中文版 | English
题名

南半球阻塞高压与ENSO的动力学联系及其对热浪极端天气的影响

其他题名
DYNAMIC CONNECTION BETWEEN THE SOUTHERN HEMISPHERE BLOCKING AND ENSO WITH ITS IMPACT ON HEAT WAVE
姓名
姓名拼音
ZHANG Bo
学号
12132713
学位类型
硕士
学位专业
070201 理论物理
学科门类/专业学位类别
07 理学
导师
董莉
导师单位
前沿与交叉科学研究院
论文答辩日期
2024-05-10
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       阻塞高压是中纬度重要天气系统之一,与极端天气事件密不可分。南半球阻塞高压的变化和热带年际变化信号 ENSO 之间存在紧密联系,本文对南半球阻塞高压和 ENSO 的动力学联系以及与南美洲高温热浪极端天气之间的关系进行研究。

      本文首先利用 1979 至 2016 年逐日 ECMWF-ERA5 再分析资料,使用改进的阻塞识别方法在南半球建立了新的二维阻塞气候态。从对流层高层散度变化以及利用改进的散度倾向方程角度出发,研究表明 ENSO 暖相位阻塞爆发区域下侧伴随对流层高层辐散异常而冷相位则相反。散度倾向方程结果表明非地转风起双重作用,即诱发反气旋非地转涡度有利于阻塞形成但同时导致辐合异常局部抑制阻塞形成,此外散度倾向方程中的非线性项是有利于阻塞爆发的主要贡献项。尽管热带散度异常的传播有利于南半球阻塞的形成,但该机制无法解释 ENSO 暖相位相比于冷相位阻塞爆发的偏好。其次本文从热带异常热源激发波列角度出发,研究发现阻塞的爆发和衰亡与热带传播至中纬度的 Rossby 波有关,并利用局地 Eliassen-Palm 通量进行诊断,研究表明阻塞爆发前 ENSO 暖相位相比于冷相位在合成阻塞爆发区域伴随着更多天气尺度涡旋的辐合,从而导致更有效的西风减弱因此利于阻塞的形成。本文同时也利用线性斜压模式进行数值模拟,试验结果表明 ENSO 暖相位散度场强迫在副热带激发一个波列,该波列起源于澳大利亚西侧传播至南太平洋地区并呈现反气旋涡度,因此有利于南半球阻塞的形成。

       通过对 2022 年 1 月 9 至 16 日发生于南美洲一次典型热浪事件分析,研究表明前期海温异常伴随南半球环状模正相位及中期阻塞环流形势建立,大气环流异常是局地高压建立的直接原因。热力学能量方程诊断分析表明,垂直运动在局地增温占主导作用,而水平温度平流为负贡献,与人类活动引起的地表变化相关的非绝热加热项是维持热浪的一个重要因素。

其他摘要

     Blocking is one of the important weather systems in mid-latitudes and is inseparable from extreme weather events. There is a close connection between the changes in the Southern Hemisphere blocking and the tropical interannual variation signal El Niño-Southern Oscillation (ENSO). This paper studies the dynamic relationship between the Southern Hemisphere blocking and ENSO, as well as the connection with the extreme weather of heat wave event in South America.

    This study establishes a new two-dimensional blocking climatology in the Southern Hemisphere by using the improved detection method with the ECMWFERA5 reanalysis data from 1979 to 2016. Through the diagnostic analysis of tropopause divergence for the composite blocking events via an improved divergence tendency equation. It is found that the blocking in ENSO warm phase is characterized with upper-level divergence anomaly and the cold phase with convergence anomaly equatorward of blocking onset region. The results of the divergence tendency equation show that the ageostrophic effect exhibits dual effects, namely, it induces anticyclonic ageostrophic vorticity favoring the formation of blocking whereas it results in convergence anomaly close to the blocking onset region thus inhibiting blocking locally. In addition, the nonlinear term in the divergence tendency equation is found to be a dominant forcing for favoring blocking onset. Nevertheless, despite the propagation of tropical divergence anomalies favors the blocking formation, they could barely explain the Southern Hemisphere blocking onset preference in ENSO warm phase. Furthermore, this study also starts from the perspective of wave trains excited by abnormal heating sources in the tropics and finds that the onset and decay of the blocking are related to Rossby waves in the tropics to mid-latitudes. Through the localized Eliassen-Palm flux this study reveals that in ENSO warm phase the composite blocking onset region and the immediate upstream region are characterized by more localized Eliassen-Palm flux convergence, thereby leading to more effective westerly wind weakening and favoring the blocking formation .Numerical simulations are conducted by using linear baroclinic model and the results show that the ENSO warm phase divergence field forcing can excite a wave train in the subtropics, which originates from the west of Australia and propagates to the South Pacific region and presents the anticyclonic vorticity, which is conducive to the Southern Hemisphere blocking formation.

    Furthermore, an additional analysis is conducted for a typical heat wave event that occurred in South America from January 9 to 16, 2022. It is found that the early sea surface temperature anomaly was accompanied by a positive phase of the Southern Annular mode and the mid-term blocking circulation. The anomalous atmospheric circulation was a prerequisite of the local anticyclone establishment. Diagnostic analysis with the thermodynamic equation shows that the heat wave was mainly caused by the vertical motion term whereas the horizontal advection term had a negative contribution to the surface warming during the heat wave event. It is also found that diabatic heating related to land changes associated with anthropogenic activities, is an important factor in maintaining the heat wave.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] 陶诗言. 阻塞形势破坏时期的东亚一次寒潮过程[J]. 气象学报, 1957, 28(1): 65-76.
[2] 李双林, 纪立人. 夏季乌拉尔地区环流持续异常及其背景流特征[J]. 气象学报, 2001, 59(3): 280-293.
[3] DEMIRTAS M. The high-impact 2007 hot summer over Turkey: atmospheric -blocking and heat-wave episodes[J]. Meteorological Applications, 2018, 25(3): 406–413.
[4] TRIGO R M, GARCÍA‐HERRERA R, DÍAZ J, et al. How exceptional was the early August 2003 heatwave in France?[J]. Geophysical Research Letters, 2005,32(10): 2005GL022410.
[5] DOLE R, HOERLING M, PERLWITZ J, et al. Was there a basis for anticipating the 2010 Russian heat wave[J]. Geophysical Research Letters, 2011, 38(6): L06702.
[6] MATSUEDA M. Predictability of Euro-Russian blocking in summer of 2010[J].Geophysical Research Letters, 2011, 38(6): L06801.
[7] LUO D, XIAO Y, YAO Y, et al. Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking induced amplification[J]. Journalof Climate, 2016, 29(11): 3925–3947.
[8] LUO D, XIAO Y, DIAO Y, et al. Impact of Ural blocking on winter warm Arctic–Cold Eurasian anomalies. Part II: The link to the North Atlantic Oscillation[J]. Journal of Climate, 2016, 29(11): 3949–3971.
[9] 马宁, 李跃凤, 琚建华. 2008 年初中国南方低温雨雪冰冻天气的季节内振荡特征[J]. 高原气象, 2011, 30(2): 318-327.
[10] 施春华, 蔡雯昳, 金鑫. 强厄尔尼诺事件下 2016 年 1 月中国南方超级寒潮的动力学机制:瞬变波对大气长波异常的调制[J]. 大气科学学报, 2016, 39(6): 827-834.
[11] ZHANG X, FU Y, HAN Z, et al. Extreme cold events from East Asia to North America in winter 2020/21: Comparisons, causes, and future implications[J]. Advances in Atmospheric Sciences, 2022, 39(4): 553–565.
[12] 齐艳军, 张人禾, Tim LI. 1998 年夏季长江流域大气季节内振荡的结构演变及其对降水的影响[J]. 大气科学, 2016, 40(3): 451-462.
[13] CHEN X, DAI A, WEN Z, et al. Contributions of Arctic Sea-ice loss and East Siberian atmospheric blocking to 2020 record-breaking Meiyu-Baiu rainfall[J].Geophysical Research Letters, 2021, 48(10): e2021GL092748.
[14] RODRIGUES R R, TASCHETTO A S, SEN GUPTA A, et al. Common causefor severe droughts in South America and marine heatwaves in the South Atlantic[J]. Nature Geoscience, 2019, 12(8): 620-626.
[15] RODRIGUES R R, WOOLLINGS T. Impact of Atmospheric Blocking on SouthAmerica in Austral Summer[J]. Journal of Climate, 2017, 30(5): 1821–1837.
[16] GEIRINHAS J L, TRIGO R M, LIBONATI R, et al. Climatic and synoptic characterization of heat waves in Brazil[J]. International Journal of Climatology, 2018, 38(4): 1760-1776.
[17] GEIRINHAS J L, RUSSO A, LIBONATI R, et al. Recent increasing frequencyof compound summer drought and heatwaves in Southeast Brazil[J]. Environmental Research Letters, 2021, 16(3): 034036.
[18] MARENGO J A, AMBRIZZI T, BARRETO N, et al. The heat wave of October 2020 in central South America[J]. International Journal of Climatology, 2022, 42(4): 2281–2298.
[19] FRANCIS J A, VAVRUS S J. Evidence linking Arctic amplification to extreme weather in mid-latitudes[J]. Geophysical Research Letters, 2012, 39(6): 2012GL051000.
[20] HASSANZADEH P, KUANG Z, FARRELL B F. Responses of midlatitude blocks and wave amplitude to changes in the meridional temperature gradient in an idealized dry GCM[J]. Geophysical Research Letters, 2014, 41(14): 5223 -5232.
[21] BARNES E A. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes[J]. Geophysical Research Letters, 2013, 40(17): 4734–4739.
[22] BARNES E A, DUNN-SIGOUIN E, MASATO G, et al. Exploring recent trends in Northern Hemisphere blocking[J]. Geophysical Research Letters, 2014, 41(2): 638-644.
[23] WALLACE J M, I M HELD, D W THOMPSON, et al. Global warming and winter weather[J]. Science, 2014, 343(6172): 729–730.
[24] ASHOK K, NAKAMURA H, YAMAGATA T. Impacts of ENSO and Indian ocean dipole events on the Southern Hemisphere storm-track activity during austral winter[J]. Journal of Climate, 2007, 20(13): 3147–3163.
[25] OLIVEIRA F N M, CARVALHOC L M V, AMBRIZZIA T. A new climatology for Southern Hemisphere blockings in the winter and the combined effect of ENSO and SAM phases[J]. International Journal of Climatology, 2014, 34(5): 1676–1692.
[26] BARNES E A, HARTMANN D L. Influence of eddy-driven jet latitude on North Atlantic jet persistence and blocking frequency in CMIP3 integrations[J]. Geophysical Research Letters, 2010, 37(23): L23802.
[27] PARSONS S, RENWICK J A, MCDONALD A J. An assessment of future Southern Hemisphere blocking using CMIP5 projections from four GCMs[J]. Journal of Climate, 2016, 29(21): 7599–7611.
[28] DAVINI P, CAGNAZZO C, GUALDI S, et al. Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking[J]. Journal of Climate, 2012, 25(19): 6496–6509.
[29] WOOLLINGS T, BARRIOPEDRO D, METHVEN J, et al. Blocking and its response to climate change[J]. Current Climate Change Reports, 2018, 4(3): 287 –300.
[30] PATTERSON M, BRACEGIRDLE T, WOOLLINGS T. Southern Hemisphere atmospheric blocking in CMIP5 and future changes in the Australia -New Zealandsector[J]. Geophysical Research Letters, 2019, 46(15): 9281–9290.
[31] REX, D. Blocking action in the middle troposphere and its effect upon regional climate. Part 1: an aerological study of blocking action[J]. Tellus, 1950, 2 (3):196–211.
[32] REX D. Blocking action in the middle troposphere and its effect upon regionalclimate. Part 2: the climatology of blocking action[J]. Tellus, 1950, 2(4): 275–301.
[33] CHARNEY J G, DEVORE J G. Multiple flow equilibria in the atmosphere andblocking[J]. Journal of the Atmospheric Sciences, 1979, 36(7): 1205 –1216.
[34] AUSTIN J F. The blocking of middle latitude westerly winds by planetary waves[J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106(448): 327–350.
[35] DOLE R, GORDON N. Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics[J]. Monthly Weather Review, 1983, 111(8): 1567–1586.
[36] HOSKINS B J, I N JAMES, WHITE G H. The shape, propagation and mean-flow interaction of large-scale weather systems[J]. Journal of the Atmospheric Sciences, 1983, 40(7): 1595–1612.
[37] MULLEN S L. Transient eddy forcing of blocking flows[J]. Journal of the Atmospheric Sciences, 1987, 44(1), 3–22.
[38] SHUTTS G J. The propagation of eddies in diffluent jet streams: Eddy vorticity forcing of blocking flow fields[J]. Quarterly Journal of the Royal Meteorological Society, 1983, 109(462): 737–761.
[39] SHUTTS G J. A case study of eddy forcing during an Atlantic blocking episode[J]. Advances in Geophysics, 1986, 29: 135-162.
[40] TUNG K K, R S LINDZEN. The theory of stationary long waves. I: A simpletheory of blocking[J]. Monthly Weather Review, 1979, 107(6): 714–734.
[41] NAKAMURA H, NAKAMURA M, ANDERSON J L. The role of high- and low-frequency dynamics in the blocking formation[J]. Monthly Weather Review, 1997, 125(9): 2074–2093.
[42] RENWICK J A, WALLACE J M. Relationships between North Pacific wintertime blocking, El Niño, and the PNA pattern[J]. Monthly Weather Review, 1996,124(9): 2071–2076.
[43] RENWICK J A. ENSO-related variability in the frequency of South Pacific blocking[J]. Monthly Weather Review, 1998, 126(12): 3117–3123.
[44] LI Y, JIN R H, WANG S G. Possible relationship between ENSO and blocking in key regions of Eurasia[J]. Journal of Tropical Meteorology, 2010, 16(3): 221-230.
[45] PELLY J L, HOSKINS B J. A new perspective on blocking[J]. Journal of the Atmospheric Sciences, 2003, 60(5), 743–755.
[46] DONG L, COLUCCI S J. The Role of Deformation and Potential Vorticity in Southern Hemisphere Blocking Onsets[J]. Journal of the Atmospheric Sciences, 2005, 62(11): 4043–4056.
[47] HU Y, YANG D, YANGJ. Blocking systems over an aqua planet[J]. Geophysical Research Letters, 2008, 35(19): 2008GL035351.
[48] BARRIOPEDRO D, CALVO N. On the relationship between ENSO, stratospheric sudden warmings, and blocking[J]. Journal of Climate, 2014, 27(12): 4704 –4720.
[49] DONG L, COLUCCI S J. The Role of Nonquasigeostrophic Forcing in Southern Hemisphere Blocking Onsets[J]. Monthly Weather Review, 2015, 143(4): 1455–1471.
[50] STEINFELD D, PFAHL S. The role of latent heating in atmospheric blocking dynamics: A global climatology[J]. Climate Dynamics, 2019, 53(9-10): 6159–6180.
[51] NAKAMURA N, HUANG C S Y. Atmospheric blocking as a traffic jam in thejet stream[J]. Science, 2018, 361(6397): 42-47.
[52] WANG M, ZHANG Y, LU J. The evolution dynamical processes of Ural blocking through the lens of local finite-amplitude wave activity budget analysis[J]. Geophysical Research Letters, 2021, 48(10): e2020GL091727.
[53] MARTINEAU P, NAKAMURA H, YAMAMOTO A, et al. Baroclinic blocking[J]. Geophysical Research Letters, 2022, 49(15): e2022GL097791.
[54] MA J, LIANG X. Upstream–Downstream Asymmetry in Multiscale Interaction Underlying the Northern Hemisphere Atmospheric Blockings[J]. Journal of the Atmospheric Sciences, 2023, 80(8): 1995-2011.
[55] MCKENNA M, KARAMPERIDOU C. The impacts of El Niño diversity on Northern Hemisphere atmospheric blocking[J]. Geophysical Research Letters, 2023,50(13): e2023GL104284.
[56] TRENBERTH K E, MO K C. Blocking in the Southern Hemispheres[J]. Monthly Weather Review, 1985, 113(1), 3–21.
[57] TRENBERTH K E. The signature of a blocking episode on the general circulation in the Southern Hemispheres[J]. Journal of the Atmospheric Sciences, 1986a, 43(19), 2061–2069.
[58] TRENBERTH K E. An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen-Palm flux diagnostics[J]. Journal of the Atmospheric Sciences, 1986b, 43(19): 2070–2087.
[59] BERBERY E H, Núñez M N. An observational and numerical study of blocking episodes near South America[J]. Journal of Climate, 1989, 2(11), 1352 –1361.
[60] SINCLAIR M R. A climatology of anticyclones and blocking for the Southern Hemisphere[J]. Monthly Weather Review, 1996, 124(2): 245–263.
[61] RUTLLANT J, FUENZALIDA H. Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation[J]. International Journal of Climatology, 1991, 11(1): 63–76.
[62] RENWICK J A, REVELL M J. Blocking over the South Pacific and Rossby wave propagation[J]. Monthly Weather Review, 1999, 127(10): 2233–2247.
[63] SÁEZ DE ADANA F J, COLUCCI S J. Southern Hemisphere blocking onsets associated with upper-tropospheric divergence anomalies[J]. Journal of the Atmospheric Sciences, 2005, 62(5): 1614–1625.
[64] DONG L, VOGELSANG T J, COLUCCI S J. Interdecadal Trend and ENSO-Related Internal Variability in Southern Hemisphere Blocking[J]. Journal of Climate, 2008, 21(12): 3068–3077.
[65] TIBALDI S, MOLTENI F. On the operational predictability of blocking[J]. Tellus A, 1990, 42(3): 343–365.
[66] 金荣花, 李艳, 王式功. 四种客观定量表征阻塞高压方法的对比分析[J]. 高原气象, 2009, 28(5): 1121-1128.
[67] BARNES E A, SLINGO J, WOOLLINGS T. A methodology for the comparison of blocking climatologies across indices, models and climate scenarios[J]. Climate Dynamics, 2012, 38(11-12): 2467–2481.
[68] LEJENÄS H, ØKLAND H. Characteristics of Northern Hemisphere blocking as determined from a long time series of observational data[J]. Tellus A, 1983, 35A(5): 350–362.
[69] DIAO Y, LI J, LUO D. A new blocking index and its application: Blocking action in the Northern Hemisphere[J]. Journal of Climate, 2006, 19(19): 4819 –4839.
[70] DUNN-SIGOUIN E, SON S W, LIN H. Evaluation of Northern Hemisphere blocking climatology in the global environment multiscale model[J]. Monthly Weather Review, 2013, 141(2): 707–727.
[71] WATSON J S, COLUCCI S J. Evaluation of ensemble predictions of blocking in the NCEP global spectral model[J]. Monthly Weather Review, 2002, 130(12):3008–3021.
[72] WIEDENMANN J M, LUPO A R, MOKHOV I I, et al. The climatology of blocking anticyclones for the Northern and Southern Hemispheres: Block intensity as a diagnostic[J]. Journal of Climate, 2002, 15(23): 3459–3473.
[73] FANKHAUSER J C. The derivation of consistent fields of wind and geopotential height for mesoscale rawinsonde data[J]. Journal of Applied Meteorology and Climatology, 1974, 13(6): 637–646.
[74] ANDREWS D G, MCINTYRE M E. Planetary waves in horizontal and verticalshear: The generalized Eliassen-Palm relation and the mean zonal acceleration[J]. Journal of the Atmospheric Sciences, 1976, 33(11): 2031-2048.
[75] ANDREWS D G, MCINTYRE M E. Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres[J]. Journal of the Atmospheric Sciences, 1978, 35(2): 175-185.
[76] EDMON H J, HOSKINS B J, MCINTYRE M E. Eliassen-Palm cross sections for the troposphere[J]. Journal of the Atmospheric Sciences, 1980, 37(12): 2600-2616.
[77] TAKAYA K, NAKAMURA H. A Formulation of a Phase-Independent Wave-Activity Flux for Stationary and Migratory Quasigeostrophic Eddies on a Zonally Varying Basic Flow[J]. Journal of the Atmospheric Sciences, 2001, 58(6): 608 –627.
[78] MARQUES R F C, RAO V B. A diagnosis of a long-lasting blocking event over the Southeast Pacific ocean[J]. Monthly Weather Review, 1999, 127(8): 1761–1776.
[79] AMBRIZZI T, HOSKINS B J, HSU H H. Rossby wave propagation and teleconnection patterns in the austral winter[J]. Journal of the Atmospheric Sciences, 1995, 52(21): 3661–3672.
[80] COOK K H. A Southern Hemisphere wave response to ENSO with implications for southern Africa precipitation[J]. Journal of the Atmospheric Sciences, 2001, 58(15): 2146–2162.
[81] QIN J, ROBINSON W A. On the Rossby wave source and the steady linear response to tropical forcing[J]. Journal of the Atmospheric Sciences, 1993, 50(12): 1819–1823.
[82] SARDESHMUKH P D, HOSKINS B J. The generation of global rotational flow by steady idealized tropical divergence[J]. Journal of the Atmospheric Sciences, 1988, 45(7): 1228–1251.
[83] LHOTKA O, KYSELÝ J. Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe[J]. International Journal of Climatology, 2015, 35(7): 1232-1244.
[84] RUSSO S, DOSIO A, GRAVERSEN R G, et al. Magnitude of extreme heat waves in present climate and their projection in a warming world[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(22): 12500-12512.
[85] WRIGHT J S, FUEGLISTALE S. Large differences in reanalyses of diabatic heating in the tropical upper troposphere and lower stratosphere [J]. AtmosphericChemistry and Physics, 2013, 13(18): 9565-9576.
[86] FLANNAGHAN T J, FUEGLISTALER S. Kelvin waves and shear-flow turbulent mixing in the TTL in (re-)analysis data[J]. Geophysical Research Letters, 2011, 38(2): L02801.
[87] WATANABE M, KIMOTO M. Atmosphere–ocean thermal coupling in the NorthAtlantic: A positive feedback[J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126(570): 3343–3369.
[88] WATANABE M, JIN F F. Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO[J]. Geophysical Research Letters, 2002, 29(10): 1478.
[89] WATANABE M, JIN F F. A moist Linear baroclinic model: Coupled dynamicalconvective response to El Niño[J]. Journal of Climate, 2003, 16(8): 1121–1139.
[90] LU R, LIN Z. Role of Subtropical Precipitation Anomalies in Maintaining the Summertime Meridional Teleconnection over the Western North Pacific and East Asia[J]. Journal of Climate, 2009, 22(8): 2058-2072.
[91] ZUO J, LI W, SUN C, et al. Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon[J]. Advances in Atmospheric Sciences, 2013, 30(4): 1173-1186.
[92] WANG Y, HU K, HUANG G, et al. Asymmetric impacts of El Niño and La Niña on the Pacific-North American teleconnection pattern: the role of subtropical jet stream[J]. Environmental Research Letters, 2021, 16(11): 114040.
[93] MARQUES R F C, RAO V B. Interannual variations of blockings in the Southern Hemisphere and their energetics[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D4): 4625–4636.
[94] NIE Y, ZHANG Y, YANG X Q, et al. Winter and summer Rossby wave sources in the CMIP5 models[J]. Earth and Space Science, 2019, 6(10): 1831–1846.
[95] JIN D, KIRTMAN B P. Why the Southern Hemisphere ENSO responses lead ENSO[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D23): 2009JD012657.
[96] TING M F. Steady Linear Response to Tropical Heating in Barotropic and Baroclinic Models[J]. Journal of the Atmospheric Sciences, 1996, 53(12): 1698-1709.
[97] SCHUMACHER D L, KEUNE J, VAN HEERWAARDEN C C, et al. Amplification of mega-heatwaves through heat torrents fuelled by upwind drought[J]. Nature Geoscience, 2019, 12(9): 712-717.
[98] BARRIOPEDRO D, FISCHE E M, LUTERBACHER J, et al. The hot summer of 2010: redrawing the temperature record map of Europe [J]. Science, 2011, 332(6026): 220-224.
[99] FINK A H, BRÜCHER T, KRÜGER A, et al. The 2003 European summer heatwaves and drought-synoptic diagnosis and impacts[J]. Weather, 2004, 59(8): 209-216.
[100] FISCHER E M, SCHÄR C. Consistent geographical patterns of changes in high-impact European heatwaves[J]. Nature Geoscience, 2010, 3(6): 398-403.
[101] GARCÍA-HERRERA R, DÍAZ J, TRIGO R M, et al. A Review of the European Summer Heat Wave of 2003[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(4): 267-306.
[102] SCHÄR C, VIDALE P, LÜTHI D, et al. The role of increasing temperature variability in European summer heatwaves[J]. Nature, 2004, 427(6972): 332–336.
[103] SENEVIRATNE S I, LÜTHI D, LITSCHI M, et al. Land-atmosphere coupling and climate change in Europe[J]. Nature, 2006, 443(7108): 205-209.
[104] CIAIS P, REICHSTEIN M, VIOVY N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003[J]. Nature, 2005, 437(7058): 529-533.
[105] FOLLAND C K, KNIGHT J, LINDERHOLM H W, et al. The Summer North Atlantic Oscillation: Past, Present, and Future[J]. Journal of Climate, 2009, 22(5): 1082-1103.
[106] BERG A, LINTNER B R, FINDELL K L, et al. Impact of Soil Moisture–Atmosphere Interactions on Surface Temperature Distribution[J]. Journal of Climate,2014, 27(21): 7976-7993.
[107] FISCHER E M, SENEVIRATNE S I, LÜTHI D, et al. Contribution of land -atmosphere coupling to recent European summer heat waves[J]. Geophysical Research Letters, 2007, 34(6): 2006GL029068.
[108] FISCHER E M, SENEVIRATNE S I, VIDALE P L, et al. Soil Moisture–Atmosphere Interactions during the 2003 European Summer Heat Wave [J]. Journal of Climate, 2007, 20(20): 5081-5099.
[109] HIRSCH A L, PITMAN A J, KALA J. The role of land cover change in modulating the soil moisture-temperature land-atmosphere coupling strength over Australia[J]. Geophysical Research Letters, 2014, 41(16): 5883-5890.
[110] LIU X, HE B, GUO L, et al. Similarities and Differences in the Mechanisms Causing the European Summer Heatwaves in 2003, 2010, and 2018[J]. Earth's Future, 2020, 8(4): e2019EF001386.
[111] MIRALLES D G, VAN DEN BERG M J, TEULING A J, et al. Soil moisture-temperature coupling: A multiscale observational analysis[J]. Geophysical Research Letters, 2012, 39(21): 2012GL053703.
[112] MIRALLES D G, TEULING A J, VAN HEERWAARDEN C C, et al. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation[J]. Nature Geoscience, 2014, 7(5): 345-349.
[113] RÖTHLISBERGER M, PAPRITZ L. Quantifying the physical processes leadingto atmospheric hot extremes at a global scale[J]. Nature Geoscience, 2023, 16(3): 210-216.
[114] DONG L, MITRA C, GREER S, et al. The Dynamical Linkage of Atmospheric Blocking to Drought, Heatwave and Urban Heat Island in Southeastern US: A Multi-Scale Case Study[J]. Atmosphere, 2018, 9(1): 33.
[115] FERON S, CORDERO R R, DAMIANI A, et al. Observations and Projectionsof Heat Waves in South America[J]. Scientific Reports, 2019, 9(1): 8173.

所在学位评定分委会
物理学
国内图书分类号
P461.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766007
专题南方科技大学
理学院_地球与空间科学系
推荐引用方式
GB/T 7714
张波. 南半球阻塞高压与ENSO的动力学联系及其对热浪极端天气的影响[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132713-张波-地球与空间科学系(5638KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张波]的文章
百度学术
百度学术中相似的文章
[张波]的文章
必应学术
必应学术中相似的文章
[张波]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。