中文版 | English
题名

MXene层间结构调控对其光响应与电磁屏蔽性能影响的研究

其他题名
RESEARCH ON THE INFLUENCE OF MXENE INTERLAYER STRUCTURE CONTROL ON ITS OPTICAL RESPONSE AND ELECTROMAGNETIC SHIELDING PERFORMANCE
姓名
姓名拼音
WANG Peizhi
学号
12132078
学位类型
硕士
学位专业
070207 光学
学科门类/专业学位类别
07 理学
导师
徐保民
导师单位
材料科学与工程系
论文答辩日期
2024-05-09
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

二维过渡金属碳氮化物(MXene)具有可调控的层间结构和高的导电性,使其在光探测和电磁屏蔽领域受到高度关注。然而,对于MXene在针对红外光响应和X波段电磁屏蔽性能方面的层间结构调控的研究还相对缺乏。其中的主要原因是因为缺少对MXene层间结构的精细控制,这不仅导致了其红外响应性能的批次间差异,还影响了其在X波段的吸波性能。鉴于此,本研究围绕MXene材料层间结构的精细调控开展深入研究,成功制备了光探测器和电磁屏蔽薄膜,并从调控MXene层间结构的角度出发,阐释了其响应机理并优化了吸波性能。

MXene的层间化学可调节性在多种探测器应用中展现出显著的应用前景。然而,其层间物质的变化导致光响应性能的不一致,主要归因于其复杂的电阻特性。为此,本研究通过分别构建单层与多层MXene结构,深入分析了其光响应行为。实验结果表明,在光照作用下,单层MXene的电阻值能够增加到100.10%,并能在1秒内迅速恢复,这主要是由材料的本征电阻变化引起的。相比之下,多层MXene在光照下电阻值快速降至99.60%,恢复过程则需要约15秒,这主要是多层结构中的插层效应主导的电阻变化。实验还发现会出现一种过渡态情况,其中MXene的电阻先是增加然后迅速减少,这一现象可归因于两种状态下弛豫时间的差异。此项研究不仅阐释了MXene层状结构对光响应的影响,还总结了不同层状结构下的主要响应机制,从而为实现MXene光探测器的响应一致性提供理论基础。

X波段频率下,MXene因其卓越的导电性和独特的层间结构而在电磁屏蔽领域受到重视。然而,层间水分的存在影响其电导率以及层内空间结构,进而限制其吸波性能。本论文通过激光处理技术去除层间水分,使MXene的导电性和结构疏松度得到显著提升,电磁屏蔽性能增强了5 dB。更重要的是,激光处理前后MXene的表面性质从亲水转变为疏水,使得MXene能够与液态金属镓进行有效复合。复合后的材料在30 μm的厚度下,屏蔽性能超过90 dB。这种激光处理方法为MXene与其他金属材料的复合开辟了新的途径,也为未来高效电磁屏蔽材料的设计提供了新的思路。

其他摘要

Two-dimensional transition metal carbonitrides (MXenes) have tunable interlayer structures and high electrical conductivity, which have attracted great attention in the fields of light detection and electromagnetic shielding. Nonetheless, research on the modulation of MXene's interlayer structure for infrared response and X-band electromagnetic shielding performance remains relatively sparse. This gap primarily stems from a lack of precise control over MXene's interlayer structure, affecting not only batch-to-batch consistency in infrared response but also its absorption capabilities in the X-band. Addressing this, our study embarked on an in-depth exploration of MXene materials, successfully fabricating detectors and electromagnetic shielding films. By focusing on the adjustment of the MXene interlayer structure, we elucidated its response mechanism and enhanced its absorption performance.

The tunability of MXene's interlayer chemistry presents significant prospects for various detector applications. However, variations in the interlayer content have led to inconsistencies in light response performance, largely due to its complex resistive properties. To tackle this issue, our research constructed single and multi-layer MXene structures to thoroughly analyze their light-responsive behaviors. Experimental outcomes indicated that under illumination, the resistance of single-layer MXene could increase by 100.10% and rapidly recover within one second, primarily driven by intrinsic resistance changes. In contrast, multi-layer MXene exhibited a swift decrease in resistance to 99.60% under light, with a recovery period of about 15 seconds, where the interlayer effect predominantly influenced the resistance change. Notably, an intermediate state was observed, in which MXene's resistance first increased and then quickly decreased, attributable to the differential relaxation times between the two states. This study not only clarified the impact of MXene's layered structure on its light responsiveness but also summarized the main response mechanisms across different layer structures, thereby laying a theoretical foundation for achieving consistent responses in MXene detectors.

In the X-band frequency range, MXene's exceptional conductivity and unique interlayer structure have made it a subject of interest in the electromagnetic shielding domain. However, the presence of interlayer water impacted its conductivity and interlayer spatial structure, subsequently limiting its absorption performance. By employing laser treatment technology to remove interlayer water, the conductivity and structural looseness of MXene were significantly enhanced, improving the electromagnetic shielding effectiveness by 5 dB. More crucially, laser treatment altered MXene's surface properties from hydrophilic to hydrophobic, facilitating effective compounding with liquid metal gallium. The composite material exhibited shielding effectiveness up to 90 dB at a thickness of 30 μm. This laser treatment approach has opened new avenues for combining MXene with other metal materials, also offering fresh insights for the design of future efficient electromagnetic interference shielding materials.

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-9.
[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature, 2005, 438(7065): 197-200.
[3] ZHANG Y B, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature, 2005, 438(7065): 201-4.
[4] COSTANZO D, JO S, BERGER H, et al. Gate-induced superconductivity in atomically thin MoS2 crystals [J]. Nature Nanotechnology, 2016, 11(4): 339-+.
[5] CHANG C Z, ZHANG J S, FENG X, et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J]. Science, 2013, 340(6129): 167-70.
[6] CAO Y, FATEMI V, FANG S, et al. Unconventional superconductivity in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 43-+.
[7] MAK K F, LEE C, HONE J, et al. Atomically Thin MoS2: A New Direct-Gap Semiconductor [J]. Physical Review Letters, 2010, 105(13): 136805.
[8] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology, 2012, 7(11): 699-712.
[9] LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors [J]. Nature Nanotechnology, 2014, 9(5): 372-7.
[10] LOW T, CHAVES A, CALDWELL J D, et al. Polaritons in layered two-dimensional materials [J]. Nature Materials, 2017, 16(2): 182-94.
[11] VOGT P, DE PADOVA P, QUARESIMA C, et al. Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon [J]. Physical Review Letters, 2012, 108(15): 155501.
[12] LI L F, LU S Z, PAN J B, et al. Buckled Germanene Formation on Pt(111) [J]. Advanced Materials, 2014, 26(28): 4820-+.
[13] COLEMAN J N, LOTYA M, O'NEILL A, et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J]. Science, 2011, 331(6017): 568-71.
[14] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-53.
[15] KOTA S, HALIM J, LUKATSKAYA M, et al. Synthesis and characterization of 2D molybdenum carbide (MXene) [J]. Abstracts of Papers of the American Chemical Society, 2016, 26(18): 3118-3127.
[16] URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene) [J]. Nanoscale, 2016, 8(22): 11385-91.
[17] ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TXMXene) [J]. Chemistry of Materials, 2017, 29(18): 7633-44.
[18] ZHANG C F J, PINILLA S, MCEYOY N, et al. Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes) [J]. Chemistry of Materials, 2017, 29(11): 4848-56.
[19] HUANG S H, MOCHALIN V N. Hydrolysis of 2D Transition-Metal Carbides (MXenes) in Colloidal Solutions [J]. Inorganic Chemistry, 2019, 58(3): 1958-66.
[20] PIATTI E, ARBAB A, GALANTI F, et al. Charge transport mechanisms in inkjet-printed thin-film transistors based on two-dimensional materials [J]. Nature Electronics, 2021, 4(12): 893-905.
[21] AAKYIIR M, TANNER B, YAP P L, et al. 3D printing interface-modified PDMS/MXene nanocomposites for stretchable conductors [J]. Journal of Materials Science & Technology, 2022, 117: 174-82.
[22] HART J L, HANTANASIRISAKUL K, LANG A C, et al. Control of MXenes' electronic properties through termination and intercalation [J]. Nature Communications, 2019, 10(1): 522.
[23] ZHENG W H, SUN B Y, LI D Q, et al. Band transport by large Frohlich polarons in MXenes [J]. Nature Physics, 2022, 18(5): 544-550.
[24] ANASORI B, SHI C Y, MOON E J, et al. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers [J]. Nanoscale Horizons, 2016, 1(3): 227-234.
[25] ZHOU T L, WEI H, TAN H P, et al. Strongly anisotropic thermal conductivity and adequate breathability of bilayered films for heat management of on-skin electronics [J]. 2d Materials, 2018, 5(3): 035013.
[26] DONG L, KUMAR H, ANASORI B, et al. Rational Design of Two-Dimensional Metallic and Semiconducting Spintronic Materials Based on Ordered Double-Transition-Metal MXenes [J]. Journal of Physical Chemistry Letters, 2017, 8(2): 422-428.
[27] LUO J M, TAO X Y, ZHANG J, et al. Se4+ Ion Decorated Highly Conductive Ti3C2 MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance [J]. Acs Nano, 2016, 10(2): 2491-2499.
[28] ZHONG Y, XIA X H, SHI F, et al. Transition Metal Carbides and Nitrides in Energy Storage and Conversion (vol 3, 1500286, 2016) [J]. Advanced Science, 2016, 3(5): 1500286.
[29] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage [J]. Nature Reviews Materials, 2017, 2(2): 1-17.
[30] VAHIDMOHAMMADI A, LIANG W T, MOJTABAVI M, et al. 2D titanium and vanadium carbide MXene heterostructures for electrochemical energy storage [J]. Energy Storage Materials, 2021, 41: 554-62.

[31] DONG Y C, CHERTOPALOV S, MALESKI K, et al. Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes [J]. Advanced Materials, 2018, 30(10): 1705714.

[32] VELUSAMY D B, EL-DEMELLAWI J K, EL-ZOHRY A M, et al. MXenes for Plasmonic Photodetection [J]. Advanced Materials, 2019, 31(32): 1807658.

[33] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes) [J]. Science, 2016, 353(6304): 1137-40.

[34] IQBAL A, SHAHZAD F, HANTANASIRISAKUL K, et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene) [J]. Science, 2020, 369(6502): 446-451.

[35] LI Y, TIAN X, GAO S-P, et al. Reversible Crumpling of 2D Titanium Carbide (MXene) Nanocoatings for Stretchable Electromagnetic Shielding and Wearable Wireless Communication [J]. Advanced Functional Materials, 2020, 30(5): 1907451.

[36] HE P, CAO M S, CAO W Q, et al. Developing MXenes from Wireless Communication to Electromagnetic Attenuation [J]. Nano-Micro Letters, 2021, 13(1): 115.

[37] SARYCHEVA A, POLEMI A, LIU Y L, et al. 2D titanium carbide (MXene) for wireless communication [J]. Science Advances, 2018, 4(9): eaau0920.

[38] GAO G P, O'MULLANE A P, DU A J. 2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction [J]. Acs Catalysis, 2017, 7(1): 494-500.

[39] RAN J R, GAO G P, LI F T, et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production [J]. Nature Communications, 2017, 8(1): 13907.

[40] PAN H. Ultra-high electrochemical catalytic activity of MXenes [J]. Scientific Reports, 2016, 6(1): 32531.

[41] YU X F, LI Y C, CHENG J B, et al. Monolayer Ti2CO2: A Promising Candidate for NH3 Sensor or Capturer with High Sensitivity and Selectivity [J]. Acs Applied Materials & Interfaces, 2015, 7(24): 13707-13.

[42] NI Y M, HUANG J Y, LI S H, et al. Underwater, Multifunctional Superhydrophobic Sensor for Human Motion Detection [J]. Acs Applied Materials & Interfaces, 2021, 13(3): 4740-9.

[43] KIM S J, KOH H J, REN C E, et al. Metallic Ti3C2TX MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio [J]. Acs Nano, 2018, 12(2): 986-93.

[44] ZHENG X H, WANG P, ZHANG X S, et al. Breathable, durable and bark-shaped MXene/textiles for high-performance wearable pressure sensors, EMI shielding and heat physiotherapy [J]. Composites Part a-Applied Science and Manufacturing, 2022, 152: 106700.

[45] ZOU Y, JIN X, ZHANG X, et al. A multifunctional biomedical patch based on hyperbranched epoxy polymer and MXene [J]. Science China-Technological Sciences, 2021, 64(12): 2744-54.

[46] LU B, ZHU Z, MA B, et al. 2D MXene Nanomaterials for Versatile Biomedical Applications: Current Trends and Future Prospects [J]. Small, 2021, 17(46): 2100946.

[47] SZUPLEWSKA A, KULPINSKA D, DYBKO A, et al. Future Applications of MXenes in Biotechnology, Nanomedicine, and Sensors [J]. Trends in Biotechnology, 2020, 38(3): 264-79.

[48] LIAO L P, JIANG D G, ZHENG K, et al. Industry-Scale and Environmentally Stable Ti3C2Tx MXene Based Film for Flexible Energy Storage Devices [J]. Advanced Functional Materials, 2021, 31(35): 2103960.

[49] HARUSSANI M M, SAPUAN S M, NADEEM G, et al. Recent applications of carbon-based composites in defence industry: A review [J]. Defence Technology, 2022, 18(8): 1281-300.

[50] YU M H, FENG X L. Scalable Manufacturing of MXene Films: Moving toward Industrialization [J]. Matter, 2020, 3(2): 335-6.

[51] RAJAVEL K, YU X C, ZHU P L, et al. Exfoliation and Defect Control of Two-Dimensional Few-Layer MXene Ti3C2Tx for Electromagnetic Interference Shielding Coatings [J]. Acs Applied Materials & Interfaces, 2020, 12(44): 49737-47.

[52] SHAHZAD A, NAWAZ M, MORTAHIDA M, et al. Exfoliation of Titanium Aluminum Carbide (211 MAX Phase) to Form Nanofibers and Two-Dimensional Nanosheets and Their Application in Aqueous-Phase Cadmium Sequestration [J]. Acs Applied Materials & Interfaces, 2019, 11(21): 19156-66.

[53] FENG A H, YU Y, WANG Y, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2 [J]. Materials & Design, 2017, 114: 161-6.

[54] GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-91.

[55] ANASORI B G Y. 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications [M]. 2019.

[56] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials [J]. Advanced Materials, 2014, 26(7): 992-1005.

[57] HARRIS K J, BUGNET M, NAGUIB M, et al. Direct Measurement of Surface Termination Groups and Their Connectivity in the 2D MXene V2CTx Using NMR Spectroscopy [J]. Journal of Physical Chemistry C, 2015, 119(24): 13713-20.

[58] HOPE M A, FORSE A C, GRIFFITH K J, et al. NMR reveals the surface functionalisation of Ti3C2 MXene [J]. Physical Chemistry Chemical Physics, 2016, 18(7): 5099-102.

[59] SHI C Y, BEIDAGHI M, NAGUIB M, et al. Structure of Nanocrystalline Ti3C2 MXene Using Atomic Pair Distribution Function [J]. Physical Review Letters, 2014, 112(12): 125501.

[60] LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide [J]. Science, 2013, 341(6153): 1502-5.

[61] MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation and delamination of layered carbides and carbonitrides [J]. Nature Communications, 2013, 4(1): 1716.

[62] DING H M, LI Y B, LI M, et al. Chemical scissor-mediated structural editing of layered transition metal carbides [J]. Science, 2023, 379(6637): 1130-5.

[63] SUN W, SHAH S A, CHEN Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution [J]. Journal of Materials Chemistry A, 2017, 5(41): 21663-8.

[64] LIU H, CHEN B-Q, LI C-Y, et al. Fluoride-Free Synthesis of 2D Titanium Carbide (MXenes) Assisted by scCO2 -Based Ternary Solution [J]. Small (Weinheim an der Bergstrasse, Germany), 2023: e2305321-e.

[65] YANG S, ZHANG P P, WANG F X, et al. Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System [J]. Angewandte Chemie-International Edition, 2018, 57(47): 15491-5.

[66] CHEN J J, JIN Q Q, LI Y B, et al. Molten Salt-Shielded Synthesis (MS3) of MXenes in Air [J]. Energy & Environmental Materials, 2023, 6(2): e12328.

[67] ROY C, BANERJEE P, BHATTACHARYYA S. Molten salt shielded synthesis (MS3) of Ti2AlN and V2AlC MAX phase powders in open air [J]. Journal of the European Ceramic Society, 2020, 40(3): 923-9.

[68] QIAO C C, CHE J, WANG J S, et al. Cost effective production of high quality multilayer graphene in molten Sn bubble column by using CH4 as carbon source [J]. Journal of Alloys and Compounds, 2023, 930: 167495.

[69] JIN H Y, GU Q F, CHEN B, et al. Molten Salt-Directed Catalytic Synthesis of 2D Layered Transition-Metal Nitrides for Efficient Hydrogen Evolution [J]. Chem, 2020, 6(9): 2382-94.

[70] XU C, WANG L B, LIU Z B, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals [J]. Nature Materials, 2015, 14(11): 1135-+.

[71] ZHANG Y H, SHU H B, CHEN Z Y, et al. Chemical vapor deposition growth and characterization of graphite-like film [J]. Materials Research Express, 2020, 7(1): 015609

[72] WANG D, ZHOU C K, FILATOV A S, et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes [J]. Science, 2023, 379(6638): 1242-7.

[73] MASHTALIR O, LUKATSKAYA M R, KOLESNIKOV A I, et al. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene) [J]. Nanoscale, 2016, 8(17): 9128-33.

[74] CHEN Y A, LI Y H, LIU Y, et al. Holocellulose Nanofibril-Assisted Intercalation and Stabilization of Ti3C2Tx MXene Inks for Multifunctional Sensing and EMI Shielding Applications [J]. Acs Applied Materials & Interfaces, 2021, 13(30): 36221-31.

[75] XU J X, PENG T, QIN X, et al. Recent advances in 2D MXenes: preparation, intercalation and applications in flexible devices [J]. Journal of Materials Chemistry A, 2021, 9(25): 14147-71.

[76] HANTANASIRISAKUL K, GOGOTSI Y. Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes) [J]. Advanced Materials, 2018, 30(52): 1804779.

[77] COTE L J, KIM F, HUANG J X. Langmuir-Blodgett Assembly of Graphite Oxide Single Layers [J]. Journal of the American Chemical Society, 2009, 131(3): 1043-9.

[78] SHIM J, YUN J M, YUN T, et al. Two-Minute Assembly of Pristine Large-Area Graphene Based Films [J]. Nano Letters, 2014, 14(3): 1388-93.

[79] YUN T, KIM J S, SHIM J, et al. Ultrafast Interfacial Self-Assembly of 2D Transition Metal Dichalcogenides Monolayer Films and Their Vertical and In-Plane Heterostructures [J]. Acs Applied Materials & Interfaces, 2017, 9(1): 1021-8.

[80] KIM S J, CHOI J, MALESKI K, et al. Interfacial Assembly of Ultrathin, Functional MXene Films [J]. Acs Applied Materials & Interfaces, 2019, 11(35): 32320-7.

[81] FAN L, WEN P, ZHAO X W, et al. Langmuir-Blodgett Assembly of Ti3C2Tx Nanosheets for Planar Microsupercapacitors [J]. Acs Applied Nano Materials, 2022, 5(3): 4170-9.

[82] LING Z, REN C E, ZHAO M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16676-81.

[83] MARIANO M, MASHTALIR O, ANTONIO F Q, et al. Solution-processed titanium carbide MXene films examined as highly transparent conductors [J]. Nanoscale, 2016, 8(36): 16371-8.

[84] HANTANASIRISAKUL K, ZHAO M Q, URBANKOWSKI P, et al. Fabrication of Ti3C2Tx MXene Transparent Thin Films with Tunable Optoelectronic Properties [J]. Advanced Electronic Materials, 2016, 2(6): 1600050.

[85] JIANG D G, ZHANG J Z, QIN S, et al. Scalable Fabrication of Ti3C2Tx MXene/RGO/Carbon Hybrid Aerogel for Organics Absorption and Energy Conversion [J]. Acs Applied Materials & Interfaces, 2021, 13(43): 51333-42.

[86] SANG X H, XIE Y, LIN M W, et al. Atomic Defects in Monolayer Titanium Carbide (Ti3C2Tx) MXene [J]. Acs Nano, 2016, 10(10): 9193-200.

[87] HU H B, HUA T. An easily manipulated protocol for patterning of MXenes on paper for planar micro-supercapacitors [J]. Journal of Materials Chemistry A, 2017, 5(37): 19639-48.

[88] LI Y, LU Z, XIN B J, et al. All-solid-state flexible supercapacitor of Carbonized MXene/Cotton fabric for wearable energy storage [J]. Applied Surface Science, 2020, 528: 146975.

[89] PENG Y Y, AKUZUM B, KURRA N, et al. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9(9): 2847-54.

[90] WAN S J, LI X, CHEN Y, et al. High-strength scalable MXene films through bridging-induced densification [J]. Science, 2021, 374(6563): 96-99.

[91] WAN S J, LI X, CHEN Y, et al. Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging [J]. Nature Communications, 2022, 13(1): 7340.

[92] BOOTH W A, EDWARDS B, JO K, et al. Diffusion layer formation drives zone migration in travelling wave electrophoresis [J]. Analyst, 2017, 142(9): 1554-61.

[93] WANG K, ZHENG B, MACKINDER M, et al. Efficient electrophoretic deposition of MXene/reduced graphene oxide flexible electrodes for all-solid-state supercapacitors [J]. Journal of Energy Storage, 2021, 33: 102070.

[94] AL-MUHIT B, SANCHEZ F. Traction-separation response of bilayer graphene interfaces: The role of an intercalated single atomic layer of water molecules and hydroxyl groups [J]. Applied Surface Science, 2021, 540: 148280..

[95] LEI Y, CUI Y, HUANG Q, et al. Facile preparation of sulfonic groups functionalized Mxenes for efficient removal of methylene blue [J]. Ceramics International, 2019, 45(14): 17653-61.

[96] LI Z, LI J, TAN J, et al. In situ synthesis of novel peroxo-functionalized Ti3C2Tx adsorbent for aqueous pollutants removal: Role of oxygen-containing terminal groups [J]. Chemosphere, 2022, 286: 131801.

[97] TAO Y, KOH S W, YU X C, et al. Surface group-modified MXene nano-flake doping of monolayer tungsten disulfides [J]. Nanoscale Advances, 2019, 1(12): 4783-9.

[98] LAI S, JEON J, JANG S K, et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: -OH, -F and -O) [J]. Nanoscale, 2015, 7(46): 19390-6.

[99] BEKAERT J, SEVIK C, MILOSEVIC M V. First-principles exploration of superconductivity in MXenes [J]. Nanoscale, 2020, 12(33): 17354-61.

[100] YORULMAZ U, OZDEN A, PERKGOZ N K, et al. Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation [J]. Nanotechnology, 2016, 27(33): 335702.

[101] MAIDANA C O, NIEMINEN J E. First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps [J]. Nuclear Engineering and Technology, 2017, 49(1): 82-91.

[102] CHAMPAGNE A, SHI L, OUISSE T, et al. Electronic and vibrational properties of V2C-based MXenes: From experiments to first-principles modeling [J]. Physical Review B, 2018, 97(11): 115439.

[103] BAI Y, ZHOU K, SRIKANTH N, et al. Dependence of elastic and optical properties on surface terminated groups in two-dimensional MXene monolayers: a first-principles study [J]. Rsc Advances, 2016, 6(42): 35731-9.

[104] WANG X, HUANG S, DENG L, et al. Enhanced optical absorption of Fe-, Co- and Ni- decorated Ti3C2 MXene: A first-principles investigation [J]. Physica E-Low-Dimensional Systems & Nanostructures, 2021, 127: 114565.

[105] XU M, YANG J, LIU L. Temperature-dependent optical and electrical properties of bulk Ti2AlC and two-dimensional MXenes from first-principles [J]. Physica B-Condensed Matter, 2019, 560: 146-54.

[106] ZHANG N, HONG Y, YAZDANPARAST S, et al. Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: a comprehensive first principles study [J]. 2d Materials, 2018, 5(4): 045004.

[107] JIN H L, WANG K, MAO Z Q, et al. The structural, magnetic, Raman and electrical transport properties of Mn intercalated Ti3C2 [J]. Journal of Physics-Condensed Matter, 2021, 34(1): 015701.

[108] LIPATOV A, GOAD A, LOES M J, et al. High electrical conductivity and breakdown current density of individual monolayer Ti3C2Tx MXene flakes [J]. Matter, 2021, 4(4): 1413-27.

[109] NAH J S, BARMAN S C, ABU ZAHED M, et al. A wearable microfluidics-integrated impedimetric immunosensor based on Ti3C2Tx MXene incorporated laser-burned graphene for noninvasive sweat cortisol detection [J]. Sensors and Actuators B-Chemical, 2021, 329: 129206.

[110] LIPATOV A, ALHABEB M, LUKATSKAYA M R, et al. Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes [J]. Advanced Electronic Materials, 2016, 2(12): 1600255.

[111] LIPATOV A, LOES M J, VOROBEVA N S, et al. High Breakdown Current Density in Monolayer Nb4C3Tx MXene [J]. Acs Materials Letters, 2021, 3(8): 1088-94.

[112] LIPATOV A, ALHABEB M, LU H D, et al. Electrical and Elastic Properties of Individual Single-Layer Nb4C3Tx MXene Flakes [J]. Advanced Electronic Materials, 2020, 6(4): 1901382.

[113] CHOI J, KIM Y J, CHO S Y, et al. In Situ Formation of Multiple Schottky Barriers in a Ti(3)C(2)MXene Film and its Application in Highly Sensitive Gas Sensors [J]. Advanced Functional Materials, 2020, 30(40): 2003998.

[114] RASEL M A, WYATT B, WETHERINGTON M, et al. Low-temperature annealing of 2D Ti3C2Tx MXene films using electron wind force in ambient conditions [J]. Journal of Materials Research, 2021, 36(17): 3398-406.

[115] GHIDIU M, KOTA S, DROZD V, et al. Pressure-induced shear and interlayer expansion in Ti3C2 MXene in the presence of water [J]. Science advances, 2018, 4(1): eaao6850.

[116] LIU J, MCKEON L, GARCIA J, et al. Additive Manufacturing of Ti3C2-MXene-Functionalized Conductive Polymer Hydrogels for Electromagnetic-Interference Shielding [J]. Advanced Materials, 2022, 34(5): 2106253.

[117] BORYSIUK V N, MOCHALIN V N, GOGOTSI Y. Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: A molecular dynamics study [J]. Computational Materials Science, 2018, 143: 418-24.

[118] WAN S J, LI X, WANG Y L, et al. Strong sequentially bridged MXene sheets [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(44): 27154-61.

[119] LIU N, LI Q Q, WAN H J, et al. High-temperature stability in air of Ti3C2Tx MXene-based composite with extracted bentonite [J]. Nature Communications, 2022, 13(1): 5551.

[120] ASHTON M, MATHEW K, HENNIG R G, et al. Predicted Surface Composition and Thermodynamic Stability of MXenes in Solution [J]. Journal of Physical Chemistry C, 2016, 120(6): 3550-6.

[121] FENG T D, HUANG W X, ZHU H F, et al. Optical-Transparent Self-Assembled MXene Film with High-Efficiency Terahertz Reflection Modulation [J]. Acs Applied Materials & Interfaces, 2021, 13(8): 10574-82.

[122] CHERTOPALOV S, MOCHALIN V N. Environment-Sensitive Photoresponse of Spontaneously Partially Oxidized Ti3C2 MXene Thin Films [J]. Acs Nano, 2018, 12(6): 6109-16.

[123] LI B, ZHU Q B, CUI C, et al. Patterning of Wafer-Scale MXene Films for High-Performance Image Sensor Arrays [J]. Advanced Materials, 2022, 34(17): 2201298.

[124] HOU S P, XU C, JU X K, et al. Interfacial Assembly of Ti3C2Tx/ZnIn2S4 Heterojunction for High-Performance Photodetectors [J]. Advanced Science, 2022, 9(35): 2204687.

[125] HU C, CHEN H, LI L, et al. Ti3C2Tx MXene-RAN van der Waals Heterostructure-Based Flexible Transparent NIR Photodetector Array for 1024 Pixel Image Sensing Application [J]. Advanced Materials Technologies, 2022, 7(7): 2101639.

[126] ZHANG N, WU L W, GAO W, et al. Near-Infrared, Self-Powered and Polarization-Sensitive Photodetector Based on GeSe-MoTe2 p-n Heterojunction [J]. Advanced Materials Interfaces, 2022, 9(15), 15406–15413.

[127] TANG J, WAN H J, CHANG L B, et al. Tunable Infrared Sensing Properties of MXenes Enabled by Intercalants [J]. Advanced Optical Materials, 2022, 10(17): 2200623.

[128] LI R, ZHANG L, SHI L, et al. MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material [J]. Acs Nano, 2017, 11(4): 3752-9.

[129] VOROBEVA N S, BAGHERI S, TORRES A, et al. Negative photoresponse in Ti3C2Tx MXene monolayers [J]. Nanophotonics, 2022, 11(17): 3953-60.

[130] DAI C, CHEN Y, JING X, et al. Two-Dimensional Tantalum Carbide (MXenes) Composite Nanosheets for Multiple Imaging-Guided Photothermal Tumor Ablation [J]. Acs Nano, 2017, 11(12): 12696-712.

[131] FAN X, DING Y, LIU Y, et al. Plasmonic Ti3C2TX MXene Enables Highly Efficient Photothermal Conversion for Healable and Transparent Wearable Device [J]. Acs Nano, 2019, 13(7): 8124-34.

[132] CAO Y, CHANG T, FANG C, et al. Inhibition Effect of Ti3C2Tx MXene on Ice Crystals Combined with Laser-Mediated Heating Facilitates High-Performance Cryopreservation [J]. Acs Nano, 2022, 16(6): 8837-50.

[133] CAO Y, WU T, ZHANG K, et al. Engineered Exosome-Mediated Near-Infrared-II Region V2C Quantum Dot Delivery for Nucleus-Target Low-Temperature Photothermal Therapy [J]. Acs Nano, 2019, 13(2): 1499-510.

[134] WANG C, WANG Y, JIANG X, et al. MXene Ti3C2Tx: A Promising Photothermal Conversion Material and Application in All-Optical Modulation and All-Optical Information Loading [J]. Advanced Optical Materials, 2019, 7(12): 1900060.

[135] JIN L, GUO X Q, GAO D, et al. An NIR photothermal-responsive hybrid hydrogel for enhanced wound healing [J]. Bioactive Materials, 2022, 16: 162-72.

[136] IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for Electromagnetic Shielding: A Review [J]. Advanced Functional Materials, 2020, 30(47): 2000883.

[137] YUN T, KIM H, IQBAL A, et al. Electromagnetic Shielding of Monolayer MXene Assemblies [J]. Advanced Materials, 2020, 32(9): 1906769.

[138] KELLY A G, O'REILLY J, GABBETT C, et al. Highly Conductive Networks of Silver Nanosheets [J]. Small, 2022, 18(14): 2105996.

[139] LIPTON J, ROHR J A, DANG V, et al. Scalable, Highly Conductive, and Micropatternable MXene Films for Enhanced Electromagnetic Interference Shielding [J]. Matter, 2020, 3(2): 546-57.

[140] ZHANG Y L, RUAN K P, ZHOU K, et al. Controlled Distributed Ti3C2Tx Hollow Microspheres on Thermally Conductive Polyimide Composite Films for Excellent Electromagnetic Interference Shielding [J]. Advanced Materials, 2023, 35(16): 2211642.

[141] WEN C Y, ZHAO B, LIU Y H, et al. Flexible MXene-Based Composite Films for Multi-Spectra Defense in Radar, Infrared and Visible Light Bands [J]. Advanced Functional Materials, 2023, 33(20): 2214223.

[142] HUANG M Q, WANG L, LI X, et al. Magnetic Interacted Interaction Effect in MXene Skeleton: Enhanced Thermal-Generation for Electromagnetic Interference Shielding [J]. Small, 2022, 18(27): 2201587.

[143] WU N, ZENG Z H, KUMMER N, et al. Ultrafine Cellulose Nanofiber-Assisted Physical and Chemical Cross-Linking of MXene Sheets for Electromagnetic Interference Shielding [J]. Small Methods, 2021, 5(12): 2100889.

[144] SHEN X, KIM J K. Building 3D Architecture in 2D Thin Film for Effective EMI Shielding [J]. Matter, 2019, 1(4): 796-8.

[145] ZHANG Q X, FAN R Z, CHENG W H, et al. Synthesis of Large-Area MXenes with High Yields through Power-Focused Delamination Utilizing Vortex Kinetic Energy [J]. Advanced Science, 2022, 9(28): 2202748.

[146] ZOU L H, ZHANG S L, LI X P, et al. Step-by-Step Strategy for Constructing Multilayer Structured Coatings toward High-Efficiency Electromagnetic Interference Shielding [J]. Advanced Materials Interfaces, 2016, 3(5). 43-45

[147] ZHANG J Z, KONG N, UZUN S, et al. Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity [J]. Advanced Materials, 2020, 32(23): 333-338.

[148] LIU J, ZHANG H B, SUN R H, et al. Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding [J]. Advanced Materials, 2017, 29(38): 123-125.

[149] GUAN Q F, HAN Z M, YANG K P, et al. Sustainable Double-Network Structural Materials for Electromagnetic Shielding [J]. Nano Letters, 2021, 21(6): 2532-7.

[150] LV H L, YANG Z H, ONG S J H, et al. A Flexible Microwave Shield with Tunable Frequency-Transmission and Electromagnetic Compatibility [J]. Advanced Functional Materials, 2019, 29(14): 384-391.

[151] LI X L, SHENG X X, FANG Y, et al. Wearable Janus-Type Film with Integrated All-Season Active/Passive Thermal Management, Thermal Camouflage, and Ultra-High Electromagnetic Shielding Efficiency Tunable by Origami Process [J]. Advanced Functional Materials, 2023, 33(18): 2212776.

[152] SHAHZAD F, IQBAL A, KIM H, et al. 2D Transition Metal Carbides (MXenes): Applications as an Electrically Conducting Material [J]. Advanced Materials, 2020, 32(51): 234-241.

[153] HAN M K, YIN X W, WU H, et al. Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band [J]. Acs Applied Materials & Interfaces, 2016, 8(32): 21011-9.

[154] WU X Y, TU T X, DAI Y, et al. Direct Ink Writing of Highly Conductive MXene Frames for Tunable Electromagnetic Interference Shielding and Electromagnetic Wave-Induced Thermochromism [J]. Nano-Micro Letters, 2021, 13(1): 234-236.

[155] HAN M K, ZHANG D Z, SHUCK C E, et al. Electrochemically modulated interaction of MXenes with microwaves [J]. Nature Nanotechnology, 2023, 18(4): 373-379.

所在学位评定分委会
材料科学与工程
国内图书分类号
TB332
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766019
专题南方科技大学
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
王培智. MXene层间结构调控对其光响应与电磁屏蔽性能影响的研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132078-王培智-材料科学与工程(6240KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王培智]的文章
百度学术
百度学术中相似的文章
[王培智]的文章
必应学术
必应学术中相似的文章
[王培智]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。