[1] 陶诗言. 阻塞形势破坏时期的东亚一次寒潮过程[J]. 气象学报, 1957, 28(1): 65-76.
[2] 李双林, 纪立人. 夏季乌拉尔地区环流持续异常及其背景流特征[J]. 气象学报, 2001, 59(3): 280-293.
[3] DEMIRTAS M. The high-impact 2007 hot summer over Turkey: atmospheric -blocking and heat-wave episodes[J]. Meteorological Applications, 2018, 25(3): 406–413.
[4] TRIGO R M, GARCÍA‐HERRERA R, DÍAZ J, et al. How exceptional was the early August 2003 heatwave in France?[J]. Geophysical Research Letters, 2005,32(10): 2005GL022410.
[5] DOLE R, HOERLING M, PERLWITZ J, et al. Was there a basis for anticipating the 2010 Russian heat wave[J]. Geophysical Research Letters, 2011, 38(6): L06702.
[6] MATSUEDA M. Predictability of Euro-Russian blocking in summer of 2010[J].Geophysical Research Letters, 2011, 38(6): L06801.
[7] LUO D, XIAO Y, YAO Y, et al. Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking induced amplification[J]. Journalof Climate, 2016, 29(11): 3925–3947.
[8] LUO D, XIAO Y, DIAO Y, et al. Impact of Ural blocking on winter warm Arctic–Cold Eurasian anomalies. Part II: The link to the North Atlantic Oscillation[J]. Journal of Climate, 2016, 29(11): 3949–3971.
[9] 马宁, 李跃凤, 琚建华. 2008 年初中国南方低温雨雪冰冻天气的季节内振荡特征[J]. 高原气象, 2011, 30(2): 318-327.
[10] 施春华, 蔡雯昳, 金鑫. 强厄尔尼诺事件下 2016 年 1 月中国南方超级寒潮的动力学机制:瞬变波对大气长波异常的调制[J]. 大气科学学报, 2016, 39(6): 827-834.
[11] ZHANG X, FU Y, HAN Z, et al. Extreme cold events from East Asia to North America in winter 2020/21: Comparisons, causes, and future implications[J]. Advances in Atmospheric Sciences, 2022, 39(4): 553–565.
[12] 齐艳军, 张人禾, Tim LI. 1998 年夏季长江流域大气季节内振荡的结构演变及其对降水的影响[J]. 大气科学, 2016, 40(3): 451-462.
[13] CHEN X, DAI A, WEN Z, et al. Contributions of Arctic Sea-ice loss and East Siberian atmospheric blocking to 2020 record-breaking Meiyu-Baiu rainfall[J].Geophysical Research Letters, 2021, 48(10): e2021GL092748.
[14] RODRIGUES R R, TASCHETTO A S, SEN GUPTA A, et al. Common causefor severe droughts in South America and marine heatwaves in the South Atlantic[J]. Nature Geoscience, 2019, 12(8): 620-626.
[15] RODRIGUES R R, WOOLLINGS T. Impact of Atmospheric Blocking on SouthAmerica in Austral Summer[J]. Journal of Climate, 2017, 30(5): 1821–1837.
[16] GEIRINHAS J L, TRIGO R M, LIBONATI R, et al. Climatic and synoptic characterization of heat waves in Brazil[J]. International Journal of Climatology, 2018, 38(4): 1760-1776.
[17] GEIRINHAS J L, RUSSO A, LIBONATI R, et al. Recent increasing frequencyof compound summer drought and heatwaves in Southeast Brazil[J]. Environmental Research Letters, 2021, 16(3): 034036.
[18] MARENGO J A, AMBRIZZI T, BARRETO N, et al. The heat wave of October 2020 in central South America[J]. International Journal of Climatology, 2022, 42(4): 2281–2298.
[19] FRANCIS J A, VAVRUS S J. Evidence linking Arctic amplification to extreme weather in mid-latitudes[J]. Geophysical Research Letters, 2012, 39(6): 2012GL051000.
[20] HASSANZADEH P, KUANG Z, FARRELL B F. Responses of midlatitude blocks and wave amplitude to changes in the meridional temperature gradient in an idealized dry GCM[J]. Geophysical Research Letters, 2014, 41(14): 5223 -5232.
[21] BARNES E A. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes[J]. Geophysical Research Letters, 2013, 40(17): 4734–4739.
[22] BARNES E A, DUNN-SIGOUIN E, MASATO G, et al. Exploring recent trends in Northern Hemisphere blocking[J]. Geophysical Research Letters, 2014, 41(2): 638-644.
[23] WALLACE J M, I M HELD, D W THOMPSON, et al. Global warming and winter weather[J]. Science, 2014, 343(6172): 729–730.
[24] ASHOK K, NAKAMURA H, YAMAGATA T. Impacts of ENSO and Indian ocean dipole events on the Southern Hemisphere storm-track activity during austral winter[J]. Journal of Climate, 2007, 20(13): 3147–3163.
[25] OLIVEIRA F N M, CARVALHOC L M V, AMBRIZZIA T. A new climatology for Southern Hemisphere blockings in the winter and the combined effect of ENSO and SAM phases[J]. International Journal of Climatology, 2014, 34(5): 1676–1692.
[26] BARNES E A, HARTMANN D L. Influence of eddy-driven jet latitude on North Atlantic jet persistence and blocking frequency in CMIP3 integrations[J]. Geophysical Research Letters, 2010, 37(23): L23802.
[27] PARSONS S, RENWICK J A, MCDONALD A J. An assessment of future Southern Hemisphere blocking using CMIP5 projections from four GCMs[J]. Journal of Climate, 2016, 29(21): 7599–7611.
[28] DAVINI P, CAGNAZZO C, GUALDI S, et al. Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking[J]. Journal of Climate, 2012, 25(19): 6496–6509.
[29] WOOLLINGS T, BARRIOPEDRO D, METHVEN J, et al. Blocking and its response to climate change[J]. Current Climate Change Reports, 2018, 4(3): 287 –300.
[30] PATTERSON M, BRACEGIRDLE T, WOOLLINGS T. Southern Hemisphere atmospheric blocking in CMIP5 and future changes in the Australia -New Zealandsector[J]. Geophysical Research Letters, 2019, 46(15): 9281–9290.
[31] REX, D. Blocking action in the middle troposphere and its effect upon regional climate. Part 1: an aerological study of blocking action[J]. Tellus, 1950, 2 (3):196–211.
[32] REX D. Blocking action in the middle troposphere and its effect upon regionalclimate. Part 2: the climatology of blocking action[J]. Tellus, 1950, 2(4): 275–301.
[33] CHARNEY J G, DEVORE J G. Multiple flow equilibria in the atmosphere andblocking[J]. Journal of the Atmospheric Sciences, 1979, 36(7): 1205 –1216.
[34] AUSTIN J F. The blocking of middle latitude westerly winds by planetary waves[J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106(448): 327–350.
[35] DOLE R, GORDON N. Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics[J]. Monthly Weather Review, 1983, 111(8): 1567–1586.
[36] HOSKINS B J, I N JAMES, WHITE G H. The shape, propagation and mean-flow interaction of large-scale weather systems[J]. Journal of the Atmospheric Sciences, 1983, 40(7): 1595–1612.
[37] MULLEN S L. Transient eddy forcing of blocking flows[J]. Journal of the Atmospheric Sciences, 1987, 44(1), 3–22.
[38] SHUTTS G J. The propagation of eddies in diffluent jet streams: Eddy vorticity forcing of blocking flow fields[J]. Quarterly Journal of the Royal Meteorological Society, 1983, 109(462): 737–761.
[39] SHUTTS G J. A case study of eddy forcing during an Atlantic blocking episode[J]. Advances in Geophysics, 1986, 29: 135-162.
[40] TUNG K K, R S LINDZEN. The theory of stationary long waves. I: A simpletheory of blocking[J]. Monthly Weather Review, 1979, 107(6): 714–734.
[41] NAKAMURA H, NAKAMURA M, ANDERSON J L. The role of high- and low-frequency dynamics in the blocking formation[J]. Monthly Weather Review, 1997, 125(9): 2074–2093.
[42] RENWICK J A, WALLACE J M. Relationships between North Pacific wintertime blocking, El Niño, and the PNA pattern[J]. Monthly Weather Review, 1996,124(9): 2071–2076.
[43] RENWICK J A. ENSO-related variability in the frequency of South Pacific blocking[J]. Monthly Weather Review, 1998, 126(12): 3117–3123.
[44] LI Y, JIN R H, WANG S G. Possible relationship between ENSO and blocking in key regions of Eurasia[J]. Journal of Tropical Meteorology, 2010, 16(3): 221-230.
[45] PELLY J L, HOSKINS B J. A new perspective on blocking[J]. Journal of the Atmospheric Sciences, 2003, 60(5), 743–755.
[46] DONG L, COLUCCI S J. The Role of Deformation and Potential Vorticity in Southern Hemisphere Blocking Onsets[J]. Journal of the Atmospheric Sciences, 2005, 62(11): 4043–4056.
[47] HU Y, YANG D, YANGJ. Blocking systems over an aqua planet[J]. Geophysical Research Letters, 2008, 35(19): 2008GL035351.
[48] BARRIOPEDRO D, CALVO N. On the relationship between ENSO, stratospheric sudden warmings, and blocking[J]. Journal of Climate, 2014, 27(12): 4704 –4720.
[49] DONG L, COLUCCI S J. The Role of Nonquasigeostrophic Forcing in Southern Hemisphere Blocking Onsets[J]. Monthly Weather Review, 2015, 143(4): 1455–1471.
[50] STEINFELD D, PFAHL S. The role of latent heating in atmospheric blocking dynamics: A global climatology[J]. Climate Dynamics, 2019, 53(9-10): 6159–6180.
[51] NAKAMURA N, HUANG C S Y. Atmospheric blocking as a traffic jam in thejet stream[J]. Science, 2018, 361(6397): 42-47.
[52] WANG M, ZHANG Y, LU J. The evolution dynamical processes of Ural blocking through the lens of local finite-amplitude wave activity budget analysis[J]. Geophysical Research Letters, 2021, 48(10): e2020GL091727.
[53] MARTINEAU P, NAKAMURA H, YAMAMOTO A, et al. Baroclinic blocking[J]. Geophysical Research Letters, 2022, 49(15): e2022GL097791.
[54] MA J, LIANG X. Upstream–Downstream Asymmetry in Multiscale Interaction Underlying the Northern Hemisphere Atmospheric Blockings[J]. Journal of the Atmospheric Sciences, 2023, 80(8): 1995-2011.
[55] MCKENNA M, KARAMPERIDOU C. The impacts of El Niño diversity on Northern Hemisphere atmospheric blocking[J]. Geophysical Research Letters, 2023,50(13): e2023GL104284.
[56] TRENBERTH K E, MO K C. Blocking in the Southern Hemispheres[J]. Monthly Weather Review, 1985, 113(1), 3–21.
[57] TRENBERTH K E. The signature of a blocking episode on the general circulation in the Southern Hemispheres[J]. Journal of the Atmospheric Sciences, 1986a, 43(19), 2061–2069.
[58] TRENBERTH K E. An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen-Palm flux diagnostics[J]. Journal of the Atmospheric Sciences, 1986b, 43(19): 2070–2087.
[59] BERBERY E H, Núñez M N. An observational and numerical study of blocking episodes near South America[J]. Journal of Climate, 1989, 2(11), 1352 –1361.
[60] SINCLAIR M R. A climatology of anticyclones and blocking for the Southern Hemisphere[J]. Monthly Weather Review, 1996, 124(2): 245–263.
[61] RUTLLANT J, FUENZALIDA H. Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation[J]. International Journal of Climatology, 1991, 11(1): 63–76.
[62] RENWICK J A, REVELL M J. Blocking over the South Pacific and Rossby wave propagation[J]. Monthly Weather Review, 1999, 127(10): 2233–2247.
[63] SÁEZ DE ADANA F J, COLUCCI S J. Southern Hemisphere blocking onsets associated with upper-tropospheric divergence anomalies[J]. Journal of the Atmospheric Sciences, 2005, 62(5): 1614–1625.
[64] DONG L, VOGELSANG T J, COLUCCI S J. Interdecadal Trend and ENSO-Related Internal Variability in Southern Hemisphere Blocking[J]. Journal of Climate, 2008, 21(12): 3068–3077.
[65] TIBALDI S, MOLTENI F. On the operational predictability of blocking[J]. Tellus A, 1990, 42(3): 343–365.
[66] 金荣花, 李艳, 王式功. 四种客观定量表征阻塞高压方法的对比分析[J]. 高原气象, 2009, 28(5): 1121-1128.
[67] BARNES E A, SLINGO J, WOOLLINGS T. A methodology for the comparison of blocking climatologies across indices, models and climate scenarios[J]. Climate Dynamics, 2012, 38(11-12): 2467–2481.
[68] LEJENÄS H, ØKLAND H. Characteristics of Northern Hemisphere blocking as determined from a long time series of observational data[J]. Tellus A, 1983, 35A(5): 350–362.
[69] DIAO Y, LI J, LUO D. A new blocking index and its application: Blocking action in the Northern Hemisphere[J]. Journal of Climate, 2006, 19(19): 4819 –4839.
[70] DUNN-SIGOUIN E, SON S W, LIN H. Evaluation of Northern Hemisphere blocking climatology in the global environment multiscale model[J]. Monthly Weather Review, 2013, 141(2): 707–727.
[71] WATSON J S, COLUCCI S J. Evaluation of ensemble predictions of blocking in the NCEP global spectral model[J]. Monthly Weather Review, 2002, 130(12):3008–3021.
[72] WIEDENMANN J M, LUPO A R, MOKHOV I I, et al. The climatology of blocking anticyclones for the Northern and Southern Hemispheres: Block intensity as a diagnostic[J]. Journal of Climate, 2002, 15(23): 3459–3473.
[73] FANKHAUSER J C. The derivation of consistent fields of wind and geopotential height for mesoscale rawinsonde data[J]. Journal of Applied Meteorology and Climatology, 1974, 13(6): 637–646.
[74] ANDREWS D G, MCINTYRE M E. Planetary waves in horizontal and verticalshear: The generalized Eliassen-Palm relation and the mean zonal acceleration[J]. Journal of the Atmospheric Sciences, 1976, 33(11): 2031-2048.
[75] ANDREWS D G, MCINTYRE M E. Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres[J]. Journal of the Atmospheric Sciences, 1978, 35(2): 175-185.
[76] EDMON H J, HOSKINS B J, MCINTYRE M E. Eliassen-Palm cross sections for the troposphere[J]. Journal of the Atmospheric Sciences, 1980, 37(12): 2600-2616.
[77] TAKAYA K, NAKAMURA H. A Formulation of a Phase-Independent Wave-Activity Flux for Stationary and Migratory Quasigeostrophic Eddies on a Zonally Varying Basic Flow[J]. Journal of the Atmospheric Sciences, 2001, 58(6): 608 –627.
[78] MARQUES R F C, RAO V B. A diagnosis of a long-lasting blocking event over the Southeast Pacific ocean[J]. Monthly Weather Review, 1999, 127(8): 1761–1776.
[79] AMBRIZZI T, HOSKINS B J, HSU H H. Rossby wave propagation and teleconnection patterns in the austral winter[J]. Journal of the Atmospheric Sciences, 1995, 52(21): 3661–3672.
[80] COOK K H. A Southern Hemisphere wave response to ENSO with implications for southern Africa precipitation[J]. Journal of the Atmospheric Sciences, 2001, 58(15): 2146–2162.
[81] QIN J, ROBINSON W A. On the Rossby wave source and the steady linear response to tropical forcing[J]. Journal of the Atmospheric Sciences, 1993, 50(12): 1819–1823.
[82] SARDESHMUKH P D, HOSKINS B J. The generation of global rotational flow by steady idealized tropical divergence[J]. Journal of the Atmospheric Sciences, 1988, 45(7): 1228–1251.
[83] LHOTKA O, KYSELÝ J. Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe[J]. International Journal of Climatology, 2015, 35(7): 1232-1244.
[84] RUSSO S, DOSIO A, GRAVERSEN R G, et al. Magnitude of extreme heat waves in present climate and their projection in a warming world[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(22): 12500-12512.
[85] WRIGHT J S, FUEGLISTALE S. Large differences in reanalyses of diabatic heating in the tropical upper troposphere and lower stratosphere [J]. AtmosphericChemistry and Physics, 2013, 13(18): 9565-9576.
[86] FLANNAGHAN T J, FUEGLISTALER S. Kelvin waves and shear-flow turbulent mixing in the TTL in (re-)analysis data[J]. Geophysical Research Letters, 2011, 38(2): L02801.
[87] WATANABE M, KIMOTO M. Atmosphere–ocean thermal coupling in the NorthAtlantic: A positive feedback[J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126(570): 3343–3369.
[88] WATANABE M, JIN F F. Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO[J]. Geophysical Research Letters, 2002, 29(10): 1478.
[89] WATANABE M, JIN F F. A moist Linear baroclinic model: Coupled dynamicalconvective response to El Niño[J]. Journal of Climate, 2003, 16(8): 1121–1139.
[90] LU R, LIN Z. Role of Subtropical Precipitation Anomalies in Maintaining the Summertime Meridional Teleconnection over the Western North Pacific and East Asia[J]. Journal of Climate, 2009, 22(8): 2058-2072.
[91] ZUO J, LI W, SUN C, et al. Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon[J]. Advances in Atmospheric Sciences, 2013, 30(4): 1173-1186.
[92] WANG Y, HU K, HUANG G, et al. Asymmetric impacts of El Niño and La Niña on the Pacific-North American teleconnection pattern: the role of subtropical jet stream[J]. Environmental Research Letters, 2021, 16(11): 114040.
[93] MARQUES R F C, RAO V B. Interannual variations of blockings in the Southern Hemisphere and their energetics[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D4): 4625–4636.
[94] NIE Y, ZHANG Y, YANG X Q, et al. Winter and summer Rossby wave sources in the CMIP5 models[J]. Earth and Space Science, 2019, 6(10): 1831–1846.
[95] JIN D, KIRTMAN B P. Why the Southern Hemisphere ENSO responses lead ENSO[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D23): 2009JD012657.
[96] TING M F. Steady Linear Response to Tropical Heating in Barotropic and Baroclinic Models[J]. Journal of the Atmospheric Sciences, 1996, 53(12): 1698-1709.
[97] SCHUMACHER D L, KEUNE J, VAN HEERWAARDEN C C, et al. Amplification of mega-heatwaves through heat torrents fuelled by upwind drought[J]. Nature Geoscience, 2019, 12(9): 712-717.
[98] BARRIOPEDRO D, FISCHE E M, LUTERBACHER J, et al. The hot summer of 2010: redrawing the temperature record map of Europe [J]. Science, 2011, 332(6026): 220-224.
[99] FINK A H, BRÜCHER T, KRÜGER A, et al. The 2003 European summer heatwaves and drought-synoptic diagnosis and impacts[J]. Weather, 2004, 59(8): 209-216.
[100] FISCHER E M, SCHÄR C. Consistent geographical patterns of changes in high-impact European heatwaves[J]. Nature Geoscience, 2010, 3(6): 398-403.
[101] GARCÍA-HERRERA R, DÍAZ J, TRIGO R M, et al. A Review of the European Summer Heat Wave of 2003[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(4): 267-306.
[102] SCHÄR C, VIDALE P, LÜTHI D, et al. The role of increasing temperature variability in European summer heatwaves[J]. Nature, 2004, 427(6972): 332–336.
[103] SENEVIRATNE S I, LÜTHI D, LITSCHI M, et al. Land-atmosphere coupling and climate change in Europe[J]. Nature, 2006, 443(7108): 205-209.
[104] CIAIS P, REICHSTEIN M, VIOVY N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003[J]. Nature, 2005, 437(7058): 529-533.
[105] FOLLAND C K, KNIGHT J, LINDERHOLM H W, et al. The Summer North Atlantic Oscillation: Past, Present, and Future[J]. Journal of Climate, 2009, 22(5): 1082-1103.
[106] BERG A, LINTNER B R, FINDELL K L, et al. Impact of Soil Moisture–Atmosphere Interactions on Surface Temperature Distribution[J]. Journal of Climate,2014, 27(21): 7976-7993.
[107] FISCHER E M, SENEVIRATNE S I, LÜTHI D, et al. Contribution of land -atmosphere coupling to recent European summer heat waves[J]. Geophysical Research Letters, 2007, 34(6): 2006GL029068.
[108] FISCHER E M, SENEVIRATNE S I, VIDALE P L, et al. Soil Moisture–Atmosphere Interactions during the 2003 European Summer Heat Wave [J]. Journal of Climate, 2007, 20(20): 5081-5099.
[109] HIRSCH A L, PITMAN A J, KALA J. The role of land cover change in modulating the soil moisture-temperature land-atmosphere coupling strength over Australia[J]. Geophysical Research Letters, 2014, 41(16): 5883-5890.
[110] LIU X, HE B, GUO L, et al. Similarities and Differences in the Mechanisms Causing the European Summer Heatwaves in 2003, 2010, and 2018[J]. Earth's Future, 2020, 8(4): e2019EF001386.
[111] MIRALLES D G, VAN DEN BERG M J, TEULING A J, et al. Soil moisture-temperature coupling: A multiscale observational analysis[J]. Geophysical Research Letters, 2012, 39(21): 2012GL053703.
[112] MIRALLES D G, TEULING A J, VAN HEERWAARDEN C C, et al. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation[J]. Nature Geoscience, 2014, 7(5): 345-349.
[113] RÖTHLISBERGER M, PAPRITZ L. Quantifying the physical processes leadingto atmospheric hot extremes at a global scale[J]. Nature Geoscience, 2023, 16(3): 210-216.
[114] DONG L, MITRA C, GREER S, et al. The Dynamical Linkage of Atmospheric Blocking to Drought, Heatwave and Urban Heat Island in Southeastern US: A Multi-Scale Case Study[J]. Atmosphere, 2018, 9(1): 33.
[115] FERON S, CORDERO R R, DAMIANI A, et al. Observations and Projectionsof Heat Waves in South America[J]. Scientific Reports, 2019, 9(1): 8173.
修改评论