutations[J]. Nature Methods, 2018, 15(10): 816-822.
[19] WANG D D, OU-YANG L, XIE H, et al. Predicting the impacts of mutations on protein-ligand binding affinity based on molecular dynamics simulations and machine learning methods[J]. Computational and Structural Biotechnology Journal, 2020, 18: 439-454.
[20] SINAI S, KELSIC E, CHURCH G M, et al. Variational auto-encoding of protein sequences[M]. arXiv, 2017. http://arxiv.org/abs/1712.03346.
[21] BITARD-FEILDEL T. Navigating the amino acid sequence space between functional proteins using a deep learning framework[J]. PeerJ Computer Science, 2021, 7: e684.
[22] REPECKA D, JAUNISKIS V, KARPUS L, et al. Expanding functional protein sequence spaces using generative adversarial networks[J]. Nature Machine Intelligence, 2021, 3(4): 324-333.
[23] SHIN J E, RIESSELMAN A J, KOLLASCH A W, et al. Protein design and variant prediction using autoregressive generative models[J]. Nature Communications, 2021, 12(1): 2403.
[24] 伍青林, 任玉彬, 翟小威, 等. 生成模型在蛋白质序列设计中的应用[J]. 应用化学, 2022, 39(1): 3-17.
[25] GREENER J G, MOFFAT L, JONES D T. Design of metalloproteins and novel protein folds using variational autoencoders[J]. Scientific Reports, 2018, 8(1): 16189.
[26] HAWKINS-HOOKER A, DEPARDIEU F, BAUR S, et al. Generating functional protein variants with variational autoencoders[J]. PLOS Computational Biology, 2021, 17(2): e1008736.
[27] SEMENIUTA S, SEVERYN A, BARTH E. A hybrid convolutional variational autoencoder for text generation[M]. arXiv, 2017. http://arxiv.org/abs/1702.02390.
[28] SILLITOE I, DAWSON N, LEWIS T E, et al. CATH: expanding the horizons of structure-based functional annotations for genome sequences[J]. Nucleic Acids Research, 2019, 47(D1): D280-D284.
[29] SURANA S, ARORA P, SINGH D, et al. PandoraGAN: generating antiviral peptides using Generative Adversarial Network[M]. bioRxiv, 2021: 2021.02.15.431193. https://www.biorxiv.org/content/10.1101/2021.02.15.431193v1.
[30] YANG R, WU F, ZHANG C, et al. iEnhancer-GAN: a deep learning framework in combination with word embedding and sequence generative adversarial net to identify enhancers and their strength[J]. International Journal of Molecular Sciences, 2021, 22(7): 3589.
[31] WU Z, YANG K K, LISZKA M J, et al. Signal peptides generated by attention-based neural networks[J]. ACS Synthetic Biology, 2020, 9(8): 2154-2161.
[32] MADANI A, MCCANN B, NAIK N, et al. ProGen: Language Modeling for Protein Generation[M]. arXiv, 2020. http://arxiv.org/abs/2004.03497.
[33] ALFORD R F, LEAVER-FAY A, JELIAZKOV J R, et al. The Rosetta all-atom energy function for macromolecular modeling and design[J]. Journal of Chemical Theory and Computation, 2017, 13(6): 3031-3048.
[34] BAR-EVEN A, NOOR E, SAVIR Y, et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters[J]. Biochemistry, 2011, 50(21): 4402-4410.
[35] DAVIDI D, NOOR E, LIEBERMEISTER W, et al. Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro kcat measurements[J]. Proceedings of the National Academy of Sciences, 2016, 113(12): 3401 -3406.
[36] KHODAYARI A, MARANAS C D. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains[J]. Nature Communications, 2016, 7(1): 13806.
[37] SAA P A, NIELSEN L K. Formulation, construction and analysis of kinetic models of metabolism: a review of modelling frameworks[J]. Biotechnology Advances, 2017, 35(8): 981-1003.
[38] STRUTZ J, MARTIN J, GREENE J, et al. Metabolic kinetic modeling provides insight into complex biological questions, but hurdles remain[J]. Current Opinion in Biotechnology, 2019, 59: 24-30.
[39] WU S G, WANG Y, JIANG W, et al. Rapid prediction of bacterial heterotrophic fluxomics using machine learning and constraint programming[J]. PLOS Computational Biology, 2016, 12(4): e1004838.
[40] KIM M, RAI N, ZORRAQUINO V, et al. Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli[J]. Nature Communications, 2016, 7(1): 13090.
[41] MA J, YU M K, FONG S, et al. Using deep learning to model the hierarchical structure and function of a cell[J]. Nature Methods, 2018, 15(4): 290-298.
[42] ZRIMEC J, BÖRLIN C S, BURIC F, et al. Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure[J]. Nature Communications, 2020, 11(1): 6141.
[43] MELLOR J, GRIGORAS I, CARBONELL P, et al. Semisupervised gaussian process for automated enzyme search[J]. ACS Synthetic Biology, 2016, 5(6): 518-528.
[44] CARBONELL P, FAULON J L. Molecular signatures-based prediction of enzyme promiscuity[J]. Bioinformatics, 2010, 26(16): 2012-2019.
[45] KROLL A, ENGQVIST M K M, HECKMANN D, et al. Deep learning allows genome-scale prediction of Michaelis constants from structural features[J]. PLOS Biology, 2021, 19(10): e3001402.
[46] RYU J Y, KIM H U, LEE S Y. Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers[J]. Proceedings of the National Academy of Sciences, 2019, 116(28): 13996-14001.
[47] HECKMANN D, LLOYD C J, MIH N, et al. Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models[J]. Nature Communications, 2018, 9(1): 5252.
[48] YAN S M, SHI D Q, NONG H, et al. Predicting Km values of beta-glucosidases using cellobiose as substrate[J]. Interdisciplinary Sciences: Computational Life Sciences, 2012, 4(1): 46-53.
[49] KROLL A, ROUSSET Y, HU X P, et al. Turnover number predictions for kinetically uncharacterized enzymes using machine and deep learning[J]. Nature Communications, 2023, 14(1): 4139.
[50] LI F, YUAN L, LU H, et al. Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction[J]. Nature Catalysis, 2022, 5(8): 662 -672.
[51] RAN X, JIANG Y, SHAO Q, et al. EnzyKR: a chirality-aware deep learning model for predicting the outcomes of the hydrolase-catalyzed kinetic resolution[J]. Chemical Science, 2023, 14(43): 12073-12082.
[52] YU H, DENG H, HE J, et al. UniKP: a unified framework for the prediction of enzyme kinetic parameters[J]. Nature Communications, 2023, 14(1): 8211.
[53] WU C H, APWEILER R, BAIROCH A, et al. The Universal Protein Resource (UniProt): an expanding universe of protein information[J]. Nucleic Acids Research, 2006, 34(suppl_1): D187-D191.
[54] GAINZA-CIRAUQUI P, CORREIA B E. Computational protein design — the next generation tool to expand synthetic biology applications[J]. Current Opinion in Biotechnology, 2018, 52: 145-152.
[55] CHEVALIER A, SILVA D A, ROCKLIN G J, et al. Massively parallel de novo protein design for targeted therapeutics[J]. Nature, 2017, 550(7674): 74-79.
[56] KAMERZELL T J, MIDDAUGH C R. Prediction machines: applied machine learning for therapeutic protein design and development[J]. Journal of Pharmaceutical Sciences, 2021, 110(2): 665-681.
[57] SILVA D A, YU S, ULGE U Y, et al. De novo design of potent and selective mimics of IL-2 and IL-15[J]. Nature, 2019, 565(7738): 186-191.
[58] LI J, LI B, SUN J, et al. Engineered near-infrared fluorescent protein assemblies for robust bioimaging and therapeutic applications[J]. Advanced Materials, 2020, 32(17): 2000964.
[59] SUN J, LI B, WANG F, et al. Proteinaceous fibers with outstanding mechanical properties manipulated by supramolecular interactions[J]. CCS Chemistry, 2020, 3(6): 1669-1677.
[60] XIAO L, WANG Z, SUN Y, et al. An artificial phase-transitional underwater bioglue with robust and switchable adhesion performance[J]. Angewandte Chemie International Edition, 2021, 60(21): 12082-12089.
[61] THE UNIPROT CONSORTIUM. UniProt: the Universal Protein Knowledgebase in 2023[J]. Nucleic Acids Research, 2023, 51(D1): D523-D531.
[62] SAYERS E W, BOLTON E E, BRISTER J R, et al. Database resources of the National Center for Biotechnology Information in 2023[J]. Nucleic Acids Research, 2023, 51(D1): D29-D38.
[63] JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.
[64] CHEN Y, NIELSEN J. Energy metabolism controls phenotypes by protein efficiency and allocation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(35): 17592-17597.
[65] SANCHEZ B J, ZHANG C, NILSSON A, et al. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints[J]. Molecular Systems Biology, 2017, 13(8): 935.
[66] KLUMPP S, SCOTT M, PEDERSEN S, et al. Molecular crowding limits translation and cell growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(42): 16754-16759.
[67] SCHOMBURG I, JESKE L, ULBRICH M, et al. The BRENDA enzyme information system–From a database to an expert system[J]. Journal of Biotechnology, 2017, 261: 194-206.
[68] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278 -2324.
[69] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84 -90.
[70] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[M]. arXiv, 2015. http://arxiv.org/abs/1409.1556.
[71] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016: 770 -778. https://ieeexplore.ieee.org/document/7780459.
[72] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015: 1-9. https://ieeexplore.ieee.org/document/7298594.
[73] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems: 30. Curran Associates, Inc., 2017. https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.
[74] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL HLT 2019), VOL. 1. Stroudsburg: Assoc Computational Linguistics-Acl, 2019: 4171-4186. https://www.webofscience.com/wos/woscc/fullrecord/WOS:000900116904035.
[75] LUO R, SUN L, XIA Y, et al. BioGPT: generative pre-trained transformer for biomedical text generation and mining[J]. Briefings in Bioinformatics, 2022, 23(6): bbac409.
[76] SUZEK B E, WANG Y, HUANG H, et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches[J]. Bioinformatics, 2015, 31(6): 926-932.
[77] HAMANN T, BENKOVA E, BÄURLE I, et al. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning[J]. Genes & Development, 2002, 16(13): 1610-1615.
[78] WEIJERS D, SCHLERETH A, EHRISMANN J S, et al. Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis[J]. Developmental Cell, 2006, 10(2): 265-270.
[79] OVERVOORDE P, FUKAKI H, BEECKMAN T. Auxin control of root development[J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(6): a001537.
[80] VERNOUX T, BESNARD F, TRAAS J. Auxin at the shoot apical meristem[J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(4): a001487.
[81] SCARPELLA E, BARKOULAS M, TSIANTIS M. Control of leaf and vein development by auxin[J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(1): a001511.
[82] SUNDBERG E, ØSTERGAARD L. Distinct and dynamic auxin activities during reproductive development[J]. Cold Spring Harbor Perspectives in Biology, 2009, 1(6): a001628.
[83] HOLLAND J J, ROBERTS D, LISCUM E. Understanding phototropism: from Darwin to today[J]. Journal of Experimental Botany, 2009, 60(7): 1969 -1978.
[84] PIERCE B G, WIEHE K, HWANG H, et al. ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers[J]. Bioinformatics, 2014, 30(12): 1771-1773.
[85] CHEN R, WENG Z. Docking unbound proteins using shape complementarity, desolvation, and electrostatics[J]. Proteins: Structure, Function, and Bioinformatics, 2002, 47(3): 281-294.
[86] KATCHALSKI-KATZIR E, SHARIV I, EISENSTEIN M, et al. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques.[J]. Proceedings of the National Academy of Sciences, 1992, 89(6): 2195-2199.
[87] CALDERON VILLALOBOS L I A, LEE S, DE OLIVEIRA C, et al. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin[J]. Nature Chemical Biology, 2012, 8(5): 477-485.
修改评论