[1] YE Y. Advanced Packaging Trends in the Semiconductor Industry[J]. Highlights in Business, Economics and Management, 2024, 28: 8–12.
[2] 李可为. 集成电路芯片封装技术[M]. 电子工业出版社,2007.
[3] BOWLBY R. The DIP may take its final bows: The dual-in-line package, the reigning IC package for several generations, is losing position to newcomers for packaging advanced chips[J]. IEEE Spectrum, 1985, 22(6): 37–42.
[4] PRASAD R P. Surface Mount Technology: Principles and Practice[J]. Chapman & Hall, 1997, 11(3):221-225.
[5] KADA M. Research and Development History of Three-Dimensional Integration Technology[M]. Kondo K, Kada M, Takahashi K. //Three Dimensional Integration of Semiconductors: Processing, Materials, and Applications. Cham:Springer International Publishing,2015: 1–23.
[6] LANCASTER A, KESWANI M. Integrated circuit packaging review with an emphasis on 3D packaging[J]. Integration, 2018, 60: 204–212.
[7] DAI W W-M. Historical Perspective of System in Package (SiP)[J]. IEEE Circuits and Systems Magazine, 2016, 16(2): 50–61.
[8] GERLACH P, LINDER C, BECKS K-H. Multi Chip Modules technologies[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 473(1): 102–106.
[9] MAGO G. Build-up Material for IC Package Substrates[J]. NIPPON GOMU KYOKAISHI, 2011, 84(10): 321–325.
[10] DIMITRIEV O P, KOPYLOV O N, TRACZ A. Mechanisms of polyaniline film formation via solution casting: Intra-chain contraction versus inter-chain association[J]. European PolymerJournal, 2015, 66: 119–128.
[11] KAWAGOE M, ADACHI H, YANAGIDA T, et al. Spin Coating Film Transfer and Hot-Pressing System for Uniform Dielectric Formation and Its Application to Porous Low-k Film Formation[J]. JapaneseJournal of Applied Physics, 2008, 47: 113-118.
[12] SAKELLARIDES S L, MCHUGH A J. Oriented structure formationduring polymer film extrusion[J]. Polymer Engineering & Science, 1985, 25(18): 1179–1187.
[13] 唐川 成弘. 树脂组合物、感光薄膜、带载体的感光薄膜、印刷线路板和半导体器件: 日本,JP2022060252A[P]. 2022-04-14.
[14] 西村 嘉生.固化体层、印刷线路板、半导体器件、树脂片、印刷线路板的制造方法和树脂片的制造方法: 日本,JP2022070967A[P]. 2022-05-13.
[15] 啓之 阪内. 树脂组成物: 日本,JP2022089902A[P]. 2022-06-16.
[16] 依田 正応, 中村 茂雄, 織壁 宏. 感光树脂物: 日本,JP2017097381A[P]. 2017-06-01.
[17] 西村 嘉生. 树脂组成物: 日本,JP2022040214A[P]. 2022-03-10.
[18] 渡邊 真俊. 树脂组成物: 日本,JP2022048225A[P]. 2022-03-25.
[19] 西村 嘉生. 树脂组成物: 日本,JP2023002638A[P]. 2023-01-10.
[20] 西村 嘉生. 树脂组合物、树脂组合物的固化物、树脂片材、印刷电路板和半导体器件: 日本,JP2022121453A[P]. 2022-08-19.
[21] ZHOU G, ZHANG J, WANG Z, et al. A novel epoxy vitrimer with low dielectric constant at high-frequency[J]. Journal of Applied Polymer Science, 2023, 140(14): e53713.
[22] CHEN J, ZENG M, FENG Z, et al. Design and Preparation of Benzoxazine Resin with High-Frequency Low Dielectric Constants and Ultralow Dielectric Losses[J]. ACS Applied Polymer Materials, 2019, 1(4): 625–630.
[23] FENG Y, SUN J, FANG Q. Biomass Modifiers for Low Dielectric Bismaleimides at High-Frequency[J]. ACS Applied Polymer Materials, 2023, 5(6): 4419–4426.
[24] QIN Y, YU X, FANG Z, et al. Recent progress on polyphenylene oxide-based thermoset systems for high-performance copper-clad laminates[J]. Journal of Physics D: Applied Physics, 2023, 56(6): 064002.
[25] WANG Y, CHENG S, LI W, et al. Synthesis and Properties of Thermosetting Modified Polyphenylene Ether[J]. Polymer Bulletin, 2007, 59(3): 391–402.
[26] GUO H, ZHAO J Y, YIN J H. Random forest and multilayer perceptron for predicting the dielectric loss of polyimide nanocomposite films[J]. RSC Advances, 2017, 7(49): 30999–31008.
[27] LEI H, LI X, WANG J, et al. DFT and molecular dynamic simulation for the dielectric property analysis of polyimides[J]. ChemicalPhysics Letters, 2022, 786: 139131.
[28] 严六明, 朱素华. 分子动力学模拟的理论与实践[M]. 分子动力学模拟的理论与实践,2013.
[29] 梁馨元. 基于分子动力学的聚合物分子设计方法研究[D]. 大连理工大学,2020.
[30] 刘俊红. 高分子聚合物微观动力学性质的分子动力学模拟研究[D]. 长春工业大学,2023.
[31] 罗丹丹. 填料形状和填料尺寸对聚合物纳米复合材料粘弹性的影响[D]. 北京化工大学,2023.
[32] WANG Y F, DU B X, KONG X X, et al. On the dielectric properties of bisphenol A and F epoxy resins blends based on molecular dynamics[J]. Journal of Physics D: Applied Physics, 2023, 56(29): 294003.
[33] FAN W, DU Y, YUAN Z, et al. Cross-Linking Behavior and Effect on Dielectric Characteristics of Benzocyclobutene-Based Polycarbosiloxanes[J]. Macromolecules, 2023, 56(16): 6482–6491.
[34] CHEN L, YI Y, LAN H, et al. Dielectric Properties of Benzocyclobutene-Based Resin: A Molecular Dynamics Study[J]. The Journal of Physical Chemistry B, 2024, 128(1): 340–349.
[35] DING M, ZOU L, ZHAO T, et al. Molecular Dynamics Simulation of Dielectric Constant Temperature Characteristics of Cross-LinkedEpoxy Resin/Functionalized Carbon Nanotube Nanocomposite[J]. IEEE Access, 2020, 8: 204839–204846.
[36] ZHANG D, LI Y, LU H, et al. Influence of conversion on dielectric constant of Dicyandiamide cured epoxy resin: a molecular dynamic simulation and experiment study[J]. Polymer, 2023, 267: 125645.
[37] BO R, LIU J, WANG C, et al. Molecular Dynamics Simulation on Structure and Dielectric Permittivity of BaTiO3/PVDF Composites[J]. Advances in Polymer Technology, 2021, 2021: 1–14.
[38] HU T. The Predicted Dielectric Constant of an Amorphous PVDF Changing with Temperature by Molecular Dynamics Simulations[J].International Journal of Electrochemical Science, 2018: 10088–10100.
[39] OLMI R, BITTELLI M. Can molecular dynamics help in understanding dielectric phenomena?[J]. Measurement Science andTechnology, 2016, 28(1): 014003.
[40] NEUMANN M. Dipole moment fluctuation formulas in computer simulations of polar systems[J]. Molecular Physics, 1983, 50(4): 841–858.
[41] MISRA M, AGARWAL M, SINKOVITS D W, et al. Enhanced Polymeric Dielectrics through Incorporation of Hydroxyl Groups[J]. Macromolecules, 2014, 47(3): 1122–1129.
[42] YANG X-D, CHEN W, REN Y, et al. Exploring dielectric spectra of polymer through molecular dynamics simulations[J]. Molecular Simulation, 2022: 1–9.
[43] LAIHONEN S J, JÄMBECK J P M, UNGE M. Prediction of dielectric constant and loss for some polypropylene - additive compounds[J]. Proceedings of the Nordic Insulation Symposium, 2017(25).
[44] JAMBECK J P M, UNGE M, LAIHONEN S, et al. Determining the Dielectric Losses in Polymers by Using Molecular Dynamics Simulations[C]. //2015 IEEE Conference on Electrical Insulation andDielectric Phenomena (CEIDP), Ann Arbor, MI, USA, 2015: 146-149.
[45] FANG Z, WU X, ZHU X, et al. Curing kinetics study of thermosetting resin material with ultra-low dielectric loss for advanced electronic packaging[J]. Polymer Testing, 2024, 130: 108312.
[46] ZHU X, FANG Z, YI Y, et al. Ultra-low loss polyphenylene oxide based composites with negative thermal expansion fillers[J]. Polymer Composites, 2023, 44(3): 1849–1858.
[47] YU X, FANG Z, QIN Y, et al. FTIR and NMR characterization of thermosetting methyl methacrylate terminated poly(2,6-dimethyl-1,4-phenylene oxide)—triallyl isocyanurate copolymer[J]. Journal ofPolymer Research, 2021, 28(7): 272.
[48] FANG Z, YU X, QIN Y, et al. Deterioration of microwave dielectric properties of low-loss thermosetting polyphenylene oxide/hydrocarbon resin induced by short-term thermo-oxidative aging[J]. Polymer Degradation and Stability, 2022, 206: 110193.
[49] ÇITAK A, YARBAŞ T. Using contact angle measurement technique for determination of the surface free energy of B-SBA-15-x materials[J]. International Journal of Adhesion and Adhesives, 2022, 112: 103024.
[50] PARK C, KANDUČ M, CHUDOBA R, et al. Molecular simulations of electrolyte structure and dynamics in lithium–sulfur battery solvents[J]. Journal of Power Sources, 2018, 373: 70–78.
[51] SAMI S, ALESSANDRI R, WIJAYA J B W, et al. Strategies for Enhancing the Dielectric Constant of Organic Materials[J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126(45): 19462–19469.
[52] LIESE S, SCHLAICH A, NETZ R R. Dielectric constant of aqueous solutions of proteins and organic polymers from molecular dynamics simulations[J]. JOURNAL OF CHEMICAL PHYSICS, 2022, 156(22): 224902.
[53] RAVVE A. Free-Radical Chain-Growth Polymerization[M]. Ravve A. //Principles of Polymer Chemistry. New York, NY:Springer,2012: 69–150.
[54] GAO Y, ZHOU D, LYU J, et al. Complex polymer architecturesthrough free-radical polymerization of multivinyl monomers[J]. Nature Reviews. Chemistry, 2020, 4(4): 194–212.
[55] 周建华, 李楠, ZHOU JIANHUA L N. 甲基丙烯酸甲酯-丙烯酸丁酯共聚物的分子动力学模拟[J]. 皮革科学与工程, 2023, 33(3): 7–11.
[56] CHENG X, IVANOV I. Molecular Dynamics[M]. Reisfeld B, Mayeno A N. //Computational Toxicology. Totowa, NJ:Humana Press,2012: 243–285.
[57] 王 奂. 水介质中聚苯醚合金的制备及分子动力学模拟[D]. 浙江大学,2016.
[58] PSARRAS G C. 2 - Fundamentals of Dielectric Theories[M]. Dang Z M. //Dielectric Polymer Materials for High-Density Energy Storage. William Andrew Publishing,2018: 11–57.
[59] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580–592.
[60] YU W, WEBER D J, MACKERELL A D J. Computer-Aided Drug Design: An Update.[J]. Methods in molecular biology (Clifton, N.J.), 2023, 2601: 123–152.
[61] MATSUMOTO A, HIRAI F, SUMIYAMA Y, et al. Further discussion of steric effect on the radical polymerization of triallyl isocyanurate as compared with its isomer triallyl cyanurate: polymerization and copolymerization of corresponding trimethallyl compounds[J]. European Polymer Journal, 1999, 35(2): 195–199.
[62] MATSUMOTO A, ISHIHARA D, NISHIZAWA K, et al. Specific Polymerization Behavior of Triallyl Isocyanurate. Accumulation of Radicals before Gelation[J]. Polymer Journal, 2000, 32(1): 79–81.
[63] VAN KREVELEN D W, TE NIJENHUIS K. Chapter 11 - Electrical Properties[M]//VAN KREVELEN D W, TE NIJENHUIS K. Properties of Polymers (Fourth Edition). Amsterdam: Elsevier, 2009: 319-354.
[64] SINGH L P. Primary and secondary relaxation processes in poly(propylene glycol) monobutyl ether: a broadband dielectric spectroscopy investigation[J]. POLYMER JOURNAL, 2023, 55(2): 141–151.
[65] COFFEY W T. Dielectric relaxation: an overview[J]. Journal of Molecular Liquids, 2004, 114(1): 5–25.
[66] 赵孔双. 介电谱方法及应用[J]. 化学工业出版社, 2009.
[67] LEI D, LU D. Dielectric Spectroscopy for the Study of the Dynamic Behavior of Polymer Chains[J]. Acta Chimica Sinica, 2018, 76(8): 605.
[68] CHEN C-H, LIU C-H, ARIRAMAN M, et al. Phosphinated Poly(aryl ether)s with Acetic/Phenyl Methacrylic/Vinylbenzyl Ether Moieties for High-T g and Low-Dielectric Thermosets[J]. ACS omega, 2018,3(6): 6031–6038.
[69] SIPAUT C S, DAYOU J. In situ FTIR analysis in determining possible chemical reactions for peroxide crosslinked LDPE in the presence of triallylcyanurate[J]. Functional Composites and Structures, 2019, 1(2): 025003.
[70] NAGASAWA N, KANEDA A, KANAZAWA S, et al. Application of poly(lactic acid) modified by radiation crosslinking[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 236(1): 611–616.
[71] KI H C, OK PARK O. Synthesis, characterization and biodegradability of the biodegradable aliphatic–aromatic randomcopolyesters[J]. Polymer, 2001, 42(5): 1849–1861.
[72] MATSUMOTO A, INOUE H, MATSUMOTO T, et al. Comparison of Gelation in the Free‐Radical Polymerization of Triallyl Isocyanurate and its Isomer Triallyl Cyanurate[J]. Journal of MacromolecularScience: Part A - Chemistry, 1989, 26(9): 1279–1289.
[73] WANG C, SU Z. Vulcanization behavior and thermal performance of peroxide-curable fluoroelastomer[J]. Journal of Applied PolymerScience, 2022, 139(39): e52944.
[74] ZHANG X, ZHANG Y, ZHOU Q, et al. Symmetrical “Sandwich” Polybutadiene Film with High-Frequency Low Dielectric Constants, Ultralow Dielectric Loss, and High Adhesive Strength[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1142–1150.
[75] NUNOSHIGE J, AKAHOSHI H, LIAO Y, et al. Mechanical and Dielectric Properties of a New Polymer Blend Composed of 1,2-Bis(vinylphenyl)ethane and Thermosetting Poly(phenylene ether) Copolymer Obtained from 2,6-Dimethylphenol and 2-Allyl-6-methylphenol[J]. Polymer Journal, 2007, 39(8): 828–833.
修改评论