中文版 | English
题名

各向异性磁性纳米合金的多频段微波吸收性能研究

其他题名
MULTI-BAND MICROWAVE ABSORPTION PROPERTIES OF ANISOTROPIC MAGNETIC NANOALLOYS
姓名
姓名拼音
HU Renchao
学号
11930749
学位类型
博士
学位专业
0805 材料科学与工程
学科门类/专业学位类别
08 工学
导师
汪宏
导师单位
研究生院
论文答辩日期
2024-05-09
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

 随着以5G技术为代表的无线业务的快速发展和军用信息化建设的推进,厘米波至毫米波的电磁波频谱被充分利用。然而,微波吸收作为保障通讯安全、信号稳定、电磁兼容、微波隐身的重要技术,在宽频谱范围的应用还不能被很好的解决。尽管传统磁性材料,如铁氧体、铁、钴和镍的合金及其氧化物在电磁波吸收方面有广泛应用,但它们在高频应用中受到Snoek极限的制约,难以满足日益增长的性能要求。面对这一挑战,本研究通过调节磁性合金的磁晶各向异性和形状各向异性,旨在突破传统材料的Snoek极限限制,探索在多频段有效微波吸收的新途径。本论文采用水热法和有机模板法制备了具有不同各向异性的磁性纳米合金,通过网络分析仪的同轴法和波导法测试磁性合金复合材料在2-40 GHz频段的复数介电常数和复数磁导率,重点分析微波吸收性能,并借助多物理场仿真深入研究材料的电磁波损耗机制。主要的研究成果如下:

  首先,基于调控材料的磁晶各向异性,研究其高频和多频段微波吸收。通过水热法合成Co元素偏析的 Fex(CoyNi1-y)100-x亚微米粒子,并通过控制Co元素含量调控其晶相和磁晶各向异性常数。进一步制备了HCP相和FCC相Fex(CoyNi1-y)100-x复合材料实现多个自然共振和交换共振协同作用,从而拓宽了微波吸收带宽。该复合材料的吸收带宽达到32.7 GHz(吸收频率为6.9-39.6 GHz),对应厚度小于1.8 mm。此外,在7.4 GHz和2.2 mm厚度下,最强吸收性能(RL)达到-50 dB。然后,本文通过组装24 GHz雷达模块测试了Fe23(Co0.5Ni0.5)77复合材料的高频微波吸收性能,验证了其在高频应用中的可靠性,为解决实际高频电磁波干扰问题提供有效的方案。

  其次,研究磁性纳米粒子的形状各向异性对微波吸收性能的影响,实现低频段的微波吸收。采用有机模板法结合受限转化策略,制备一维和二维各向异性Fe0.9Co0.1纳米合金。研究发现,Fe0.9Co0.1纳米合金在微波吸收方面展现了卓越的性能,尤其是在低频范围内。其中,Fe0.9Co0.1纳米片在4.2 GHz时达到了最大的反射损耗值为-48.7 dB,而Fe0.9Co0.1纳米棒在2.5 GHz时的最大反射损耗值为-35.3 dB,最大有效吸收带宽达到4.2 GHz,厚度仅为0.7 mm。通过使用COMSOL Multiphysics软件仿真分析各向异性磁性纳米粒子填充复合材料内部电磁波的传播和损耗行为。仿真结果显示,各向异性磁性纳米粒子之间的复杂相互作用,如导电网络、介电耦合、磁耦合以及磁介电协同行为,共同促进了电磁波的损耗,显著提高了微波吸收性能。此外,Fe0.9Co0.1纳米片和纳米棒具有高电导率和电磁波损耗能力。当复合材料含量超过逾渗阈值时,测试材料的电磁屏蔽性能以吸收为主。因此,Fe0.9Co0.1纳米棒和纳米片具备优异的绿色电磁屏蔽效能,在电磁波管理领域具有巨大的应用潜力。

  最后,基于各向异性磁性材料展开结构设计,研究结构设计对材料电磁性能和微波吸收性能影响。使用溶液蒸发技术制备三维结构的Fe0.9Co0.1@PS复合材料,当填充率为30 wt%时,该复合材料在1.9 mm的样品厚度下,于10.7 GHz频率处展现了最大反射损耗峰值-49.4 dB,且吸收带宽达到了3 GHz。此外,研究还探讨了添加rGO对Fe0.9Co0.1@PS微波吸收性能的影响。当rGO的添加量为0.5 wt%时,Fe0.9Co0.1/rGO@PS复合材料在1.4 mm厚度时的吸收带宽达到6.1 GHz。同时,利用冰模板法制备的Fe0.9Co0.1/MXene/PI气凝胶微波吸收材料,在2.5 mm厚度时实现-49.2 dB的吸收强度,同时具有超轻、低填充率和耐火特性,具备多功能的应用潜力。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-06
参考文献列表

[1] CHEN H H, HUANG Z Y, Zhang Y, et al. Graphene-based materials toward microwave and terahertz absorbing stealth technologies[J]. Advanced Optical Materials, 2019, 7: 1801318.
[2] 刘顺华,刘军民,董星龙,等。电磁波屏蔽及吸波材料[M]. 北京: 化学工业出版社, 2018.
[3] WU Y, TAN S J, ZHAO Y, et al. Broadband multispectral compatible absorbers for radar, infrared and visible stealth application[J]. Progress in Materials Science, 2023, 135: 101088.
[4] WANG X Y, LIAO S Y, WAN Y J, et al. Electromagnetic interference shielding materials: recent progress, structure design, and future perspective[J]. Journal of Materials Chemistry C, 2022, 10: 44-72.
[5] ZHOU R, WANG Y, LIU Z, et al. Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption[J]. Nano-Micro Letters, 2022, 14.
[6] LI Y, LIU X, NIE X, et al. Multifunctional organic–inorganic hybrid aerogel for self‐cleaning, heat‐insulating, and highly efficient microwave absorbing material[J]. Advanced Functional Materials, 2019, 29: 1807624.
[7] WANG J, WU Z, XING Y, et al. Multi‐scale design of ultra-broadband microwave metamaterial absorber based on hollow carbon/MXene/Mo2C microtube[J]. Small, 2023, 19: 2207051.
[8] RAJAVEL K, HU Y, ZHU P, et al. MXene/metal oxides-Ag ternary nanostructures for electromagnetic interference shielding[J]. Chemical Engineering Journal, 2020, 399: 125791.
[9] LIU P, GAO S, WANG Y, et al. Core-shell CoNi@Graphitic carbon decorated on B,N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation[J]. ACS Appl Mater Interfaces, 2019, 11: 25624-25635.
[10] OUYANG J, HE Z, ZHANG Y, et al. Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability[J]. ACS Applied Materials & Interfaces, 2019, 11: 39304-39314.
[11] LIU Q, CAO Q, BI H, et al. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption[J]. Advanced Materials, 2016, 28: 486-490.
[12] CAI L, JIANG H, PAN F, et al. Linkage effect induced by hierarchical architecture in magnetic MXene-based microwave absorber[J]. Small, 2023, 20: 2306698.
[13] CHENG Z, ZHOU J, LIU Y, et al. 3D printed composites based on the magnetoelectric coupling of Fe/FeCo@C with multiple heterogeneous interfaces for enhanced microwave absorption[J]. Chemical Engineering Journal, 2024, 480: 148188.
[14] DOU Y, ZHANG X, ZHAO X, et al. N,O-doped walnut-like porous carbon composite microspheres loaded with Fe/Co nanoparticles for adjustable electromagnetic wave absorption[J]. Small, 2024, 2308585.
[15] HAN G, WANG Y, ZHOU J, et al. High-performance microwave absorption properties of pyramid-shaped metamaterials based on Ni-foam@Fe3O4[J]. Journal of electronic materials, 2024, 53: 2094-2103.
[16] LI C, DENG L, HE J, et al. Multi-interfacial TiO2/carbon fibers encapsulated with needle-like FeCo2O4 for excellent microwave absorption[J]. Applied Surface Science, 2023, 629: 157417.
[17] LI C, LIANG L, YANG Y, et al. Interfacial engineering of core–shell structured FeCoNi@SnO2 magnetic composites for tunable radar-infrared compatible stealth[J]. Chemical Engineering Journal, 2024, 481: 148354.
[18] LI S, SUN Y, JIANG X, et al. Spongy ternary nano-composites with optimized impedance matching and synergistic effect for broadband and strong microwave absorption[J]. Journal of Colloid and Interface Science, 2023, 652: 1197-1207.
[19] LIU M, ZHAO B, PEI K, et al. An ion-engineering strategy to design hollow FeCo/CoFe2O4 microspheres for high-performance microwave absorption[J]. Small, 2023, 19: 2300363.
[20] WANG W, NAN K, ZHENG H, et al. Ion-exchange reaction construction of carbon nanotube modified CoNi@MoO2/C composite for ultra-intense and broad electromagnetic wave absorption[J]. Carbon, 2023, 210: 118074.
[21] WU Y, TAN S, ZHANG T, et al. Alkali and ion exchange co-modulation strategies to design magnetic–dielectric synergistic nano-absorbers for tailoring microwave absorption[J]. Nano Research, 2023, 16: 8522-8532:.
[22] ZHANG C, YANG F, ZHANG A, et al. An ionic liquid-based ultra-broadband absorber with temperature stability, polarization insensitivity, and wide incident angle[J]. Journal of Physics D: Applied Physics, 2023, 56: 085501.
[23] ZHANG X, TIAN X, QIAO J, et al. In-situ fabrication of sustainable N-doped carbon-nanotube-encapsulated CoNi heterogenous nanocomposites for high efficiency electromagnetic wave absorption[J]. Small, 2023, 19: 2302686.
[24] ZHOU Z, ZHU Q, LIU Y, et al. Construction of self-assembly based tunable absorber: lightweight, hydrophobic and self-cleaning properties[J]. Nano-Micro Letters, 2023, 15: 137.
[25] TONEGUZZO P, VIAU G, ACHER O, et al. CoNi and FeCoNi fine particles prepared by the polyol process: Physico-chemical characterization and dynamic magnetic properties[J]. Journal of Materials Science, 2000, 35: 3767-3784.
[26] JAMES P, ERIKSSON O, JOHANSSON B, et al. Calculated magnetic properties of binary alloys between Fe, Co, Ni, and Cu[J]. Physical Review B, 1999, 59: 419-430.
[27] VIAU G, RAVEL F, ACHER O, et al. Preparation and microwave characterization of spherical and monodisperse Co20Ni80 particles[J]. Journal of Applied Physics, 1994, 76: 6570-6572.
[28] WEN F S, YI H B, QIAO L, et al. Analyses on double resonance behavior in microwave magnetic permeability of multiwalled carbon nanotube composites containing Ni catalyst[J]. Applied Physics Letters, 2008, 92: 042507
[29] RA’DI Y, SIMOVSKI C R, TRETYAKOV S A. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations[J]. Physical Review Applied, 2015, 3: 037001.
[30] LIANG J, KOU H, DING S. Complex hollow bowl-like nanostructures: synthesis, application, and perspective[J]. Advanced Functional Materials, 2020, 31: 2007801.
[31] QUAN B, SHI W, ONG S J H, et al. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications[J]. Advanced Functional Materials, 2019, 29: 1901236.
[32] WU Z, CHENG HW, JIN C, et al. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption[J]. Advanced Materials, 2022, 34: 2107538.
[33] SHU R, WAN Z, ZHANG J, et al. Facile design of three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers[J]. ACS Applied Materials & Interfaces, 2020, 12: 4689-4698.
[34] LIU J, ZHANG L, ZANG D, et al. A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption[J]. Advanced Functional Materials, 2021, 31: 2105018.
[35] SONG Q, YE F, KONG L, et al. Graphene and MXene nanomaterials: toward high‐performance electromagnetic wave absorption in gigahertz band range[J]. Advanced Functional Materials, 2020, 30: 2000475.
[36] WANG C, MURUGADOSS V, KONG J, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding[J]. Carbon, 2018, 140: 696-733.
[37] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100: 207402.
[38] WANG M, TANG X H, CAI J H, et al. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review[J]. Carbon, 2021, 177: 377-402.
[39] ZHOU R, YU Z, WU Z, et al. 3D printing metamaterials for highly efficient electromagnetic wave absorption[J]. Science China Materials, 2023, 66: 1283-1312.
[40] CAO M S, WANG X X, ZHANG M, et al. Electromagnetic response and energy conversion for functions and devices in low‐dimensional materials[J]. Advanced Functional Materials, 2019, 29: 1807398.
[41] SHIN D, URZHUMOV Y, JUNG Y, et al. Broadband electromagnetic cloaking with smart metamaterials[J]. Nature Communications, 2012, 3: 1213.
[42] Hu R C, Li L, Xu X W, et al. Dimensional design of Fe0.9Co0.1 nano-alloys with enhanced low-frequency microwave absorption[J]. Chemical Engineering Journal, 2024, 482: 148864.
[43] ZHAO S, WANG C, ZHONG B. Optimization of electromagnetic wave absorbing properties for Ni-Co-P/GNs by controlling the content ratio of Ni to Co[J]. Journal of Magnetism and Magnetic Materials, 2020, 495: 165753.
[44] XU H, YIN X, LI M, et al. Ultralight cellular foam from cellulose nanofiber/carbon nanotube self-assemblies for ultrabroad-band microwave absorption[J]. ACS Applied Materials & Interfaces, 2019, 11: 22628-22636.
[45] LIU P, GAO S, HUANG W, et al. Hybrid zeolite imidazolate framework derived N-implanted carbon polyhedrons with tunable heterogeneous interfaces for strong wideband microwave attenuation[J]. Carbon, 2020, 159: 83-93.
[46] GU W, CUI X, ZHENG J, et al. Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation[J]. Journal of Materials Science & Technology, 2021, 67: 265-272.
[47] ZHANG S, WANG T, GAO M, et al. Strict proof and applicable range of the quarter-wavelength model for microwave absorbers[J]. Journal of Physics D: Applied Physics, 2020, 53: 265004.
[48] 李素萍. 铁钴合金介电型复合材料的制备及其吸波性能的研究[D]. 西北工业大学, 2019.
[49] ZHOU W, GUO L. Iron triad (Fe, Co, Ni) nanomaterials: structural design, functionalization and their applications[J]. Chemcial Society Reviews, 2015, 44: 6697-6707.
[50] REN Y, WANG X, MA J, et al. Metal-organic framework‑derived carbon‑based composites for electromagnetic wave absorption: Dimension design and morphology regulation[J]. Journal of Materials Science & Technology, 2023, 132: 223-251.
[51] LIU P, GAO S, ZHANG G, et al. Hollow engineering to Co@N‐doped carbon nanocages via synergistic protecting‐etching strategy for ultrahigh microwave absorption[J]. Advanced Functional Materials, 2021, 31: 2102812.
[52] AHARONI A. Exchange resonance modes in a ferromagnetic sphere[J]. Journal of Applied Physics, 1991, 69(11): 7762-7764.
[53] SNOEK J L. Gyromagnetic resonance in ferrites[J]. Nature, 1947, 160: 90.
[54] PAN F, NING M, LI Z, et al. Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber[J]. Advanced Functional Materials, 2023, 33: 2300374.
[55] ELKAMMOUNI R, INFANTE G, TORREJÓN J, et al. Microwave behavior in CoFe-based single- and two-phase magnetic microwires[J]. physica status solidi (a), 2011, 208: 520-525.
[56] YAN SJ, ZHEN L, XU CY, et al. The influence of Fe content on the magnetic and electromagnetic characteristics for Fex(CoNi)1−x ternary alloy nanoparticles[J]. Journal of Applied Physics, 2011, 109: 07A320-1.
[57] WEN F, YI H, QIAO L, et al. Analyses on double resonance behavior in microwave magnetic permeability of multiwalled carbon nanotube composites containing Ni catalyst[J]. Applied Physics Letters, 2008, 92: 042507.
[58] QIN M, ZHANG L, WU H. Dielectric loss mechanism in electromagnetic wave absorbing materials[J]. Advanced Science, 2022, 9: 2105553.
[59] 赵秀芬,王树伦,徐勤涛,杨丰帆. 纳米磁性金属电磁波吸收材料[J]. 宇航材料工艺, 2010, 6: 16-20.
[60] HE P, HOU Z L, ZHANG K L, et al. Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption[J]. Journal of Materials Science, 2017, 52: 8258-8267.
[61] CHENG J, ZHANG H, NING M, et al. Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy?[J]. Advanced Functional Materials, 2022, 32: 2200123.
[62] CAO M, WANG X, CAO W, et al. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion[J]. Small, 2018, 14: 1800987.
[63] LEI Z, TIAN D, LIU X, et al. Electrically conductive gradient structure design of thermoplastic polyurethane composite foams for efficient electromagnetic interference shielding and ultra-low microwave reflectivity[J]. Chemical Engineering Journal, 2021, 424: 130365.
[64] XU Y, LIN Z, YANG Y, et al. Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design[J]. Materials Horizons, 2022, 9: 708-719.
[65] XIAO J, QI X, GONG X, et al. Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance[J]. Nano Research, 2022, 15: 7778-7787.
[66] WAN Y J, WANG X Y, LI X M, et al. Ultrathin densified carbon nanotube film with “Metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness[J]. ACS Nano, 2020, 14: 14134-14145.
[67] WEI Q, PEI S, QIAN X, et al. Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film[J]. Advanced Materials, 2020, 32: 1907411.
[68] FU X Y, ZHENG Q, LI L, et al. Vertically implanting MoSe2 nanosheets on the rGO sheets towards excellent multi-band microwave absorption[J]. Carbon, 2022, 197: 324-333.
[69] HUANG L, LI J, WANG Z, et al. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane[J]. Carbon, 2019, 143: 507-516.
[70] ZHAO T, JIA Z, ZHANG Y, et al. Multiphase molybdenum carbide doped carbon hollow sphere engineering: The superiority of unique double-shell structure in microwave absorption[J]. Small, 2022, 19: 2206323.
[71] GU W, ONG S J H, SHEN Y, et al. A lightweight, elastic, and thermally insulating stealth foam with high infrared‐radar compatibility[J]. Advanced Science, 2022, 9: 2204165.
[72] WEI J, LIN Z, LEI Z, et al. Lightweight and highly compressible expandable polymer microsphere/silver nanowire composites for wideband electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2022, 14: 5940-5950.
[73] GÓMEZ-POLO C, MARÍN P, PASCUAL L, et al. Structural and magnetic properties of nanocrystallineFe73.5−xCoxSi13.5B9CuNb3 alloys[J]. Physical Review B, 2001, 65.
[74] 鲍元恺,金秀中,赵振声,何华辉. 六角磁铅石型铁氧体材料微波吸收性能的理论分析[J]. 宇航材料工艺, 1989, 4: 16-18.
[75] GARANIN D A, CHUDNOVSKY E M. Absorption of microwaves by random-anisotropy magnets[J]. Physical Review B, 2021, 103: 214414.
[76] WANG Z, ZHAO G L. Electromagnetic wave absorption of multi-walled carbon nanotube-epoxy composites in the R band[J]. Journal of Materials Chemistry C, 2014, 2: 9406-9411.
[77] LI X, WANG L, YOU W, et al. Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units[J]. Nanoscale, 2019, 11: 2694-2702.
[78] PEYMANFAR R, JAVANSHIR S, NAIMI-JAMAL M R, et al. Morphology and medium influence on microwave characteristics of nanostructures: A review[J]. Journal of Materials Science, 2021, 56: 17457-17477.
[79] WANG F, LI X, CHEN Z, et al. Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites[J]. Chemical Engineering Journal, 2021, 405.
[80] 谭果果. 易面磁各向异性磁性材料的微波吸收性能的研究[D]. 兰州大学, 2015.
[81] SHI X, LIU Z, YOU W, et al. Janus-like Fe3O4/PDA vesicles with broadening microwave absorption bandwidth[J]. Journal of Materials Chemistry C, 2018, 6: 7790-7796.
[82] DÍAZ-ORTIZ A, DRAUTZ R, FÄHNLE M, et al. Structure and magnetism in bcc-based iron-cobalt alloys[J]. Physical Review B, 2006, 73: 224208-1.
[83] ZHONG J, TAN G, MAN Q, et al. Optimisation of microwave absorption properties of Fe-substituted Y2Co17−xFex soft-magnetic composites[J]. Journal of Materials Science: Materials in Electronics, 2021, 32: 27849-27859.
[84] XIE X, WANG B, WANG Y, et al. Spinel structured MFe2O4 (M = Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review[J]. Chemical Engineering Journal, 2022, 428: 131160.
[85] LIU J, CHE R, CHEN H, et al. Microwave Absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells[J]. Small, 2012, 8: 1214-1221.
[86] KAUR H, BHATIA K S, TEWARI B S, et al. Influence of Co-in doping in M-type barium-strontium hexagonal ferrite on microwave absorption[J]. Journal of Electronic Materials, 2022, 51: 4152-4160.
[87] ARORA A, NARANG S B, PUBBY K. Enhanced microwave absorption properties of doped M-type barium hexagonal ferrites in Ka-band frequencies[J]. Journal of Superconductivity and Novel Magnetism, 2019, 32: 2705-2709.
[88] SINGH J, SINGH C, KAUR D, et al. Tunable microwave absorption in CoAl substituted M-type BaSr hexagonal ferrite[J]. Materials & Design, 2016, 110: 749-761.
[89] LIU Y, LI H, et al. Ultra-broadband microwave absorption of (Mn0.2Fe0.2Zn1.2)x substituted Co2Y hexaferrites with a self-aligned sheet stacked, highly c-axis oriented and multi-domain structure[J]. Journal of Materials Chemistry A, 2023, 11: 26285-26300.
[90] OMELYANCHIK A, SALVADOR M, D’ORAZIO F, et al. Magnetocrystalline and surface anisotropy in CoFe2O4 nanoparticles[J]. Nanomaterials, 2020, 10:.
[91] ZHAO R, GAO T, LI Y, et al. Highly anisotropic Fe3C microflakes constructed by solid-state phase transformation for efficient microwave absorption[J]. Nature Communications, 2024, 15: 1497.
[92] ZHANG M, HAN C, CAO W Q, et al. A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor[J]. Nano-micro Letter, 2020, 13: 27.
[93] ZHOU M, LU F, CHEN B, et al. Thickness dependent complex permittivity and microwave absorption of NiCo2O4 nanoflakes[J]. Materials Letters, 2015, 159: 498-501.
[94] LIANG J, YE F, CAO Y, et al. Defect‐engineered graphene/Si3N4 multilayer alternating core-shell nanowire membrane: A plainified hybrid for broadband electromagnetic wave absorption[J]. Advanced Functional Materials, 2022, 32: 2200141.
[95] YAN S J, ZHEN L, XU C Y, et al. Microwave absorption properties of FeNi3 submicrometre spheres and SiO2@FeNi3 core–shell structures[J]. Journal of Physics D: Applied Physics, 2010, 43: 245003.
[96] WANG Y F, ZHU L, HAN L, et al. Recent progress of one-dimensional nanomaterials for microwave absorption: A review[J]. ACS Applied. Nano Materials, 2023, 6: 7107-7122.
[97] VAKIL P N, HARDY D A, Strouse GF, et al. Synthesis of highly uniform nickel multipods with tunable aspect ratio by microwave power control[J]. ACS Nano, 2018, 12: 6784-6793.
[98] QIAN Y, MENG X F, LIU H J, et al. Magnetic field-induced synthesis of one-dimensional nickel nanowires for enhanced microwave absorption[J]. Advanced Materials Interfaces, 2023, 10: 2201604.
[99] NATH M, CHOUDHURY A, KUNDU A, et al. Synthesis and characterization of magnetic iron sulfide nanowires[J]. Advanced Materials, 2003, 15: 2098-2101.
[100] WANG H, ZHAO J, WANG Z, et al. Bird-nest-like multi-interfacial MXene @SiCNWs@Co/C hybrids with enhanced electromagnetic wave absorption[J]. ACS Applied Materials & Interfaces, 2023, 15: 4580-4590.
[101] Tian D, Xu Y, Wang Y, et al. In-situ metallized carbon nanotubes/poly(styrene-butadiene-styrene) (CNTs/SBS) foam for electromagnetic interference shielding[J]. Chemical Engineering Journal, 2021, 420: 130482.
[102] LIU P, WANG Y, ZHANG G, et al. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction[J]. Advanced Functional Materials, 2022, 32: 2202588.
[103] MA J, WANG X, CAO W, et al. A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures[J]. Chemical Engineering Journal, 2018, 339: 487-498.
[104] QIAN Y, LIU H, WANG X, et al. Magnetic Field-induced synthesis of one-dimensional nickel nanowires for enhanced microwave absorption[J]. Advanced Materials Interfaces, 2023, 10: 2201604.
[105] QIAO M, LEI X, MA Y, et al. Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material[J]. Nano Research, 2018, 11: 1500-1519.
[106] SHI X L, CAO M S, YUAN J, et al. Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability[J]. Applied Physics Letters, 2009, 95: 163108.
[107] SHI X, YOU W, LI X, et al. In-situ regrowth constructed magnetic coupling 1D/2D Fe assembly as broadband and high-efficient microwave absorber[J]. Chemical Engineering Journal, 2021, 415: 128951.
[108] PAN J, GUO H, WANG M, et al. Shape anisotropic Fe3O4 nanotubes for efficient microwave absorption[J]. Nano Research, 2020, 13: 621-629.
[109] ZHANG J, FRANZ C, CZERNER M, et al. Perpendicular magnetic anisotropy in CoFe/MgO/CoFe magnetic tunnel junctions by first-principles calculations[J]. Physical Review B, 2014, 90: 184409.
[110] XU C, LIU P, WU Z, et al. Customizing heterointerfaces in multilevel hollow architecture constructed by magnetic spindle arrays using the polymerizing-etching strategy for boosting microwave absorption[J]. Advanced Science, 2022, 9: 2200804.
[111] XU Z, DU Y, LIU D, et al. Pea-like Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption[J]. ACS Applied Materials & Interfaces, 2019, 11: 4268-4277.
[112] WU L H, WANG G, MOU P, et al. Carbon nanocoils/carbon foam as the dynamically frequency-tunable microwave absorbers with an ultrawide tuning range and absorption bandwidth[J]. Advanced Functional Materials, 2022, 32: 2209898.
[113] HUAN X, WANG H, DENG W, et al. Integrating multi-heterointerfaces in a 1D@2D@1D hierarchical structure via autocatalytic pyrolysis for ultra-efficient microwave absorption performance[J]. Small, 2022, 18: 2105411.
[114] WANG L, LI X, LI Q, et al. Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multiwalled carbon nanotubes: As a lightweight and high-performance microwave absorber[J]. ACS Applied Materials & Interfaces, 2018, 10: 22602-22610.
[115] HE M, HU J, YAN H, et al. Shape anisotropic chain‐like CoNi/Polydimethylsiloxane composite films with excellent low‐frequency microwave absorption and high thermal conductivity[J]. Advanced Functional Materials, 2024, 2316691.
[116] LIANG H, CHEN G, LIU D, et al. Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on ni single-atoms model absorber[J]. Advanced Functional Materials, 2022, 33: 2212604.
[117] XU C, LIU P, WU Z, et al. Customizing heterointerfaces in multilevel hollow architecture constructed by magnetic spindle arrays using the polymerizing-etching strategy for boosting microwave absorption[J]. Advanced Science, 2022, 9: 2200804.
[118] LIN J, LIANG H, JIA H, et al. In situ encapsulated Fe3O4 nanosheet arrays with graphene layers as an anode for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5: 24594-24601.
[119] SUN G, DONG B, CAO M, et al. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption[J]. Chemistry of Materials, 2011, 23: 1587-1593.
[120] WALSER R M, WIN W, VALANJU P M. Shape-optimized ferromagnetic particles with maximum theoretical microwave susceptibility[J]. IEEE Transactions on Magnetics, 1998, 34: 1390-1392.
[121] CAO M S, SHU J C, WANG X X, et al. Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency[J]. Annalen der Physik, 2019, 531: 1800390.
[122] LIAO S Y, WANG X Y, LI X M, et al. Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband EMI shielding[J]. Chemical Engineering Journal, 2021, 422: 129962.
[123] LI X, YIN X, SONG C, et al. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance[J]. Advanced Functional Materials, 2018, 28: 1803938.
[124] WU G, ZHANG H, LUO X, et al. Investigation and optimization of Fe/ZnFe2O4 as a Wide-band electromagnetic absorber[J]. Journal of Colloid Interface Science, 2019, 536: 548-555.
[125] WANG C, LI J, GUO S, et al. The influence of gradient and porous configurations on the microwave absorbing performance of multilayered graphene/thermoplastic polyurethane composite foams[J]. RSC Advances, 2019, 9: 21859-21872.
[126] DI J, DUAN Y, PANG H, et al. Two-dimensional basalt/Ni microflakes with uniform and compact nanolayers for optimized microwave absorption performance[J]. ACS Applied Materials & Interfaces, 2022, 14: 51545-51554.
[127] PAN J, ZHANG R, ZHEN Z, et al. Enhanced microwave absorption of shape anisotropic Fe3O4 nanoflakes and their composites[J]. Advanced Engineering Materials, 2021, 24: 2100790.
[128] LI X, WU Z, YOU W, et al. Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber[J]. Nano-Micro Letters, 2022, 14: 73.
[129] LIU Y, FU Y, LIU L, et al. Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core-shell nanosheets for improved microwave absorption[J]. ACS Appl Mater Interfaces, 2018, 10: 16511-16520.
[130] LIU Q, CAO Q, ZHAO X, et al. Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography[J]. ACS Applied Materials & Interfaces, 2015, 7: 4233-4240.
[131] HUANG M, WANG L, PEI K, et al. Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption[J]. Small, 2020, 16: 2000158.
[132] WANG S, LI D, ZHOU Y, et al. Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption[J]. ACS Nano, 2020, 14: 8634-8645.
[133] LIU Y, TIAN C, WANG F, et al. Dual-pathway optimization on microwave absorption characteristics of core-shell Fe3O4@C microcapsules: Composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell[J]. Chemical Engineering Journal, 2023, 461: 141867.
[134] CAO XY, ZHAO R, XUE W, et al. Fabrication of an ultralight Ni-MOF-rGO aerogel with both dielectric and magnetic performances for enhanced microwave absorption: Microspheres with hollow structure grow onto the GO nanosheets[J]. ACS Sustainable Chemistry & Engineering, 2023, 15: 9685-9696.
[135] WEN C, LI X, ZHANG R, et al. High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres[J]. ACS Nano, 2022, 16: 1150-1159.
[136] 赵朋飞. 钴掺杂的纳米钴锰氧化物基于第一性原理的结构、磁性、微波吸收的研究[D]. 复旦大学, 2013.
[137] 吴楠楠. 磁性纳米复合材料的制备及其电磁波吸收性能[D]. 山东大学, 2019.
[138] WANG X X, CAO W Q, CAO M S, et al. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices[J]. Advanced Materials, 2020, 32: 2002112.
[139] KIM T, LEE J, LEE K, et al. Magnetic and dispersible FeCoNi-graphene film produced without heat treatment for electromagnetic wave absorption[J]. Chemical Engineering Journal, 2019, 361: 1182-1189.
[140] CHENG H, PAN Y, WANG X, et al. Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth[J]. Nano-Micro Letters, 2022, 14: 63.
[141] WANG Y, QU Z, WANG W, et al. Multidimensional nanomaterials synergistic polyimide nanofiber/MXene/NiFe2O4 hybrid aerogel for high-performance microwave absorption[J]. Chemical Engineering Journal, 2023, 470: 144435.
[142] SHUKLA V. Review of electromagnetic interference shielding materials fabricated by iron ingredients[J]. Nanoscale Advances, 2019, 1: 1640-1671.
[143] 朱士猛. 低维磁各向异性单体的磁结构电子全息研究[D]. 兰州大学, 2018.
[144] SUZUK K. Random magnetocrystalline anisotropy in two-phase nanocrystalline systems[J]. Physical Review B, 1997, 58: 2731-2739.
[145] ERIKSSON O, JOHANSSON B, ALBERS R C, et al. Orbital magnetism in Fe, Co, and Ni[J]. Physical Review B, 1990, 42: 2707-2710.
[146] URBACH J S, MADISON R C, MARKERT J T. Reproducibility of magnetic avalanches in an Fe-Ni-Co ferromagnet[J]. Physical Reviews Letter, 1995, 75: 4694-4697.
[147] SUN X, YANG M, YANG S, et al. Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure[J]. Small, 2019, 15: 1902974.
[148] WANG L, LI X, LI Q, et al. Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth[J]. Small, 2019, 15: 1900900.
[149] WANG F, LIU Y, ZHAO H, et al. Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics[J]. Chemical Engineering Journal, 2022, 450: 138160.
[150] JIA Z, WANG B, FENG A, et al. Fabrication of NixCo3-xS4 hollow nanosphere as wideband electromagnetic absorber at thin matched thickness[J]. Ceramics International, 2019, 45: 15854-15859.
[151] WANG Y, GAO X, WU X, et al. Facile design of 3D hierarchical NiFe2O4/N-GN/ZnO composite as a high performance electromagnetic wave absorber[J]. Chemical Engineering Journal, 2019, 375: 121942.
[152] WU T, LIU Y, ZENG X, et al. Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption[J]. ACS Applied Materials & Interfaces, 2016, 8: 7370-7380.
[153] LV R, KANG F, GU J, et al. Carbon nanotubes filled with ferromagnetic alloy nanowires: Lightweight and wide-band microwave absorber[J]. Applied Physics Letters, 2008, 93: 223105.
[154] KONG LB, LI ZW, LIU L, et al. Recent progress in some composite materials and structures for specific electromagnetic applications[J]. International Materials Reviews, 2013, 58: 203-259.
[155] YU P, BESTEIRO LV, HUANG Y, et al. Broadband metamaterial absorbers[J]. Advanced Optical Materials, 2018, 7: 1800995.
[156] GONG J, YANG F, SHAO Q, et al. Microwave absorption performance of methylimidazolium ionic liquids: towards novel ultra-wideband metamaterial absorbers[J]. RSC Advances, 2017, 7: 41980-41988.
[157] LIU C, ZHANG Y, TANG Y, et al. The tunable magnetic and microwave absorption properties of the Nb5+–Ni2+ co-doped M-type barium ferrite[J]. Journal of Materials Chemistry C, 2017, 5: 3461-3472.
[158] LIU Q, CAO Q, BI H, et al. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption[J]. Advanced Materials, 2016, 28: 486-490.
[159] LV H, ZHANG H, JI G, et al. Interface strategy to achieve tunable high frequency attenuation[J]. ACS Applied Materials & Interfaces, 2016, 8: 6529-6538.
[160] OUYANG J, HE Z, ZHANG Y, et al. Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability[J]. ACS Applied Materials & Interfaces, 2019, 11: 39304-39314.
[161] PENG K, FANG G, GUO C, et al. Microwave absorption enhancement of FeCoNi contributed by improved crystallinity and flake-like particles[J]. Journal of Magnetism and Magnetic Materials, 2019, 490: 165488.
[162] SHI X, YOU W, ZHAO Y, et al. Multi-scale magnetic coupling of Fe@SiO2@C-Ni yolk@triple-shell microspheres for broadband microwave absorption[J]. Nanoscale, 2019, 11: 17270-17276.
[163] ZHOU J, SHU X, WANG Z, et al. Hydrothermal synthesis of polyhedral FeCo alloys with enhanced electromagnetic absorption performances[J]. Journal of Alloys and Compounds, 2019, 794: 68-75.
[164] ZHANG Y, HUANG Y, ZHANG T, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Advanced Materials, 2015, 27: 2049-2053.
[165] TANAKA M, KONO H, MARUYAMA K. Selective heating mechanism of magnetic metal oxides by a microwave magnetic field[J]. Physical Review B, 2009, 79: 104420.
[166] BIASI R S, ARAUJO S M. Magnetically modulated microwave absorption in the 2212 and 2223 phases of the Bi-Sr-Ca-Cu-O system[J]. Physical Review B, 1995, 51: 8645-8646.
[167] TEJADA J, ZYSLER R D, MOLINS E, et al. Evidence for quantization of mechanical rotation of magnetic nanoparticles[J]. Physical Review Letter, 2010, 104: 027202.
[168] FENG J, ZONG Y, SUN Y, et al. Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance[J]. Chemical Engineering Journal, 2018, 345: 441-451.
[169] GAO Z, LAN D, ZHANG L, et al. Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption[J]. Advanced Functional Materials, 2021, 31: 2106677.
[170] GAO Z, IQBAL A, HASSAN T, et al. Texture regulation of metal-organic frameworks, microwave absorption mechanism-oriented structural optimization and design perspectives[J]. Advanced Science, 2022, 9: 2204151.
[171] LIANG L, GU W, WU Y, et al. Heterointerface engineering in electromagnetic absorbers: new insights and opportunities[J]. Advanced Materials, 2022, 34: 2106195.
[172] YANG B, FANG J, XU C, et al. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption[J]. Nano-Micro Letters, 2022, 14: 170-182.
[173] LI X, WEN C, YANG L, et al. MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy[J]. Carbon, 2021, 175: 509-518.
[174] PULLAR RC. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics[J]. Progress in Materials Science, 2012, 57: 1191-1334.
[175] ZHANG H, ZHAO Y, ZUO X, et al. Construction of chiral-magnetic-dielectric trinity composites for efficient microwave absorption with low filling ratio and thin thickness[J]. Chemical Engineering Journal, 2023, 467: 143414.
[176] LIU Y, ZHOU X, JIA Z, et al. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn‐based MOFs‐derived composites[J]. Advanced Functional Materials, 2022, 32: 2204499.
[177] WANG K, CHEN Y, TIAN R, et al. Porous Co-C core-shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance[J]. ACS Applied Materials & Interfaces, 2018, 10: 11333-11342.
[178] HUAN X, WANG H, DENG W, et al. Integrating multi-heterointerfaces in a 1D@2D@1D hierarchical structure via autocatalytic pyrolysis for ultra-efficient microwave absorption performance[J]. Small, 2022, 18: 2105411.
[179] LIU Y, FU Y, LIU L, et al. Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core-shell nanosheets for improved microwave absorption[J]. ACS Applied Materials & Interfaces, 2018, 10: 16511-16520.
[180] KUMAR S, NANN T. Shape control of II-VI semiconductor nanomaterials[J]. Small, 2006, 2: 316-329.
[181] ZANG Z, ZHOU Y, YAO W, et al. Synthesis and magnetic properties of new [Fe18S25](TETAH)14 nanoribbons: an efficient precursor to Fe7S8 nanowires and porous Fe2O3 nanorods[J]. Chemical Materials, 2008, 20: 4749-4755.
[182] QIN D H, SUN Q Y, HUANG Y, et al. Fine magnetic properties obtained in FeCo alloy nanowire arrays[J]. Chemical Physical Letter, 2002, 358: 484-488.
[183] YANG B, CAO Y, ZHANG L, et al. Controlled chemical synthesis and enhanced performance of micron-sized FeCo particles[J]. Journal of Alloys and Compounds, 2014, 615: 322-326.
[184] JIA X, LI Y, SHEN B, et al. Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: A review[J]. Composites Part B: Engineering, 2022, 233: 109652.
[185] LI M, ZHU W, LI X, et al. Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption[J]. Advanced Science, 2022, 9: 2201118.
[186] LIU W, LIU M, MA R, et al. Mechanical strain-tunable microwave magnetism in flexible CuFe2O4 epitaxial thin film for wearable sensors[J]. Advanced Functional Materials, 2018, 28: 1705928.
[187] LV H, YANG Z, LIU B, et al. A flexible electromagnetic wave-electricity harvester[J]. Nature Communications, 2021, 12: 834-843.
[188] ZHANG H, CHENG J, WANG H, et al. Initiating VB‐group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation[J]. Advanced Functional Materials, 2021, 32: 2108194.
[189] GAO Z, MA Z, LAN D, et al. Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption[J]. Advanced Functional Materials, 2022, 32: 2112294.
[190] LIU J, ZHANG L, WU H. Anion‐doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption[J]. Advanced Functional Materials, 2022, 32: 2200544.
[191] LV H, YANG Z, XU H, et al. An electrical switch-driven flexible electromagnetic absorber[J]. Advanced Functional Materials, 2019, 30: 1907251.
[192] LI X. Synthesis and magnetic properties of FeCoNi nanoparticles by hydrogen plasma metal reaction[J]. Journal of Magnetism and Magnetic Materials, 2000, 214: 195-203.
[193] MESHCHERYAKOV V F, FETISOV Y K, STASHKEVICH A A, et al. Magnetic and microwave properties of nanocomposite films on the basis of Fe-Co-Ni particles of various shapes[J]. Journal of Applied Physics, 2008, 104: 063910.
[194] LI B, MA Z, ZHANG X, et al. NiO/Ni heterojunction on N-doped hollow carbon sphere with balanced dielectric loss for efficient microwave absorption[J]. Small, 2023, 19: 2207197.
[195] YE F, SONG Q, ZHANG Z, et al. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption[J]. Advanced Functional Materials, 2018, 28: 1707205.
[196] WU G, CHENG Y, YANG Z, et al. Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior[J]. Chemical Engineering Journal, 2018, 333: 519-528.
[197] WANG L, LI X, SHI X, et al. Recent progress of microwave absorption microspheres by magnetic-dielectric synergy[J]. Nanoscale, 2021, 13: 2136-2156.
[198] 吴燕辉. 磁性纳米材料的形状各向异性及微波电磁性能研究[D]. 电子科技大学, 2018.
[199] KONG L, YIN X, XU H, et al. Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite[J]. Carbon, 2019, 145: 61-66.
[200] WU Z, YANG Z, JIN C, et al. Accurately engineering 2D/2D/0D heterojunction in hierarchical Ti3C2Tx MXene nanoarchitectures for electromagnetic wave absorption and shielding[J]. ACS Applied Materials & Interfaces, 2021, 13: 5866-5876.
[201] WU Y, ZHAO Y, ZHOU M, et al. Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels[J]. Nano-Micro Letters, 2022, 14: 171-188.
[202] WU N, LIU C, XU D, et al. Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C Composite Flowers[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 12471-12480.
[203] LI M, ZHU W, LI X, et al. Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption[J]. Advanced Science, 2022, 9: 2201118.
[204] CHEN W, XIAO P, CHEN H, et al. Polymeric graphene bulk materials with a 3D cross‐linked monolithic graphene network[J]. Advanced Materials, 2018, 31: 1802403.
[205] SHU J C, CAO M S, ZHANG M, et al. Molecular patching engineering to drive energy conversion as efficient and environment‐friendly cell toward wireless power transmission[J]. Advanced Functional Materials, 2020, 30: 1908299.

所在学位评定分委会
材料科学与工程
国内图书分类号
TB34
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766008
专题南方科技大学
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
胡仁超. 各向异性磁性纳米合金的多频段微波吸收性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930749-胡仁超-材料科学与工程(13258KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[胡仁超]的文章
百度学术
百度学术中相似的文章
[胡仁超]的文章
必应学术
必应学术中相似的文章
[胡仁超]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。