[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-9.
[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature, 2005, 438(7065): 197-200.
[3] ZHANG Y B, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature, 2005, 438(7065): 201-4.
[4] COSTANZO D, JO S, BERGER H, et al. Gate-induced superconductivity in atomically thin MoS2 crystals [J]. Nature Nanotechnology, 2016, 11(4): 339-+.
[5] CHANG C Z, ZHANG J S, FENG X, et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J]. Science, 2013, 340(6129): 167-70.
[6] CAO Y, FATEMI V, FANG S, et al. Unconventional superconductivity in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 43-+.
[7] MAK K F, LEE C, HONE J, et al. Atomically Thin MoS2: A New Direct-Gap Semiconductor [J]. Physical Review Letters, 2010, 105(13): 136805.
[8] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology, 2012, 7(11): 699-712.
[9] LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors [J]. Nature Nanotechnology, 2014, 9(5): 372-7.
[10] LOW T, CHAVES A, CALDWELL J D, et al. Polaritons in layered two-dimensional materials [J]. Nature Materials, 2017, 16(2): 182-94.
[11] VOGT P, DE PADOVA P, QUARESIMA C, et al. Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon [J]. Physical Review Letters, 2012, 108(15): 155501.
[12] LI L F, LU S Z, PAN J B, et al. Buckled Germanene Formation on Pt(111) [J]. Advanced Materials, 2014, 26(28): 4820-+.
[13] COLEMAN J N, LOTYA M, O'NEILL A, et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J]. Science, 2011, 331(6017): 568-71.
[14] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-53.
[15] KOTA S, HALIM J, LUKATSKAYA M, et al. Synthesis and characterization of 2D molybdenum carbide (MXene) [J]. Abstracts of Papers of the American Chemical Society, 2016, 26(18): 3118-3127.
[16] URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene) [J]. Nanoscale, 2016, 8(22): 11385-91.
[17] ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TXMXene) [J]. Chemistry of Materials, 2017, 29(18): 7633-44.
[18] ZHANG C F J, PINILLA S, MCEYOY N, et al. Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes) [J]. Chemistry of Materials, 2017, 29(11): 4848-56.
[19] HUANG S H, MOCHALIN V N. Hydrolysis of 2D Transition-Metal Carbides (MXenes) in Colloidal Solutions [J]. Inorganic Chemistry, 2019, 58(3): 1958-66.
[20] PIATTI E, ARBAB A, GALANTI F, et al. Charge transport mechanisms in inkjet-printed thin-film transistors based on two-dimensional materials [J]. Nature Electronics, 2021, 4(12): 893-905.
[21] AAKYIIR M, TANNER B, YAP P L, et al. 3D printing interface-modified PDMS/MXene nanocomposites for stretchable conductors [J]. Journal of Materials Science & Technology, 2022, 117: 174-82.
[22] HART J L, HANTANASIRISAKUL K, LANG A C, et al. Control of MXenes' electronic properties through termination and intercalation [J]. Nature Communications, 2019, 10(1): 522.
[23] ZHENG W H, SUN B Y, LI D Q, et al. Band transport by large Frohlich polarons in MXenes [J]. Nature Physics, 2022, 18(5): 544-550.
[24] ANASORI B, SHI C Y, MOON E J, et al. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers [J]. Nanoscale Horizons, 2016, 1(3): 227-234.
[25] ZHOU T L, WEI H, TAN H P, et al. Strongly anisotropic thermal conductivity and adequate breathability of bilayered films for heat management of on-skin electronics [J]. 2d Materials, 2018, 5(3): 035013.
[26] DONG L, KUMAR H, ANASORI B, et al. Rational Design of Two-Dimensional Metallic and Semiconducting Spintronic Materials Based on Ordered Double-Transition-Metal MXenes [J]. Journal of Physical Chemistry Letters, 2017, 8(2): 422-428.
[27] LUO J M, TAO X Y, ZHANG J, et al. Se4+ Ion Decorated Highly Conductive Ti3C2 MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance [J]. Acs Nano, 2016, 10(2): 2491-2499.
[28] ZHONG Y, XIA X H, SHI F, et al. Transition Metal Carbides and Nitrides in Energy Storage and Conversion (vol 3, 1500286, 2016) [J]. Advanced Science, 2016, 3(5): 1500286.
[29] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage [J]. Nature Reviews Materials, 2017, 2(2): 1-17.
[30] VAHIDMOHAMMADI A, LIANG W T, MOJTABAVI M, et al. 2D titanium and vanadium carbide MXene heterostructures for electrochemical energy storage [J]. Energy Storage Materials, 2021, 41: 554-62.
[31] DONG Y C, CHERTOPALOV S, MALESKI K, et al. Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes [J]. Advanced Materials, 2018, 30(10): 1705714.
[32] VELUSAMY D B, EL-DEMELLAWI J K, EL-ZOHRY A M, et al. MXenes for Plasmonic Photodetection [J]. Advanced Materials, 2019, 31(32): 1807658.
[33] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes) [J]. Science, 2016, 353(6304): 1137-40.
[34] IQBAL A, SHAHZAD F, HANTANASIRISAKUL K, et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene) [J]. Science, 2020, 369(6502): 446-451.
[35] LI Y, TIAN X, GAO S-P, et al. Reversible Crumpling of 2D Titanium Carbide (MXene) Nanocoatings for Stretchable Electromagnetic Shielding and Wearable Wireless Communication [J]. Advanced Functional Materials, 2020, 30(5): 1907451.
[36] HE P, CAO M S, CAO W Q, et al. Developing MXenes from Wireless Communication to Electromagnetic Attenuation [J]. Nano-Micro Letters, 2021, 13(1): 115.
[37] SARYCHEVA A, POLEMI A, LIU Y L, et al. 2D titanium carbide (MXene) for wireless communication [J]. Science Advances, 2018, 4(9): eaau0920.
[38] GAO G P, O'MULLANE A P, DU A J. 2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction [J]. Acs Catalysis, 2017, 7(1): 494-500.
[39] RAN J R, GAO G P, LI F T, et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production [J]. Nature Communications, 2017, 8(1): 13907.
[40] PAN H. Ultra-high electrochemical catalytic activity of MXenes [J]. Scientific Reports, 2016, 6(1): 32531.
[41] YU X F, LI Y C, CHENG J B, et al. Monolayer Ti2CO2: A Promising Candidate for NH3 Sensor or Capturer with High Sensitivity and Selectivity [J]. Acs Applied Materials & Interfaces, 2015, 7(24): 13707-13.
[42] NI Y M, HUANG J Y, LI S H, et al. Underwater, Multifunctional Superhydrophobic Sensor for Human Motion Detection [J]. Acs Applied Materials & Interfaces, 2021, 13(3): 4740-9.
[43] KIM S J, KOH H J, REN C E, et al. Metallic Ti3C2TX MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio [J]. Acs Nano, 2018, 12(2): 986-93.
[44] ZHENG X H, WANG P, ZHANG X S, et al. Breathable, durable and bark-shaped MXene/textiles for high-performance wearable pressure sensors, EMI shielding and heat physiotherapy [J]. Composites Part a-Applied Science and Manufacturing, 2022, 152: 106700.
[45] ZOU Y, JIN X, ZHANG X, et al. A multifunctional biomedical patch based on hyperbranched epoxy polymer and MXene [J]. Science China-Technological Sciences, 2021, 64(12): 2744-54.
[46] LU B, ZHU Z, MA B, et al. 2D MXene Nanomaterials for Versatile Biomedical Applications: Current Trends and Future Prospects [J]. Small, 2021, 17(46): 2100946.
[47] SZUPLEWSKA A, KULPINSKA D, DYBKO A, et al. Future Applications of MXenes in Biotechnology, Nanomedicine, and Sensors [J]. Trends in Biotechnology, 2020, 38(3): 264-79.
[48] LIAO L P, JIANG D G, ZHENG K, et al. Industry-Scale and Environmentally Stable Ti3C2Tx MXene Based Film for Flexible Energy Storage Devices [J]. Advanced Functional Materials, 2021, 31(35): 2103960.
[49] HARUSSANI M M, SAPUAN S M, NADEEM G, et al. Recent applications of carbon-based composites in defence industry: A review [J]. Defence Technology, 2022, 18(8): 1281-300.
[50] YU M H, FENG X L. Scalable Manufacturing of MXene Films: Moving toward Industrialization [J]. Matter, 2020, 3(2): 335-6.
[51] RAJAVEL K, YU X C, ZHU P L, et al. Exfoliation and Defect Control of Two-Dimensional Few-Layer MXene Ti3C2Tx for Electromagnetic Interference Shielding Coatings [J]. Acs Applied Materials & Interfaces, 2020, 12(44): 49737-47.
[52] SHAHZAD A, NAWAZ M, MORTAHIDA M, et al. Exfoliation of Titanium Aluminum Carbide (211 MAX Phase) to Form Nanofibers and Two-Dimensional Nanosheets and Their Application in Aqueous-Phase Cadmium Sequestration [J]. Acs Applied Materials & Interfaces, 2019, 11(21): 19156-66.
[53] FENG A H, YU Y, WANG Y, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2 [J]. Materials & Design, 2017, 114: 161-6.
[54] GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-91.
[55] ANASORI B G Y. 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications [M]. 2019.
[56] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials [J]. Advanced Materials, 2014, 26(7): 992-1005.
[57] HARRIS K J, BUGNET M, NAGUIB M, et al. Direct Measurement of Surface Termination Groups and Their Connectivity in the 2D MXene V2CTx Using NMR Spectroscopy [J]. Journal of Physical Chemistry C, 2015, 119(24): 13713-20.
[58] HOPE M A, FORSE A C, GRIFFITH K J, et al. NMR reveals the surface functionalisation of Ti3C2 MXene [J]. Physical Chemistry Chemical Physics, 2016, 18(7): 5099-102.
[59] SHI C Y, BEIDAGHI M, NAGUIB M, et al. Structure of Nanocrystalline Ti3C2 MXene Using Atomic Pair Distribution Function [J]. Physical Review Letters, 2014, 112(12): 125501.
[60] LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide [J]. Science, 2013, 341(6153): 1502-5.
[61] MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation and delamination of layered carbides and carbonitrides [J]. Nature Communications, 2013, 4(1): 1716.
[62] DING H M, LI Y B, LI M, et al. Chemical scissor-mediated structural editing of layered transition metal carbides [J]. Science, 2023, 379(6637): 1130-5.
[63] SUN W, SHAH S A, CHEN Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution [J]. Journal of Materials Chemistry A, 2017, 5(41): 21663-8.
[64] LIU H, CHEN B-Q, LI C-Y, et al. Fluoride-Free Synthesis of 2D Titanium Carbide (MXenes) Assisted by scCO2 -Based Ternary Solution [J]. Small (Weinheim an der Bergstrasse, Germany), 2023: e2305321-e.
[65] YANG S, ZHANG P P, WANG F X, et al. Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System [J]. Angewandte Chemie-International Edition, 2018, 57(47): 15491-5.
[66] CHEN J J, JIN Q Q, LI Y B, et al. Molten Salt-Shielded Synthesis (MS3) of MXenes in Air [J]. Energy & Environmental Materials, 2023, 6(2): e12328.
[67] ROY C, BANERJEE P, BHATTACHARYYA S. Molten salt shielded synthesis (MS3) of Ti2AlN and V2AlC MAX phase powders in open air [J]. Journal of the European Ceramic Society, 2020, 40(3): 923-9.
[68] QIAO C C, CHE J, WANG J S, et al. Cost effective production of high quality multilayer graphene in molten Sn bubble column by using CH4 as carbon source [J]. Journal of Alloys and Compounds, 2023, 930: 167495.
[69] JIN H Y, GU Q F, CHEN B, et al. Molten Salt-Directed Catalytic Synthesis of 2D Layered Transition-Metal Nitrides for Efficient Hydrogen Evolution [J]. Chem, 2020, 6(9): 2382-94.
[70] XU C, WANG L B, LIU Z B, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals [J]. Nature Materials, 2015, 14(11): 1135-+.
[71] ZHANG Y H, SHU H B, CHEN Z Y, et al. Chemical vapor deposition growth and characterization of graphite-like film [J]. Materials Research Express, 2020, 7(1): 015609
[72] WANG D, ZHOU C K, FILATOV A S, et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes [J]. Science, 2023, 379(6638): 1242-7.
[73] MASHTALIR O, LUKATSKAYA M R, KOLESNIKOV A I, et al. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene) [J]. Nanoscale, 2016, 8(17): 9128-33.
[74] CHEN Y A, LI Y H, LIU Y, et al. Holocellulose Nanofibril-Assisted Intercalation and Stabilization of Ti3C2Tx MXene Inks for Multifunctional Sensing and EMI Shielding Applications [J]. Acs Applied Materials & Interfaces, 2021, 13(30): 36221-31.
[75] XU J X, PENG T, QIN X, et al. Recent advances in 2D MXenes: preparation, intercalation and applications in flexible devices [J]. Journal of Materials Chemistry A, 2021, 9(25): 14147-71.
[76] HANTANASIRISAKUL K, GOGOTSI Y. Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes) [J]. Advanced Materials, 2018, 30(52): 1804779.
[77] COTE L J, KIM F, HUANG J X. Langmuir-Blodgett Assembly of Graphite Oxide Single Layers [J]. Journal of the American Chemical Society, 2009, 131(3): 1043-9.
[78] SHIM J, YUN J M, YUN T, et al. Two-Minute Assembly of Pristine Large-Area Graphene Based Films [J]. Nano Letters, 2014, 14(3): 1388-93.
[79] YUN T, KIM J S, SHIM J, et al. Ultrafast Interfacial Self-Assembly of 2D Transition Metal Dichalcogenides Monolayer Films and Their Vertical and In-Plane Heterostructures [J]. Acs Applied Materials & Interfaces, 2017, 9(1): 1021-8.
[80] KIM S J, CHOI J, MALESKI K, et al. Interfacial Assembly of Ultrathin, Functional MXene Films [J]. Acs Applied Materials & Interfaces, 2019, 11(35): 32320-7.
[81] FAN L, WEN P, ZHAO X W, et al. Langmuir-Blodgett Assembly of Ti3C2Tx Nanosheets for Planar Microsupercapacitors [J]. Acs Applied Nano Materials, 2022, 5(3): 4170-9.
[82] LING Z, REN C E, ZHAO M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16676-81.
[83] MARIANO M, MASHTALIR O, ANTONIO F Q, et al. Solution-processed titanium carbide MXene films examined as highly transparent conductors [J]. Nanoscale, 2016, 8(36): 16371-8.
[84] HANTANASIRISAKUL K, ZHAO M Q, URBANKOWSKI P, et al. Fabrication of Ti3C2Tx MXene Transparent Thin Films with Tunable Optoelectronic Properties [J]. Advanced Electronic Materials, 2016, 2(6): 1600050.
[85] JIANG D G, ZHANG J Z, QIN S, et al. Scalable Fabrication of Ti3C2Tx MXene/RGO/Carbon Hybrid Aerogel for Organics Absorption and Energy Conversion [J]. Acs Applied Materials & Interfaces, 2021, 13(43): 51333-42.
[86] SANG X H, XIE Y, LIN M W, et al. Atomic Defects in Monolayer Titanium Carbide (Ti3C2Tx) MXene [J]. Acs Nano, 2016, 10(10): 9193-200.
[87] HU H B, HUA T. An easily manipulated protocol for patterning of MXenes on paper for planar micro-supercapacitors [J]. Journal of Materials Chemistry A, 2017, 5(37): 19639-48.
[88] LI Y, LU Z, XIN B J, et al. All-solid-state flexible supercapacitor of Carbonized MXene/Cotton fabric for wearable energy storage [J]. Applied Surface Science, 2020, 528: 146975.
[89] PENG Y Y, AKUZUM B, KURRA N, et al. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9(9): 2847-54.
[90] WAN S J, LI X, CHEN Y, et al. High-strength scalable MXene films through bridging-induced densification [J]. Science, 2021, 374(6563): 96-99.
[91] WAN S J, LI X, CHEN Y, et al. Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging [J]. Nature Communications, 2022, 13(1): 7340.
[92] BOOTH W A, EDWARDS B, JO K, et al. Diffusion layer formation drives zone migration in travelling wave electrophoresis [J]. Analyst, 2017, 142(9): 1554-61.
[93] WANG K, ZHENG B, MACKINDER M, et al. Efficient electrophoretic deposition of MXene/reduced graphene oxide flexible electrodes for all-solid-state supercapacitors [J]. Journal of Energy Storage, 2021, 33: 102070.
[94] AL-MUHIT B, SANCHEZ F. Traction-separation response of bilayer graphene interfaces: The role of an intercalated single atomic layer of water molecules and hydroxyl groups [J]. Applied Surface Science, 2021, 540: 148280..
[95] LEI Y, CUI Y, HUANG Q, et al. Facile preparation of sulfonic groups functionalized Mxenes for efficient removal of methylene blue [J]. Ceramics International, 2019, 45(14): 17653-61.
[96] LI Z, LI J, TAN J, et al. In situ synthesis of novel peroxo-functionalized Ti3C2Tx adsorbent for aqueous pollutants removal: Role of oxygen-containing terminal groups [J]. Chemosphere, 2022, 286: 131801.
[97] TAO Y, KOH S W, YU X C, et al. Surface group-modified MXene nano-flake doping of monolayer tungsten disulfides [J]. Nanoscale Advances, 2019, 1(12): 4783-9.
[98] LAI S, JEON J, JANG S K, et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: -OH, -F and -O) [J]. Nanoscale, 2015, 7(46): 19390-6.
[99] BEKAERT J, SEVIK C, MILOSEVIC M V. First-principles exploration of superconductivity in MXenes [J]. Nanoscale, 2020, 12(33): 17354-61.
[100] YORULMAZ U, OZDEN A, PERKGOZ N K, et al. Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation [J]. Nanotechnology, 2016, 27(33): 335702.
[101] MAIDANA C O, NIEMINEN J E. First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps [J]. Nuclear Engineering and Technology, 2017, 49(1): 82-91.
[102] CHAMPAGNE A, SHI L, OUISSE T, et al. Electronic and vibrational properties of V2C-based MXenes: From experiments to first-principles modeling [J]. Physical Review B, 2018, 97(11): 115439.
[103] BAI Y, ZHOU K, SRIKANTH N, et al. Dependence of elastic and optical properties on surface terminated groups in two-dimensional MXene monolayers: a first-principles study [J]. Rsc Advances, 2016, 6(42): 35731-9.
[104] WANG X, HUANG S, DENG L, et al. Enhanced optical absorption of Fe-, Co- and Ni- decorated Ti3C2 MXene: A first-principles investigation [J]. Physica E-Low-Dimensional Systems & Nanostructures, 2021, 127: 114565.
[105] XU M, YANG J, LIU L. Temperature-dependent optical and electrical properties of bulk Ti2AlC and two-dimensional MXenes from first-principles [J]. Physica B-Condensed Matter, 2019, 560: 146-54.
[106] ZHANG N, HONG Y, YAZDANPARAST S, et al. Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: a comprehensive first principles study [J]. 2d Materials, 2018, 5(4): 045004.
[107] JIN H L, WANG K, MAO Z Q, et al. The structural, magnetic, Raman and electrical transport properties of Mn intercalated Ti3C2 [J]. Journal of Physics-Condensed Matter, 2021, 34(1): 015701.
[108] LIPATOV A, GOAD A, LOES M J, et al. High electrical conductivity and breakdown current density of individual monolayer Ti3C2Tx MXene flakes [J]. Matter, 2021, 4(4): 1413-27.
[109] NAH J S, BARMAN S C, ABU ZAHED M, et al. A wearable microfluidics-integrated impedimetric immunosensor based on Ti3C2Tx MXene incorporated laser-burned graphene for noninvasive sweat cortisol detection [J]. Sensors and Actuators B-Chemical, 2021, 329: 129206.
[110] LIPATOV A, ALHABEB M, LUKATSKAYA M R, et al. Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes [J]. Advanced Electronic Materials, 2016, 2(12): 1600255.
[111] LIPATOV A, LOES M J, VOROBEVA N S, et al. High Breakdown Current Density in Monolayer Nb4C3Tx MXene [J]. Acs Materials Letters, 2021, 3(8): 1088-94.
[112] LIPATOV A, ALHABEB M, LU H D, et al. Electrical and Elastic Properties of Individual Single-Layer Nb4C3Tx MXene Flakes [J]. Advanced Electronic Materials, 2020, 6(4): 1901382.
[113] CHOI J, KIM Y J, CHO S Y, et al. In Situ Formation of Multiple Schottky Barriers in a Ti(3)C(2)MXene Film and its Application in Highly Sensitive Gas Sensors [J]. Advanced Functional Materials, 2020, 30(40): 2003998.
[114] RASEL M A, WYATT B, WETHERINGTON M, et al. Low-temperature annealing of 2D Ti3C2Tx MXene films using electron wind force in ambient conditions [J]. Journal of Materials Research, 2021, 36(17): 3398-406.
[115] GHIDIU M, KOTA S, DROZD V, et al. Pressure-induced shear and interlayer expansion in Ti3C2 MXene in the presence of water [J]. Science advances, 2018, 4(1): eaao6850.
[116] LIU J, MCKEON L, GARCIA J, et al. Additive Manufacturing of Ti3C2-MXene-Functionalized Conductive Polymer Hydrogels for Electromagnetic-Interference Shielding [J]. Advanced Materials, 2022, 34(5): 2106253.
[117] BORYSIUK V N, MOCHALIN V N, GOGOTSI Y. Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: A molecular dynamics study [J]. Computational Materials Science, 2018, 143: 418-24.
[118] WAN S J, LI X, WANG Y L, et al. Strong sequentially bridged MXene sheets [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(44): 27154-61.
[119] LIU N, LI Q Q, WAN H J, et al. High-temperature stability in air of Ti3C2Tx MXene-based composite with extracted bentonite [J]. Nature Communications, 2022, 13(1): 5551.
[120] ASHTON M, MATHEW K, HENNIG R G, et al. Predicted Surface Composition and Thermodynamic Stability of MXenes in Solution [J]. Journal of Physical Chemistry C, 2016, 120(6): 3550-6.
[121] FENG T D, HUANG W X, ZHU H F, et al. Optical-Transparent Self-Assembled MXene Film with High-Efficiency Terahertz Reflection Modulation [J]. Acs Applied Materials & Interfaces, 2021, 13(8): 10574-82.
[122] CHERTOPALOV S, MOCHALIN V N. Environment-Sensitive Photoresponse of Spontaneously Partially Oxidized Ti3C2 MXene Thin Films [J]. Acs Nano, 2018, 12(6): 6109-16.
[123] LI B, ZHU Q B, CUI C, et al. Patterning of Wafer-Scale MXene Films for High-Performance Image Sensor Arrays [J]. Advanced Materials, 2022, 34(17): 2201298.
[124] HOU S P, XU C, JU X K, et al. Interfacial Assembly of Ti3C2Tx/ZnIn2S4 Heterojunction for High-Performance Photodetectors [J]. Advanced Science, 2022, 9(35): 2204687.
[125] HU C, CHEN H, LI L, et al. Ti3C2Tx MXene-RAN van der Waals Heterostructure-Based Flexible Transparent NIR Photodetector Array for 1024 Pixel Image Sensing Application [J]. Advanced Materials Technologies, 2022, 7(7): 2101639.
[126] ZHANG N, WU L W, GAO W, et al. Near-Infrared, Self-Powered and Polarization-Sensitive Photodetector Based on GeSe-MoTe2 p-n Heterojunction [J]. Advanced Materials Interfaces, 2022, 9(15), 15406–15413.
[127] TANG J, WAN H J, CHANG L B, et al. Tunable Infrared Sensing Properties of MXenes Enabled by Intercalants [J]. Advanced Optical Materials, 2022, 10(17): 2200623.
[128] LI R, ZHANG L, SHI L, et al. MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material [J]. Acs Nano, 2017, 11(4): 3752-9.
[129] VOROBEVA N S, BAGHERI S, TORRES A, et al. Negative photoresponse in Ti3C2Tx MXene monolayers [J]. Nanophotonics, 2022, 11(17): 3953-60.
[130] DAI C, CHEN Y, JING X, et al. Two-Dimensional Tantalum Carbide (MXenes) Composite Nanosheets for Multiple Imaging-Guided Photothermal Tumor Ablation [J]. Acs Nano, 2017, 11(12): 12696-712.
[131] FAN X, DING Y, LIU Y, et al. Plasmonic Ti3C2TX MXene Enables Highly Efficient Photothermal Conversion for Healable and Transparent Wearable Device [J]. Acs Nano, 2019, 13(7): 8124-34.
[132] CAO Y, CHANG T, FANG C, et al. Inhibition Effect of Ti3C2Tx MXene on Ice Crystals Combined with Laser-Mediated Heating Facilitates High-Performance Cryopreservation [J]. Acs Nano, 2022, 16(6): 8837-50.
[133] CAO Y, WU T, ZHANG K, et al. Engineered Exosome-Mediated Near-Infrared-II Region V2C Quantum Dot Delivery for Nucleus-Target Low-Temperature Photothermal Therapy [J]. Acs Nano, 2019, 13(2): 1499-510.
[134] WANG C, WANG Y, JIANG X, et al. MXene Ti3C2Tx: A Promising Photothermal Conversion Material and Application in All-Optical Modulation and All-Optical Information Loading [J]. Advanced Optical Materials, 2019, 7(12): 1900060.
[135] JIN L, GUO X Q, GAO D, et al. An NIR photothermal-responsive hybrid hydrogel for enhanced wound healing [J]. Bioactive Materials, 2022, 16: 162-72.
[136] IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for Electromagnetic Shielding: A Review [J]. Advanced Functional Materials, 2020, 30(47): 2000883.
[137] YUN T, KIM H, IQBAL A, et al. Electromagnetic Shielding of Monolayer MXene Assemblies [J]. Advanced Materials, 2020, 32(9): 1906769.
[138] KELLY A G, O'REILLY J, GABBETT C, et al. Highly Conductive Networks of Silver Nanosheets [J]. Small, 2022, 18(14): 2105996.
[139] LIPTON J, ROHR J A, DANG V, et al. Scalable, Highly Conductive, and Micropatternable MXene Films for Enhanced Electromagnetic Interference Shielding [J]. Matter, 2020, 3(2): 546-57.
[140] ZHANG Y L, RUAN K P, ZHOU K, et al. Controlled Distributed Ti3C2Tx Hollow Microspheres on Thermally Conductive Polyimide Composite Films for Excellent Electromagnetic Interference Shielding [J]. Advanced Materials, 2023, 35(16): 2211642.
[141] WEN C Y, ZHAO B, LIU Y H, et al. Flexible MXene-Based Composite Films for Multi-Spectra Defense in Radar, Infrared and Visible Light Bands [J]. Advanced Functional Materials, 2023, 33(20): 2214223.
[142] HUANG M Q, WANG L, LI X, et al. Magnetic Interacted Interaction Effect in MXene Skeleton: Enhanced Thermal-Generation for Electromagnetic Interference Shielding [J]. Small, 2022, 18(27): 2201587.
[143] WU N, ZENG Z H, KUMMER N, et al. Ultrafine Cellulose Nanofiber-Assisted Physical and Chemical Cross-Linking of MXene Sheets for Electromagnetic Interference Shielding [J]. Small Methods, 2021, 5(12): 2100889.
[144] SHEN X, KIM J K. Building 3D Architecture in 2D Thin Film for Effective EMI Shielding [J]. Matter, 2019, 1(4): 796-8.
[145] ZHANG Q X, FAN R Z, CHENG W H, et al. Synthesis of Large-Area MXenes with High Yields through Power-Focused Delamination Utilizing Vortex Kinetic Energy [J]. Advanced Science, 2022, 9(28): 2202748.
[146] ZOU L H, ZHANG S L, LI X P, et al. Step-by-Step Strategy for Constructing Multilayer Structured Coatings toward High-Efficiency Electromagnetic Interference Shielding [J]. Advanced Materials Interfaces, 2016, 3(5). 43-45
[147] ZHANG J Z, KONG N, UZUN S, et al. Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity [J]. Advanced Materials, 2020, 32(23): 333-338.
[148] LIU J, ZHANG H B, SUN R H, et al. Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding [J]. Advanced Materials, 2017, 29(38): 123-125.
[149] GUAN Q F, HAN Z M, YANG K P, et al. Sustainable Double-Network Structural Materials for Electromagnetic Shielding [J]. Nano Letters, 2021, 21(6): 2532-7.
[150] LV H L, YANG Z H, ONG S J H, et al. A Flexible Microwave Shield with Tunable Frequency-Transmission and Electromagnetic Compatibility [J]. Advanced Functional Materials, 2019, 29(14): 384-391.
[151] LI X L, SHENG X X, FANG Y, et al. Wearable Janus-Type Film with Integrated All-Season Active/Passive Thermal Management, Thermal Camouflage, and Ultra-High Electromagnetic Shielding Efficiency Tunable by Origami Process [J]. Advanced Functional Materials, 2023, 33(18): 2212776.
[152] SHAHZAD F, IQBAL A, KIM H, et al. 2D Transition Metal Carbides (MXenes): Applications as an Electrically Conducting Material [J]. Advanced Materials, 2020, 32(51): 234-241.
[153] HAN M K, YIN X W, WU H, et al. Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band [J]. Acs Applied Materials & Interfaces, 2016, 8(32): 21011-9.
[154] WU X Y, TU T X, DAI Y, et al. Direct Ink Writing of Highly Conductive MXene Frames for Tunable Electromagnetic Interference Shielding and Electromagnetic Wave-Induced Thermochromism [J]. Nano-Micro Letters, 2021, 13(1): 234-236.
[155] HAN M K, ZHANG D Z, SHUCK C E, et al. Electrochemically modulated interaction of MXenes with microwaves [J]. Nature Nanotechnology, 2023, 18(4): 373-379.
修改评论