[
[1] KYRIACOS U, JELSMA J, JORDAN S. Monitoring vital signs using early warning scoring systems: a review of the literature[J]. Journal of Nursing Management, 2011, 19(3): 311-330.
[2] BEAUMONT K, LUETTEL D, THOMSON R. Deterioration in hospital patients: early signs and appropriate actions[J]. Nursing Standard (through 2013), 2008, 23(1): 43.
[3] BERWICK D M, CALKINS D R, MCCANNON C J, et al. The 100 000 lives campaign: setting a goal and a deadline for improving health care quality[J]. Jama, 2006, 295(3): 324-327.
[4] HILLMAN K, BRISTOW P, CHEY T, et al. Antecedents to hospital deaths[J]. Internal Medicine Journal, 2001, 31(6): 343-348.
[5] MCQUILLAN P, PILKINGTON S, ALLAN A, et al. Confidential inquiry into quality of care before admission to intensive care[J]. British Medical Journal, 1998, 316(7148): 1853-1858.
[6] GOLDHILL D, MCNARRY A, MANDERSLOOT G, et al. A physiologically-based early warning score for ward patients: the association between score and outcome[J]. Anaesthesia, 2005, 60(6): 547-553.
[7] KNAUS W A, DRAPER E A, WAGNER D P, et al. APACHE II: a severity of disease classification system.[J]. Critical Care Medicine, 1985, 13(10): 818-829.
[8] ELLIOTT M, COVENTRY A. Critical care: the eight vital signs of patient monitoring[J]. British Journal of Nursing, 2012, 21(10): 621-625.
[9] JOHNSTON B W, BARRETT-JOLLEY R, KRIGE A, et al. Heart rate variability: Measurement and emerging use in critical care medicine[J]. Journal of the Intensive Care Society, 2020, 21 (2): 148-157.
[10] BODENES L, N’GUYEN Q T, LE MAO R, et al. Early heart rate variability evaluation enables to predict ICU patients’ outcome[J]. Scientific Reports, 2022, 12(1): 2498.
[11] HILLMAN K M, BRISTOW P J, CHEY T, et al. Duration of life-threatening antecedents prior to intensive care admission[J]. Intensive Care Medicine, 2002, 28(11): 1629-1634.
[12] BUIST M D, BURTON P R, BERNARD S A, et al. Recognising clinical instability in hospital patients before cardiac arrest or unplanned admission to intensive care: A pilot study in a tertiary-care hospital[J]. Medical Journal of Australia, 1999, 171(1): 22-25.
[13] TASK FORCE OF THE EUROPEAN SOCIETY OF CARDIOLOGY THE NORTH AMERI CAN SOCIETY OF PACING E. Heart rate variability: standards of measurement, physiological interpretation, and clinical use[J]. Circulation, 1996, 93(5): 1043-1065.
[14] RAJENDRA ACHARYA U, PAUL JOSEPH K, KANNATHAL N, et al. Heart rate variability: a review[J]. Medical and Biological Engineering and Computing, 2006, 44: 1031-1051.
[15] FUJIWARA K, MIYAJIMA M, YAMAKAWA T, et al. Epileptic seizure prediction based on multivariate statistical process control of heart rate variability features[J]. IEEE Transactions on Biomedical Engineering, 2015, 63(6): 1321-1332.
[16] MEJÍA-MEJÍA E, MAY J M, ELGENDI M, et al. Differential effects of the blood pressure state on pulse rate variability and heart rate variability in critically ill patients[J]. NPJ Digital Medicine, 2021, 4(1): 82.
[17] KARMALI S N, SCIUSCO A, MAY S M, et al. Heart rate variability in critical care medicine: a systematic review[J]. Intensive Care Medicine Experimental, 2017, 5(1): 1-15.
[18] SZTAJZEL J, et al. Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system[J]. Swiss Medical Weekly, 2004, 134(35-36): 514-522.
[19] LA ROVERE M T, PINNA G D, MAESTRI R, et al. Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients[J]. Circulation, 2003, 107(4): 565-570.
[20] WATKINSON P, BARBER V, PRICE J, et al. A randomised controlled trial of the effect of continuous electronic physiological monitoring on the adverse event rate in high risk medical and surgical patients[J]. Anaesthesia, 2006, 61(11): 1031-1039.
[21] KHANAM F T Z, AL-NAJI A, CHAHL J. Remote monitoring of vital signs in diverse nonclinical and clinical scenarios using computer vision systems: A review[J]. Applied Sciences, 2019, 9(20): 4474.
[22] SATHYANARAYANA S, SATZODA R K, SATHYANARAYANA S, et al. Vision-based patient monitoring: a comprehensive review of algorithms and technologies[J]. Journal of Ambient Intelligence and Humanized Computing, 2018, 9(2): 225-251.
[23] KHANAM F T Z, PERERA A G, AL-NAJI A, et al. Non-contact automatic vital signs monitoring of infants in a neonatal intensive care unit based on neural networks[J]. Journal of Imaging, 2021, 7(8): 122.
[24] ALIĆ B, ZAUBER T, WIEDE C, et al. Current methods for contactless optical patient diagnosis: a systematic review[J]. BioMedical Engineering OnLine, 2023, 22(1): 1-12.
[25] HAQUE A, GUO M, ALAHI A, et al. Towards vision-based smart hospitals: a system for tracking and monitoring hand hygiene compliance[C]//Machine Learning for Healthcare Conference. PMLR, 2017: 75-87.
[26] ESTEVA A, CHOU K, YEUNG S, et al. Deep learning-enabled medical computer vision[J]. NPJ Digital Medicine, 2021, 4(1): 1-9.
[27] JORGE J, VILLARROEL M, TOMLINSON H, et al. Non-contact physiological monitoring of post-operative patients in the intensive care unit[J]. NPJ Digital Medicine, 2022, 5(1): 1-11.
[28] VILLARROEL M, CHAICHULEE S, JORGE J, et al. Non-contact physiological monitoring of preterm infants in the neonatal intensive care unit[J]. NPJ Digital Medicine, 2019, 2(1): 1-18.
[29] WANG H, HUANG J, WANG G, et al. Surveillance camera-based cardio-respiratory monitoring for critical Patients in ICU[C]//2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE, 2022: 1-4.
[30] CHEN X, CHENG J, SONG R, et al. Video-based heart rate measurement: Recent advances and future prospects[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68(10): 3600-3615.
[31] WANG W, DEN BRINKER A C, DE HAAN G. Discriminative signatures for remote-PPG[J]. IEEE Transactions on Biomedical Engineering, 2019, 67(5): 1462-1473.
[32] YU X, LAURENTIUS T, BOLLHEIMER C, et al. Noncontact monitoring of heart rate and heart rate variability in geriatric patients using photoplethysmography imaging[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 25(5): 1781-1792.
[33] WANG W, DEN BRINKER A C. Algorithmic insights of camera-based respiratory motion extraction[J]. Physiological Measurement, 2022, 43(7): 075004.
[34] BERGASA L M, NUEVO J, SOTELO M A, et al. Real-time system for monitoring driver vigilance[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1): 63-77.
[35] GRAUMAN K, BETKE M, LOMBARDI J, et al. Communication via eye blinks and eyebrow raises: Video-based human-computer interfaces[J]. Universal Access in the Information Society, 2003, 2: 359-373.
[36] SZWOCH M, PIENIĄŻEK P. Eye blink based detection of liveness in biometric authentication systems using conditional random fields[C]//Computer Vision and Graphics: International Conference, ICCVG 2012, Warsaw, Poland, September 24-26, 2012. Proceedings. Springer, 2012: 669-676.
[37] BHUIYAN M N, RAHMAN M M, BILLAH M M, et al. Internet of things (IoT): a review of its enabling technologies in healthcare applications, standards protocols, security, and market opportunities[J]. IEEE Internet of Things Journal, 2021, 8(13): 10474-10498.
[38] RODRIGUES V F, RIGHI R R, COSTA C A, et al. HealthStack: providing an IoT middleware for malleable QoS service stacking for hospital 4.0 operating rooms[J]. IEEE Internet of Things Journal, 2022, 9(19): 18406-18430.
[39] HABIBZADEH H, DINESH K, SHISHVAN O R, et al. A survey of healthcare Internet of Things (HIoT): A clinical perspective[J]. IEEE Internet of Things Journal, 2019, 7(1): 53-71.
[40] GAHLOT S, REDDY S, KUMAR D. Review of smart health monitoring approaches with survey analysis and proposed framework[J]. IEEE Internet of Things Journal, 2018, 6(2): 2116- 2127.
[41] WANG J, HUANG D, FAN S, et al. PSDCE: Physiological signal-based double chaotic encryption for instantaneous E-healthcare services[J]. Future Generation Computer Systems, 2023, 141: 116-128.
[42] OLIER I, ORTEGA-MARTORELL S, PIERONI M, et al. How machine learning is impacting research in atrial fibrillation: implications for risk prediction and future management[J]. Cardiovascular Research, 2021, 117(7): 1700-1717.
[43] HUANG D M, HUANG J, QIAO K, et al. Deep learning-based lung sound analysis for intelligent stethoscope[J]. Military Medical Research, 2023, 10(1): 44.
[44] OH J, CHO D, PARK J, et al. Prediction and early detection of delirium in the intensive care unit by using heart rate variability and machine learning[J]. Physiological Measurement, 2018, 39(3): 035004.
[45] FAUST O, HONG W, LOH H W, et al. Heart rate variability for medical decision support systems: A review[J]. Computers in Biology and Medicine, 2022: 105407.
[46] LEAL A, PINTO M F, LOPES F, et al. Heart rate variability analysis for the identification of the preictal interval in patients with drug-resistant epilepsy[J]. Scientific Reports, 2021, 11(1): 1-11.
[47] DEGIORGIO C M, MILLER P, MEYMANDI S, et al. RMSSD, a measure of vagus-mediated heart rate variability, is associated with risk factors for SUDEP: the SUDEP-7 Inventory[J]. Epilepsy & Behavior, 2010, 19(1): 78-81.
[48] ACHARYA U R, FAUST O, KADRI N A, et al. Automated identification of normal and diabetes heart rate signals using nonlinear measures[J]. Computers in Biology and Medicine, 2013, 43 (10): 1523-1529.
[49] LAN K C, RAKNIM P, KAO W F, et al. Toward hypertension prediction based on PPG-derived HRV signals: A feasibility study[J]. Journal of Medical Systems, 2018, 42: 1-7.
[50] KORACH M, SHARSHAR T, JARRIN I, et al. Cardiac variability in critically ill adults: influence of sepsis[J]. Critical Care Medicine, 2001, 29(7): 1380-1385.
[51] CHEN W L, CHEN J H, HUANG C C, et al. Heart rate variability measures as predictors of inhospital mortality in ED patients with sepsis[J]. The American Journal of Emergency Medicine, 2008, 26(4): 395-401.
[52] 许彦坤, 石萍, 喻洪流. 基于成像式光电容积描记技术的人体生理参数检测研究进展[J]. 北京生物医学工程, 2017, 36(06): 648-654.
[53] SWINEHART D F. The beer-lambert law[J]. Journal of Chemical Education, 1962, 39(7): 333.
[54] 皮慧. 基于人脸图像的非接触式心率测量方法研究[D]. 东南大学, 2018.
[55] ABDULKAREEM K H, MOHAMMED M A, SALIM A, et al. Realizing an effective COVID19 diagnosis system based on machine learning and IOT in smart hospital environment[J]. IEEE Internet of Things Journal, 2021, 8(21): 15919-15928.
[56] ISLAM S R, KWAK D, KABIR M H, et al. The internet of things for health care: a comprehensive survey[J]. IEEE Access, 2015, 3: 678-708.
[57] ZHANG H, LI J, WEN B, et al. Connecting intelligent things in smart hospitals using NB-IoT [J]. IEEE Internet of Things Journal, 2018, 5(3): 1550-1560.
[58] YANG G, HE S, SHI Z, et al. Promoting cooperation by the social incentive mechanism in mobile crowdsensing[J]. IEEE Communications Magazine, 2017, 55(3): 86-92.
[59] JALEEL A, MAHMOOD T, HASSAN M A, et al. Towards medical data interoperability through collaboration of healthcare devices[J]. IEEE Access, 2020, 8: 132302-132319.
[60] LIVSHIZ-RIVEN I, KOYFMAN L, NATIV R, et al. Efficacy of covert closed-circuit television monitoring of the hand hygiene compliance of health care workers caring for patients infected with multidrug-resistant organisms in an intensive care unit[J]. American Journal of Infection Control, 2020, 48(5): 517-521.
[61] 杨益民, 李旭雯, 罗志昌, 等. 应用光电容积脉搏波法研制新型血流参数监护系统[J/OL]. 中国医疗器械信息, 2001(05): 6-8. DOI: 10.15971/j.cnki.cmdi.2001.05.003.
[62] 刘祎, 欧阳健飞. 基于人脸视频的非接触式心率测量方法[J/OL]. 纳米技术与精密工程, 2016, 14(01): 76-79. DOI: 10.13494/j.npe.20140108.
[63] VERKRUYSSE W, SVAASAND L O, NELSON J S. Remote plethysmographic imaging using ambient light.[J]. Optics Express, 2008, 16(26): 21434-21445.
[64] POH M Z, MCDUFF D J, PICARD R W. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation.[J]. Optics Express, 2010, 18(10): 10762- 10774.
[65] LEWANDOWSKA M, RUMIŃSKI J, KOCEJKO T, et al. Measuring pulse rate with a webcam—a non-contact method for evaluating cardiac activity[C]//2011 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, 2011: 405-410.
[66] WANG W, DEN BRINKER A C, STUIJK S, et al. Algorithmic principles of remote PPG[J]. IEEE Transactions on Biomedical Engineering, 2016, 64(7): 1479-1491.
[67] DE HAAN G, JEANNE V. Robust pulse rate from chrominance-based rPPG[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2878-2886.
[68] TOMINAGA S. Dichromatic reflection models for a variety of materials[J]. Color Research & Application, 1994, 19(4): 277-285.
[69] DE HAAN G, VAN LEEST A. Improved motion robustness of remote-PPG by using the blood volume pulse signature[J]. Physiological Measurement, 2014, 35(9): 1913.
[70] WANG W, STUIJK S, DE HAAN G. A novel algorithm for remote photoplethysmography: Spatial subspace rotation[J]. IEEE Transactions on Biomedical Engineering, 2015, 63(9): 1974- 1984.
[71] ŠPETLÍK R, FRANC V, MATAS J. Visual heart rate estimation with convolutional neural network[C]//Proceedings of the British Machine Vision Conference, Newcastle, UK. 2018: 3-6.
[72] CHEN W, MCDUFF D. Deepphys: Video-based physiological measurement using convolutional attention networks[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 349-365.
[73] YU Z, PENG W, LI X, et al. Remote heart rate measurement from highly compressed facial videos: an end-to-end deep learning solution with video enhancement[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 151-160.
[74] NIU X, SHAN S, HAN H, et al. Rhythmnet: End-to-end heart rate estimation from face via spatial-temporal representation[J]. IEEE Transactions on Image Processing, 2019, 29: 2409- 2423.
[75] SUN Z, LI X. Contrast-phys: Unsupervised video-based remote physiological measurement via spatiotemporal contrast[C]//European Conference on Computer Vision. Springer, 2022: 492-510.
[76] 杨雯. 基于人脸视频的非接触式心测量算法的研究与实现[D]. 北京邮电大学, 2019.
[77] BARTULA M, TIGGES T, MUEHLSTEFF J. Camera-based system for contactless monitoring of respiration[C]//2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013: 2672-2675.
[78] JANSSEN R, WANG W, MOÇO A, et al. Video-based respiration monitoring with automatic region of interest detection[J]. Physiological Measurement, 2015, 37(1): 100.
[79] ROCQUE M. Fully automated contactless respiration monitoring using a camera[C]//2016 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2016: 478-479.
[80] PEREIRA C B, YU X, BLAZEK V, et al. Robust remote monitoring of breathing function by using infrared thermography[C]//2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015: 4250-4253.
[81] PEREIRA C B, YU X, GOOS T, et al. Noncontact monitoring of respiratory rate in newborn infants using thermal imaging[J]. IEEE Transactions on Biomedical Engineering, 2018, 66(4): 1105-1114.
[82] JAGADEV P, GIRI L I. Non-contact monitoring of human respiration using infrared thermography and machine learning[J]. Infrared Physics & Technology, 2020, 104: 103117.
[83] MIRMOHAMADSADEGHI L, FALLET S, MOSER V, et al. Real-time respiratory rate estimation using imaging photoplethysmography inter-beat intervals[C]//2016 Computing in Cardiology Conference (CinC). IEEE, 2016: 861-864.
[84] IOZZA L, LÁZARO J, CERINA L, et al. Monitoring breathing rate by fusing the physiological impact of respiration on video-photoplethysmogram with head movements[J]. Physiological Measurement, 2019, 40(9): 094002.
[85] LUGUERN D, MACWAN R, BENEZETH Y, et al. Wavelet variance maximization: a contactless respiration rate estimation method based on remote photoplethysmography[J]. Biomedical Signal Processing and Control, 2021, 63: 102263.
[86] MASSARONI C, NICOLO A, SACCHETTI M, et al. Contactless methods for measuring respiratory rate: A review[J]. IEEE Sensors Journal, 2020, 21(11): 12821-12839.
[87] LÁZARO J, GIL E, BAILÓN R, et al. Deriving respiration from the pulse photoplethysmographic signal[C]//2011 Computing in Cardiology. IEEE, 2011: 713-716.
[88] LÁZARO J, NAM Y, GIL E, et al. Respiratory rate derived from smartphone-camera-acquired pulse photoplethysmographic signals[J]. Physiological Measurement, 2015, 36(11): 2317.
[89] MOODY G B, MARK R G. A database to support development and evaluation of intelligent intensive care monitoring[C]//Computers in Cardiology 1996. IEEE, 1996: 657-660.
[90] 陈真诚, 牛春望, 朱健铭, 等. 一种利用经验模态分解算法的光电容积脉搏波信号中提取 呼吸波的方法研究[J/OL]. 生物医学工程研究, 2019, 38(02): 134-139. DOI: 10.19529/j.cnk i.1672-6278.2019.02.02.
[91] BENNETT S L, GOUBRAN R, KNOEFEL F. Comparison of motion-based analysis to thermalbased analysis of thermal video in the extraction of respiration patterns[C]//2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2017: 3835-3839.
[92] LORATO I, STUIJK S, MEFTAH M, et al. Multi-camera infrared thermography for infant respiration monitoring[J]. Biomedical Optics Express, 2020, 11(9): 4848-4861.
[93] JAKKAEW P, ONOYE T. Non-contact respiration monitoring and body movements detection for sleep using thermal imaging[J]. Sensors, 2020, 20(21): 6307.
[94] BRIEVA J, PONCE H, MOYA-ALBOR E. A contactless respiratory rate estimation method using a hermite magnification technique and convolutional neural networks[J]. Applied Sciences, 2020, 10(2): 607.
[95] ZHAN Q, HU J, YU Z, et al. Revisiting motion-based respiration measurement from videos[C]// 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2020: 5909-5912.
[96] FÖLDESY P, ZARÁNDY Á, SZABÓ M. Reference free incremental deep learning model applied for camera-based respiration monitoring[J]. IEEE Sensors Journal, 2020, 21(2): 2346- 2352.
[97] VILLARROEL M, JORGE J, MEREDITH D, et al. Non-contact vital-sign monitoring of patients undergoing haemodialysis treatment[J]. Scientific Reports, 2020, 10(1): 1-21.
[98] KHANAM F T Z, AL-NAJI A, PERERA A G, et al. Remote vital signs monitoring in neonatal intensive care unit using a digital camera[J]. International Journal of Biomedical and Biological Engineering, 2022, 16(10): 138-144.
[99] 于清. 基于光电容积脉搏波成像技术的移动端心率分析引擎的设计与实现[D]. 北京邮电 大学, 2018.
[100] AARTS L A, JEANNE V, CLEARY J P, et al. Non-contact heart rate monitoring utilizing camera photoplethysmography in the neonatal intensive care unit—A pilot study[J]. Early Human Development, 2013, 89(12): 943-948.
[101] MESTHA L K, KYAL S, XU B, et al. Towards continuous monitoring of pulse rate in neonatal intensive care unit with a webcam[C]//2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2014: 3817-3820.
[102] VAN GASTEL M, BALMAEKERS B, OETOMO S B, et al. Near-continuous non-contact cardiac pulse monitoring in a neonatal intensive care unit in near darkness[C]//Optical Diagnostics and Sensing XVIII: Toward Point-of-care Diagnostics: Vol. 10501. SPIE, 2018: 230-238.
[103] CHEN Q, JIANG X, LIU X, et al. Non-contact heart rate monitoring in neonatal intensive care unit using RGB camera[C]//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2020: 5822-5825.
[104] SAHOO N N, MURUGESAN B, DAS A, et al. Deep learning based non-contact physiological monitoring in neonatal intensive care Unit[C]//2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2022: 1327-1330.
[105] MAURYA L, ZWIGGELAAR R, CHAWLA D, et al. Non-contact respiratory rate monitoring using thermal and visible imaging: a pilot study on neonates[J]. Journal of Clinical Monitoring and Computing, 2023, 37(3): 815-828.
[106] ZENG Y, SONG X, CHEN H, et al. A multi-modal clinical dataset for critically-ill and premature infant monitoring: EEG and videos[C]//2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE, 2022: 1-5.
[107] RASCHE S, TRUMPP A, WALDOW T, et al. Camera-based photoplethysmography in critical care patients[J]. Clinical Hemorheology and Microcirculation, 2016, 64(1): 77-90.
[108] RASCHE S, TRUMPP A, SCHMIDT M, et al. Remote photoplethysmographic assessment of the peripheral circulation in critical care patients recovering from cardiac surgery[J]. Shock, 2019, 52(2): 174-182.
[109] KUBLANOV V, PURTOV K, KONTOROVICH M. Video-based vital sign monitoring system of patients in intensive care unit[C]//2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). IEEE, 2017: 556-560.
[110] KUBLANOV V, PURTOV K, BELKOV D. Remote photoplethysmography for the neuroelectrostimulation procedures monitoring the possibilities of remote photoplethysmography application for the analysis of high frequency parameters of heart rate variability[M]//International Conference on Bio-inspired Systems and Signal Processing. SciTePress, 2017.
[111] LIU Z, HUANG B, LIN C L, et al. Contactless respiratory rate monitoring for iCU patients based on unsupervised learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 6004-6013.
[112] TAN X, HU M, ZHAI G, et al. Unobtrusive respiratory monitoring system for intensive care[C]// ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023: 1-5.
[113] MORIDANI M K, SETAREHDAN S K, NASRABADI A M, et al. Analysis of heart rate variability as a predictor of mortality in cardiovascular patients of intensive care unit[J]. Biocybernetics and Biomedical Engineering, 2015, 35(4): 217-226.
[114] SHAFFER F, GINSBERG J P. An overview of heart rate variability metrics and norms[J]. Frontiers in Public Health, 2017: 258.
[115] MAYAMPURATH A, VOLCHENBOUM S L, SANCHEZ-PINTO L N. Using photoplethysmography data to estimate heart rate variability and its association with organ dysfunction in pediatric oncology patients[J]. NPJ Digital Medicine, 2018, 1(1): 29.
[116] KHANDOKER A H, KARMAKAR C K, PALANISWAMI M. Comparison of pulse rate variability with heart rate variability during obstructive sleep apnea[J]. Medical Engineering & Physics, 2011, 33(2): 204-209.
[117] WANG H, HUANG J, WANG G, et al. Contactless patient care using hospital IoT: CCTV Camera-Based physiological monitoring in ICU[J]. IEEE Internet of Things Journal, 2024, 11 (4): 5781-5797.
[118] DUNAEVA A, KONOVALOVA D, KOSTOUSOV V. Video analysis methods for remote measurement of respiration characteristics and heart rate variability[C]//2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). IEEE, 2020: 0171-0174.
[119] JORGE J, VILLARROEL M, CHAICHULEE S, et al. Non-contact monitoring of respiration in the neonatal intensive care unit[C]//2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). IEEE, 2017: 286-293.
[120] SUN G, NAKAYAMA Y, DAGDANPUREV S, et al. Remote sensing of multiple vital signs using a CMOS camera-equipped infrared thermography system and its clinical application in rapidly screening patients with suspected infectious diseases[J]. International Journal of Infectious Diseases, 2017, 55: 113-117.
[121] CASALINO G, CASTELLANO G, PASQUADIBISCEGLIE V, et al. Contact-less real-time monitoring of cardiovascular risk using video imaging and fuzzy inference rules[J]. Information, 2018, 10(1): 9.
[122] NEGISHI T, ABE S, MATSUI T, et al. Contactless vital signs measurement system using RGB-thermal image sensors and its clinical screening test on patients with seasonal influenza [J]. Sensors, 2020, 20(8): 2171.
[123] EBRAHIMZADEH E, KALANTARI M, JOULANI M, et al. Prediction of paroxysmal Atrial Fibrillation: A machine learning based approach using combined feature vector and mixture of expert classification on HRV signal[J]. Computer Methods and Programs in Biomedicine, 2018, 165: 53-67.
[124] VIGIER M, VIGIER B, ANDRITSCH E, et al. Cancer classification using machine learning and HRV analysis: preliminary evidence from a pilot study[J]. Scientific Reports, 2021, 11(1): 22292.
[125] UNURSAIKHAN B, TANAKA N, SUN G, et al. Development of a novel web camera-based contact-free major depressive disorder screening system using autonomic nervous responses induced by a mental task and its clinical application[J]. Frontiers in Physiology, 2021, 12: 642986.
[126] SAURAV S, GIDDE P, SAINI R, et al. Real-time eye state recognition using dual convolutional neural network ensemble[J]. Journal of Real-Time Image Processing, 2022, 19(3): 607-622.
[127] BACIVAROV I, IONITA M, CORCORAN P. Statistical models of appearance for eye tracking and eye-blink detection and measurement[J]. IEEE Transactions on Consumer Electronics, 2008, 54(3): 1312-1320.
[128] CECH J, SOUKUPOVA T. Real-time eye blink detection using facial landmarks[M]//21th Computer Vision Winter Workshop (CVWW’16). 2016: 1-8.
[129] YANG H Y, JIANG X H, WANG L, et al. Eye statement recognition for driver fatigue detection based on gabor wavelet and hmm[C]//Applied Mechanics and Materials: Vol. 128. Trans Tech Publ, 2012: 123-129.
[130] ZHOU L, WANG H. Open/closed eye recognition by local binary increasing intensity patterns[C]//2011 IEEE 5th International Conference on Robotics, Automation and Mechatronics (RAM). IEEE, 2011: 7-11.
[131] SONG F, TAN X, LIU X, et al. Eyes closeness detection from still images with multi-scale histograms of principal oriented gradients[J]. Pattern Recognition, 2014, 47(9): 2825-2838.
[132] DONG Y, ZHANG Y, YUE J, et al. Comparison of random forest, random ferns and support vector machine for eye state classification[J]. Multimedia Tools and Applications, 2016, 75: 11763-11783.
[133] LIU X, TAN X, CHEN S. Eyes closeness detection using appearance based methods[C]// Intelligent Information Processing VI: 7th IFIP TC 12 International Conference, IIP 2012, Guilin, China, October 12-15, 2012. Proceedings 7. Springer, 2012: 398-408.
[134] KIM K W, HONG H G, NAM G P, et al. A study of deep CNN-based classification of open and closed eyes using a visible light camera sensor[J]. Sensors, 2017, 17(7): 1534.
[135] PAN G, SUN L, WU Z, et al. Eyeblink-based anti-spoofing in face recognition from a generic webcamera[C]//2007 IEEE 11th International Conference on Computer Vision. IEEE, 2007: 1-8.
[136] GOU C, WU Y, WANG K, et al. A joint cascaded framework for simultaneous eye detection and eye state estimation[J]. Pattern Recognition, 2017, 67: 23-31.
[137] ZHAO L, WANG Z, ZHANG G, et al. Eye state recognition based on deep integrated neural network and transfer learning[J]. Multimedia Tools and Applications, 2018, 77: 19415-19438.
[138] CHOWDHURY A I, NILOY A R, SHARMIN N, et al. A deep learning based approach for real-time driver drowsiness detection[C]//2021 5th International Conference on Electrical Engineering and Information Communication Technology (ICEEICT). IEEE, 2021: 1-5.
[139] MIDDLETON P M. Practical use of the Glasgow Coma Scale; a comprehensive narrative review of GCS methodology[J]. Australasian Emergency Nursing Journal, 2012, 15(3): 170- 183.
[140] NAVED S A, SIDDIQUI S, KHAN F H. APACHE-II score correlation with mortality and length of stay in an intensive care unit[J]. Journal of the College of Physicians and Surgeons Pakistan, 2011, 21(1): 4.
[141] TIAN Y, YAO Y, ZHOU J, et al. Dynamic APACHE II score to predict the outcome of intensive care unit patients[J]. Frontiers in Medicine, 2022, 8: 744907.
[142] TARASSENKO L, VILLARROEL M, GUAZZI A, et al. Non-contact video-based vital sign monitoring using ambient light and auto-regressive models[J]. Physiological Measurement, 2014, 35(5): 807.
[143] LUCAS B, KANADE T. An iterative image registration technique with an application to stereo vision[C]//International Joint Conference on Artificial Intelligence: Vol. 81. 1981.
[144] WANG W, STUIJK S, DE HAAN G. Exploiting spatial redundancy of image sensor for motion robust rPPG[J]. IEEE Transactions on Biomedical Engineering, 2014, 62(2): 415-425.
[145] WANG W, STUIJK S, DE HAAN G. Living-skin classification via remote-PPG[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(12): 2781-2792.
[146] BAZAREVSKY V, KARTYNNIK Y, VAKUNOV A, et al. Blazeface: Sub-millisecond neural face detection on mobile gpus[A]. 2019.
[147] TAN K S, SAATCHI R, ELPHICK H, et al. Real-time vision based respiration monitoring system[C]//2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010). IEEE, 2010: 770-774.
[148] KLEIGER R E, MILLER J P, BIGGER JR J T, et al. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction[J]. The American Journal of Cardiology, 1987, 59(4): 256-262.
[149] MALIK M, BIGGER J T, CAMM A J, et al. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use[J]. European Heart Journal, 1996, 17(3): 354-381.
[150] CLIFFORD G D, TARASSENKO L. Quantifying errors in spectral estimates of HRV due to beat replacement and resampling[J]. IEEE Transactions on Biomedical Engineering, 2005, 52 (4): 630-638.
[151] GROSSMAN P, TAYLOR E W. Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions[J]. Biological Psychology, 2007, 74(2): 263-285.
[152] BURR R L. Interpretation of normalized spectral heart rate variability indices in sleep research: a critical review[J]. Sleep, 2007, 30(7): 913-919.
[153] TULPPO M P, MAKIKALLIO T H, TAKALA T, et al. Quantitative beat-to-beat analysis of heart rate dynamics during exercise[J]. American Journal of Physiology-heart and Circulatory Physiology, 1996, 271(1): H244-H252.
[154] LIPPMAN N, STEIN K M, LERMAN B B. Comparison of methods for removal of ectopy in measurement of heart rate variability[J]. American Journal of Physiology-Heart and Circulatory Physiology, 1994, 267(1): H411-H418.
[155] FOR THE ADVANCEMENT OF MEDICAL INSTRUMENTATION A, et al. Cardiac monitors, heart rate meters, and alarms[J]. American National Standard (ANSI/AAMI EC13: 2002) Arlington, VA, 2002: 1-87.
[156] BERGESE S D, MESTEK M L, KELLEY S D, et al. Multicenter study validating accuracy of a continuous respiratory rate measurement derived from pulse oximetry: a comparison with capnography[J]. Anesthesia and Analgesia, 2017, 124(4): 1153.
[157] BLEYER A J, VIDYA S, RUSSELL G B, et al. Longitudinal analysis of one million vital signs in patients in an academic medical center[J]. Resuscitation, 2011, 82(11): 1387-1392.
[158] SMITH G B, PRYTHERCH D R, MEREDITH P, et al. The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death[J]. Resuscitation, 2013, 84(4): 465-470.
[159] SCHÄFER A, VAGEDES J. How accurate is pulse rate variability as an estimate of heart rate variability?: A review on studies comparing photoplethysmographic technology with an electrocardiogram[J]. International Journal of Cardiology, 2013, 166(1): 15-29.
[160] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05): Vol. 1. IEEE, 2005: 886-893.
[161] ZHENG Z, YANG J, YANG L. A robust method for eye features extraction on color image[J]. Pattern Recognition Letters, 2005, 26(14): 2252-2261.
[162] TAN C W, KUMAR A. Automated segmentation of iris images using visible wavelength face images[C]//Cvpr 2011 Workshops. IEEE, 2011: 9-14.
[163] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[164] FRIESE R S. Sleep and recovery from critical illness and injury: a review of theory, current practice, and future directions[J]. Critical Care Medicine, 2008, 36(3): 697-705.
修改评论