中文版 | English
题名

先进封装中堆积膜材料的制备与仿真研究

其他题名
PREPARATION AND SIMULATION OF BUILD-UP FILM MATERIALS FOR ADVANCED ELECTRONIC PACKAGING
姓名
姓名拼音
WU Xiaowei
学号
12232648
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
KE WANG
导师单位
系统设计与智能制造学院
论文答辩日期
2024-05-10
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
堆积膜材料因其介电性能卓越,在先进封装中扮演核心绝缘层的角色。
然而,其复杂的配方、耗时的制备和易受影响的特性限制了其实际应用。
为了克服这些挑战,我们亟需探索预测其介电性能的新方法。分子动力学
技术无需实际制备样品,即可预测材料的介电性能,但目前关于利用该技
术探究堆积膜材料介电性能的研究尚不充分。鉴于此,本研究旨在通过分
子动力学模拟,构建一种预测堆积膜材料介电性能的模型。具体内容如下:
本研究选用了三种结构相似的交联剂,氰尿酸三烯丙酯(TAC)、三烯
丙基异氰脲酸酯(TAIC)及三甲代烯丙基异氰酸酯(TMAIC),分别与改
性聚苯醚(SA9000)交联。之后,构建相应模型来计算介电性能。结果表
明,该模型在预测静态介电常数及 2.5GHz5GHz10GHz15GHz 下的
介电性能趋势方面与实验结果一致。另外模型预测表明,当频率大于
1012Hz 时,TAIC 在介电性能方面与 TAC TMAIC 相比并非最优。从数
值上看,静态介电常数预测误差为 21.36%,四个频率下的介电常数实部误
差为 3.52%,虚部误差为 23.59%。这些误差可能是由于在模拟过程中没有
考虑引发剂的影响,导致模拟条件和实验条件之间存在一定的偏差。
为了验证模型的准确性和适用性,本研究利用构建的模型对其它堆积
膜材料的介电性能进行预测。本研究选用三种不同结构的改性聚苯醚
SA9000OPE1200OPE2200)作为树脂基体,并使用 BVPE 作为交联
剂。结果表明静态介电常数以及四个频率下介电性能的预测结果与实验数
据趋势吻合。并且模型预测表明:当频率大于 1012Hz 时,OPE1200 在三种
改性聚苯醚中的介电性能最优。另外,静态介电常数预测误差减小到
9.90%,四个频率下的介电常数实部预测误差减小到 1.09%。这一改进可能
源于实验中未引入引发剂,使得模拟条件更贴近实际实验条件。而四个频
率下的介电常数虚部误差增加到 65.04%,这可能是由于介电常数虚部本身
数值小,对预测精度要求较高,从而对模型的精确性提出了更高的挑战。
另外,本文还进行了表面粗糙度测试、接触角测试以及表面能计算,
旨在了解堆积膜材料的表面性质。
关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] YE Y. Advanced Packaging Trends in the Semiconductor Industry[J]. Highlights in Business, Economics and Management, 2024, 28: 8–12.
[2] 李可为. 集成电路芯片封装技术[M]. 电子工业出版社,2007.
[3] BOWLBY R. The DIP may take its final bows: The dual-in-line package, the reigning IC package for several generations, is losing position to newcomers for packaging advanced chips[J]. IEEE Spectrum, 1985, 22(6): 37–42.
[4] PRASAD R P. Surface Mount Technology: Principles and Practice[J]. Chapman & Hall, 1997, 11(3):221-225.
[5] KADA M. Research and Development History of Three-Dimensional Integration Technology[M]. Kondo K, Kada M, Takahashi K. //Three Dimensional Integration of Semiconductors: Processing, Materials, and Applications. Cham:Springer International Publishing,2015: 1–23.
[6] LANCASTER A, KESWANI M. Integrated circuit packaging review with an emphasis on 3D packaging[J]. Integration, 2018, 60: 204–212.
[7] DAI W W-M. Historical Perspective of System in Package (SiP)[J]. IEEE Circuits and Systems Magazine, 2016, 16(2): 50–61.
[8] GERLACH P, LINDER C, BECKS K-H. Multi Chip Modules technologies[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 473(1): 102–106.
[9] MAGO G. Build-up Material for IC Package Substrates[J]. NIPPON GOMU KYOKAISHI, 2011, 84(10): 321–325.
[10] DIMITRIEV O P, KOPYLOV O N, TRACZ A. Mechanisms of polyaniline film formation via solution casting: Intra-chain contraction versus inter-chain association[J]. European PolymerJournal, 2015, 66: 119–128.
[11] KAWAGOE M, ADACHI H, YANAGIDA T, et al. Spin Coating Film Transfer and Hot-Pressing System for Uniform Dielectric Formation and Its Application to Porous Low-k Film Formation[J]. JapaneseJournal of Applied Physics, 2008, 47: 113-118.
[12] SAKELLARIDES S L, MCHUGH A J. Oriented structure formationduring polymer film extrusion[J]. Polymer Engineering & Science, 1985, 25(18): 1179–1187.
[13] 唐川 成弘. 树脂组合物、感光薄膜、带载体的感光薄膜、印刷线路板和半导体器件: 日本,JP2022060252A[P]. 2022-04-14.
[14] 西村 嘉生.固化体层、印刷线路板、半导体器件、树脂片、印刷线路板的制造方法和树脂片的制造方法: 日本,JP2022070967A[P]. 2022-05-13.
[15] 啓之 阪内. 树脂组成物: 日本,JP2022089902A[P]. 2022-06-16.
[16] 依田 正応, 中村 茂雄, 織壁 宏. 感光树脂物: 日本,JP2017097381A[P]. 2017-06-01.
[17] 西村 嘉生. 树脂组成物: 日本,JP2022040214A[P]. 2022-03-10.
[18] 渡邊 真俊. 树脂组成物: 日本,JP2022048225A[P]. 2022-03-25.
[19] 西村 嘉生. 树脂组成物: 日本,JP2023002638A[P]. 2023-01-10.
[20] 西村 嘉生. 树脂组合物、树脂组合物的固化物、树脂片材、印刷电路板和半导体器件: 日本,JP2022121453A[P]. 2022-08-19.
[21] ZHOU G, ZHANG J, WANG Z, et al. A novel epoxy vitrimer with low dielectric constant at high-frequency[J]. Journal of Applied Polymer Science, 2023, 140(14): e53713.
[22] CHEN J, ZENG M, FENG Z, et al. Design and Preparation of Benzoxazine Resin with High-Frequency Low Dielectric Constants and Ultralow Dielectric Losses[J]. ACS Applied Polymer Materials, 2019, 1(4): 625–630.
[23] FENG Y, SUN J, FANG Q. Biomass Modifiers for Low Dielectric Bismaleimides at High-Frequency[J]. ACS Applied Polymer Materials, 2023, 5(6): 4419–4426.
[24] QIN Y, YU X, FANG Z, et al. Recent progress on polyphenylene oxide-based thermoset systems for high-performance copper-clad laminates[J]. Journal of Physics D: Applied Physics, 2023, 56(6): 064002.
[25] WANG Y, CHENG S, LI W, et al. Synthesis and Properties of Thermosetting Modified Polyphenylene Ether[J]. Polymer Bulletin, 2007, 59(3): 391–402.
[26] GUO H, ZHAO J Y, YIN J H. Random forest and multilayer perceptron for predicting the dielectric loss of polyimide nanocomposite films[J]. RSC Advances, 2017, 7(49): 30999–31008.
[27] LEI H, LI X, WANG J, et al. DFT and molecular dynamic simulation for the dielectric property analysis of polyimides[J]. ChemicalPhysics Letters, 2022, 786: 139131.
[28] 严六明, 朱素华. 分子动力学模拟的理论与实践[M]. 分子动力学模拟的理论与实践,2013.
[29] 梁馨元. 基于分子动力学的聚合物分子设计方法研究[D]. 大连理工大学,2020.
[30] 刘俊红. 高分子聚合物微观动力学性质的分子动力学模拟研究[D]. 长春工业大学,2023.
[31] 罗丹丹. 填料形状和填料尺寸对聚合物纳米复合材料粘弹性的影响[D]. 北京化工大学,2023.
[32] WANG Y F, DU B X, KONG X X, et al. On the dielectric properties of bisphenol A and F epoxy resins blends based on molecular dynamics[J]. Journal of Physics D: Applied Physics, 2023, 56(29): 294003.
[33] FAN W, DU Y, YUAN Z, et al. Cross-Linking Behavior and Effect on Dielectric Characteristics of Benzocyclobutene-Based Polycarbosiloxanes[J]. Macromolecules, 2023, 56(16): 6482–6491.
[34] CHEN L, YI Y, LAN H, et al. Dielectric Properties of Benzocyclobutene-Based Resin: A Molecular Dynamics Study[J]. The Journal of Physical Chemistry B, 2024, 128(1): 340–349.
[35] DING M, ZOU L, ZHAO T, et al. Molecular Dynamics Simulation of Dielectric Constant Temperature Characteristics of Cross-LinkedEpoxy Resin/Functionalized Carbon Nanotube Nanocomposite[J]. IEEE Access, 2020, 8: 204839–204846.
[36] ZHANG D, LI Y, LU H, et al. Influence of conversion on dielectric constant of Dicyandiamide cured epoxy resin: a molecular dynamic simulation and experiment study[J]. Polymer, 2023, 267: 125645.
[37] BO R, LIU J, WANG C, et al. Molecular Dynamics Simulation on Structure and Dielectric Permittivity of BaTiO3/PVDF Composites[J]. Advances in Polymer Technology, 2021, 2021: 1–14.
[38] HU T. The Predicted Dielectric Constant of an Amorphous PVDF Changing with Temperature by Molecular Dynamics Simulations[J].International Journal of Electrochemical Science, 2018: 10088–10100.
[39] OLMI R, BITTELLI M. Can molecular dynamics help in understanding dielectric phenomena?[J]. Measurement Science andTechnology, 2016, 28(1): 014003.
[40] NEUMANN M. Dipole moment fluctuation formulas in computer simulations of polar systems[J]. Molecular Physics, 1983, 50(4): 841–858.
[41] MISRA M, AGARWAL M, SINKOVITS D W, et al. Enhanced Polymeric Dielectrics through Incorporation of Hydroxyl Groups[J]. Macromolecules, 2014, 47(3): 1122–1129.
[42] YANG X-D, CHEN W, REN Y, et al. Exploring dielectric spectra of polymer through molecular dynamics simulations[J]. Molecular Simulation, 2022: 1–9.
[43] LAIHONEN S J, JÄMBECK J P M, UNGE M. Prediction of dielectric constant and loss for some polypropylene - additive compounds[J]. Proceedings of the Nordic Insulation Symposium, 2017(25).
[44] JAMBECK J P M, UNGE M, LAIHONEN S, et al. Determining the Dielectric Losses in Polymers by Using Molecular Dynamics Simulations[C]. //2015 IEEE Conference on Electrical Insulation andDielectric Phenomena (CEIDP), Ann Arbor, MI, USA, 2015: 146-149.
[45] FANG Z, WU X, ZHU X, et al. Curing kinetics study of thermosetting resin material with ultra-low dielectric loss for advanced electronic packaging[J]. Polymer Testing, 2024, 130: 108312.
[46] ZHU X, FANG Z, YI Y, et al. Ultra-low loss polyphenylene oxide based composites with negative thermal expansion fillers[J]. Polymer Composites, 2023, 44(3): 1849–1858.
[47] YU X, FANG Z, QIN Y, et al. FTIR and NMR characterization of thermosetting methyl methacrylate terminated poly(2,6-dimethyl-1,4-phenylene oxide)—triallyl isocyanurate copolymer[J]. Journal ofPolymer Research, 2021, 28(7): 272.
[48] FANG Z, YU X, QIN Y, et al. Deterioration of microwave dielectric properties of low-loss thermosetting polyphenylene oxide/hydrocarbon resin induced by short-term thermo-oxidative aging[J]. Polymer Degradation and Stability, 2022, 206: 110193.
[49] ÇITAK A, YARBAŞ T. Using contact angle measurement technique for determination of the surface free energy of B-SBA-15-x materials[J]. International Journal of Adhesion and Adhesives, 2022, 112: 103024.
[50] PARK C, KANDUČ M, CHUDOBA R, et al. Molecular simulations of electrolyte structure and dynamics in lithium–sulfur battery solvents[J]. Journal of Power Sources, 2018, 373: 70–78.
[51] SAMI S, ALESSANDRI R, WIJAYA J B W, et al. Strategies for Enhancing the Dielectric Constant of Organic Materials[J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126(45): 19462–19469.
[52] LIESE S, SCHLAICH A, NETZ R R. Dielectric constant of aqueous solutions of proteins and organic polymers from molecular dynamics simulations[J]. JOURNAL OF CHEMICAL PHYSICS, 2022, 156(22): 224902.
[53] RAVVE A. Free-Radical Chain-Growth Polymerization[M]. Ravve A. //Principles of Polymer Chemistry. New York, NY:Springer,2012: 69–150.
[54] GAO Y, ZHOU D, LYU J, et al. Complex polymer architecturesthrough free-radical polymerization of multivinyl monomers[J]. Nature Reviews. Chemistry, 2020, 4(4): 194–212.
[55] 周建华, 李楠, ZHOU JIANHUA L N. 甲基丙烯酸甲酯-丙烯酸丁酯共聚物的分子动力学模拟[J]. 皮革科学与工程, 2023, 33(3): 7–11.
[56] CHENG X, IVANOV I. Molecular Dynamics[M]. Reisfeld B, Mayeno A N. //Computational Toxicology. Totowa, NJ:Humana Press,2012: 243–285.
[57] 王 奂. 水介质中聚苯醚合金的制备及分子动力学模拟[D]. 浙江大学,2016.
[58] PSARRAS G C. 2 - Fundamentals of Dielectric Theories[M]. Dang Z M. //Dielectric Polymer Materials for High-Density Energy Storage. William Andrew Publishing,2018: 11–57.
[59] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580–592.
[60] YU W, WEBER D J, MACKERELL A D J. Computer-Aided Drug Design: An Update.[J]. Methods in molecular biology (Clifton, N.J.), 2023, 2601: 123–152.
[61] MATSUMOTO A, HIRAI F, SUMIYAMA Y, et al. Further discussion of steric effect on the radical polymerization of triallyl isocyanurate as compared with its isomer triallyl cyanurate: polymerization and copolymerization of corresponding trimethallyl compounds[J]. European Polymer Journal, 1999, 35(2): 195–199.
[62] MATSUMOTO A, ISHIHARA D, NISHIZAWA K, et al. Specific Polymerization Behavior of Triallyl Isocyanurate. Accumulation of Radicals before Gelation[J]. Polymer Journal, 2000, 32(1): 79–81.
[63] VAN KREVELEN D W, TE NIJENHUIS K. Chapter 11 - Electrical Properties[M]//VAN KREVELEN D W, TE NIJENHUIS K. Properties of Polymers (Fourth Edition). Amsterdam: Elsevier, 2009: 319-354.
[64] SINGH L P. Primary and secondary relaxation processes in poly(propylene glycol) monobutyl ether: a broadband dielectric spectroscopy investigation[J]. POLYMER JOURNAL, 2023, 55(2): 141–151.
[65] COFFEY W T. Dielectric relaxation: an overview[J]. Journal of Molecular Liquids, 2004, 114(1): 5–25.
[66] 赵孔双. 介电谱方法及应用[J]. 化学工业出版社, 2009.
[67] LEI D, LU D. Dielectric Spectroscopy for the Study of the Dynamic Behavior of Polymer Chains[J]. Acta Chimica Sinica, 2018, 76(8): 605.
[68] CHEN C-H, LIU C-H, ARIRAMAN M, et al. Phosphinated Poly(aryl ether)s with Acetic/Phenyl Methacrylic/Vinylbenzyl Ether Moieties for High-T g and Low-Dielectric Thermosets[J]. ACS omega, 2018,3(6): 6031–6038.
[69] SIPAUT C S, DAYOU J. In situ FTIR analysis in determining possible chemical reactions for peroxide crosslinked LDPE in the presence of triallylcyanurate[J]. Functional Composites and Structures, 2019, 1(2): 025003.
[70] NAGASAWA N, KANEDA A, KANAZAWA S, et al. Application of poly(lactic acid) modified by radiation crosslinking[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 236(1): 611–616.
[71] KI H C, OK PARK O. Synthesis, characterization and biodegradability of the biodegradable aliphatic–aromatic randomcopolyesters[J]. Polymer, 2001, 42(5): 1849–1861.
[72] MATSUMOTO A, INOUE H, MATSUMOTO T, et al. Comparison of Gelation in the Free‐Radical Polymerization of Triallyl Isocyanurate and its Isomer Triallyl Cyanurate[J]. Journal of MacromolecularScience: Part A - Chemistry, 1989, 26(9): 1279–1289.
[73] WANG C, SU Z. Vulcanization behavior and thermal performance of peroxide-curable fluoroelastomer[J]. Journal of Applied PolymerScience, 2022, 139(39): e52944.
[74] ZHANG X, ZHANG Y, ZHOU Q, et al. Symmetrical “Sandwich” Polybutadiene Film with High-Frequency Low Dielectric Constants, Ultralow Dielectric Loss, and High Adhesive Strength[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1142–1150.
[75] NUNOSHIGE J, AKAHOSHI H, LIAO Y, et al. Mechanical and Dielectric Properties of a New Polymer Blend Composed of 1,2-Bis(vinylphenyl)ethane and Thermosetting Poly(phenylene ether) Copolymer Obtained from 2,6-Dimethylphenol and 2-Allyl-6-methylphenol[J]. Polymer Journal, 2007, 39(8): 828–833.

所在学位评定分委会
材料与化工
国内图书分类号
TM215
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766013
专题南方科技大学
工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
吴晓薇. 先进封装中堆积膜材料的制备与仿真研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232648-吴晓薇-系统设计与智能(4612KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴晓薇]的文章
百度学术
百度学术中相似的文章
[吴晓薇]的文章
必应学术
必应学术中相似的文章
[吴晓薇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。