中文版 | English
题名

双噻吩酰亚胺基n型有机电化学晶体管的制备与应用

其他题名
PREPARATION AND APPLICATION OF BITHIOPHENE IMIDE-BASED N-TYPE ORGANIC ELECTROCHEMICAL TRANSISTORS
姓名
姓名拼音
WU Wenchang
学号
12132084
学位类型
硕士
学位专业
电子科学与技术
学科门类/专业学位类别
08 工学
导师
郭旭岗
导师单位
材料科学与工程系
论文答辩日期
2024-05-08
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

有机电化学晶体管是一种电解质门控晶体管,具有低工作电压、高跨导、和优异的生物相容性。相比于基于p型聚合物的有机电化学晶体管,基于n型聚合物的有机电化学晶体管器件性能大大滞后,限制了有机电化学晶体管生物应用的发展,因此,需要在材料结构的设计、合成,以及器件的制备和优化方面进行进一步研究。
研究表明,乙二醇侧链可促进离子传输,提高共轭聚合物离子、电子混合导体性能。但乙二醇侧链尺寸对电子传输型离子电子混合半导体的性能影响机制尚未明确,本研究设计合成了三种乙二醇侧链尺寸不同的n型聚合物,通过器件测试和材料表征,探究乙二醇侧链尺寸对器件性能的影响。这有助于理解和改善共轭聚合物在有机电子器件中的性能。
为进一步提高电子离子混合导体的性能,采用硒酚取代策略开发出新的电子传输型n型高分子半导体材料。与噻吩基聚合物相比,硒酚取代的聚合物具有更广泛的电子离域和更强的非共价相互作用,同时降低了最低未占有分子轨道能级。基于硒酚取代策略,成功制备出了至今性能最优的n型离子电子混合高分子半导体。
基于硒酚取代策略制备的高性能高分子在有机电化学晶体管中展现出优异的离子和电子传输性能以及出色的稳定性,展现出在生物电子领域的应用潜力。利用铂纳米颗粒/聚苯胺水凝胶/葡萄糖氧化酶修饰的铂电极作为有机电化学晶体管的栅极电极,成功检测到10 nM的葡萄糖浓度,并展现出高度选择性,验证了该n型高分子在生物传感应用中的潜力。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] DIMITRAKOPOULOS C D, MALENFANT P R L. Organic Thin Film Transistors for Large Area Electronics [J]. Advanced Materials, 2002, 14(2): 99-117.
[2] RIVNAY J, INAL S, SALLEO A, et al. Organic electrochemical transistors [J]. Nature Reviews Materials, 2018, 3(2): 17086.
[3] KHODAGHOLY D, DOUBLET T, QUILICHINI P, et al. In vivo recordings of brain activity using organic transistors [J]. Nature Communications, 2013, 4(1): 1575.
[4] KHODAGHOLY D, GELINAS J N, ZHAO Z, et al. Organic electronics for high-resolution electrocorticography of the human brain [J]. Science Advances, 2016, 2(11): e1601027.
[5] PAPPA A-M, CURTO V F, BRAENDLEIN M, et al. Organic Transistor Arrays Integrated with Finger-Powered Microfluidics for Multianalyte Saliva Testing [J]. Advanced Healthcare Materials, 2016, 5(17): 2295-302.
[6] CAMPANA A, CRAMER T, SIMON D T, et al. Electrocardiographic Recording with Conformable Organic Electrochemical Transistor Fabricated on Resorbable Bioscaffold [J]. Advanced Materials, 2014, 26(23): 3874-8.
[7] LEE W, KOBAYASHI S, NAGASE M, et al. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping [J]. Science Advances, 2018, 4(10): eaau2426.
[8] LIN P, YAN F, YU J, et al. The Application of Organic Electrochemical Transistors in Cell-Based Biosensors [J]. Advanced Materials, 2010, 22(33): 3655-60.
[9] PITSALIDIS C, PAPPA A-M, BOYS A J, et al. Organic Bioelectronics for In Vitro Systems [J]. Chemical Reviews, 2022, 122(4): 4700-90.
[10] HARIKESH P C, YANG C-Y, TU D, et al. Organic electrochemical neurons and synapses with ion mediated spiking [J]. Nature Communications, 2022, 13(1): 901.
[11] GKOUPIDENIS P, SCHAEFER N, GARLAN B, et al. Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors [J]. Advanced Materials, 2015, 27(44): 7176-80.
[12] NILSSON D, ROBINSON N, BERGGREN M, et al. Electrochemical Logic Circuits [J]. Advanced Materials, 2005, 17(3): 353-8.
[13] BRAENDLEIN M, LONJARET T, LELEUX P, et al. Voltage Amplifier Based on Organic Electrochemical Transistor [J]. Advanced Science, 2017, 4(1):1600247.
[14] ANDERSSON ERSMAN P, LASSNIG R, STRANDBERG J, et al. All-printed large-scale integrated circuits based on organic electrochemical transistors [J]. Nature Communications, 2019, 10(1): 5053.
[15] NIELSEN C B, GIOVANNITTI A, SBIRCEA D-T, et al. Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors [J]. Journal of the American Chemical Society, 2016, 138(32): 10252-9.
[16] MOSER M, SAVAGIAN L R, SAVVA A, et al. Ethylene Glycol-Based Side Chain Length Engineering in Polythiophenes and its Impact on Organic Electrochemical Transistor Performance [J]. Chemistry of Materials, 2020, 32(15): 6618-28.
[17] MOSER M, HIDALGO T C, SURGAILIS J, et al. Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability [J]. Advanced Materials, 2020, 32(37): 2002748.
[18] WANG Y, ZEGLIO E, LIAO H, et al. Hybrid Alkyl–Ethylene Glycol Side Chains Enhance Substrate Adhesion and Operational Stability in Accumulation Mode Organic Electrochemical Transistors [J]. Chemistry of Materials, 2019, 31(23): 9797-806.
[19] MOSER M, SAVVA A, THORLEY K, et al. Polaron Delocalization in Donor–Acceptor Polymers and its Impact on Organic Electrochemical Transistor Performance [J]. Angewandte Chemie International Edition, 2021, 60(14): 7777-85.
[20] WANG N, XIE L, LING H, et al. Ethylenedioxythiophene incorporated diketopyrrolopyrrole conjugated polymers for high-performance organic electrochemical transistors [J]. Journal of Materials Chemistry C, 2021, 9(12): 4260-6.
[21] GIOVANNITTI A, THORLEY K J, NIELSEN C B, et al. Redox-Stability of Alkoxy-BDT Copolymers and their Use for Organic Bioelectronic Devices [J]. Advanced Functional Materials, 2018, 28(17): 1706325.
[22] ZEGLIO E, INGANäS O. Active Materials for Organic Electrochemical Transistors [J]. Advanced Materials, 2018, 30(44): 1800941.
[23] FRIEDLEIN J T, MCLEOD R R, RIVNAY J. Device physics of organic electrochemical transistors [J]. Organic Electronics, 2018, 63: 398-414.
[24] SUN H, GERASIMOV J, BERGGREN M, et al. n-Type organic electrochemical transistors: materials and challenges [J]. Journal of Materials Chemistry C, 2018, 6(44): 11778-84.
[25] BERNARDS D A, MALLIARAS G G. Steady-State and Transient Behavior of Organic Electrochemical Transistors [J]. Advanced Functional Materials,2007, 17(17): 3538-44.
[26] KHODAGHOLY D, RIVNAY J, SESSOLO M, et al. High transconductance organic electrochemical transistors [J]. Nature Communications, 2013, 4(1): 2133.
[27] JIMISON L H, HAMA A, STRAKOSAS X, et al. PEDOT:TOS with PEG: a biofunctional surface with improved electronic characteristics [J]. Journal of Materials Chemistry, 2012, 22(37): 19498-505.
[28] ZEGLIO E, ERIKSSON J, GABRIELSSON R, et al. Highly Stable Conjugated Polyelectrolytes for Water-Based Hybrid Mode Electrochemical Transistors [J]. Advanced Materials, 2017, 29(19): 1605787.
[29] JIANG X, WANG Q, WANG Z, et al. Recent Progresses on the High Performance Organic Electrochemical Transistors [J]. Chemical Research in Chinese Universities, 2021, 37(5): 975-88.
[30] SCHMODE P, SAVVA A, KAHL R, et al. The Key Role of Side Chain Linkage in Structure Formation and Mixed Conduction of Ethylene Glycol Substituted Polythiophenes [J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13029-39.
[31] GIOVANNITTI A, SBIRCEA D-T, INAL S, et al. Controlling the mode of operation of organic transistors through side-chain engineering [J]. Proceedings of the National Academy of Sciences, 2016, 113(43): 12017-22.
[32] FENG K, SHAN W, WANG J, et al. Cyano-Functionalized n-Type Polymer with High Electron Mobility for High-Performance Organic Electrochemical Transistors [J]. Advanced Materials, 2022, 34(24): 2201340.
[33] SUN H, VAGIN M, WANG S, et al. Complementary Logic Circuits Based on High-Performance n-Type Organic Electrochemical Transistors [J]. Advanced Materials, 2018, 30(9): 1704916.
[34] WANG Y, KOKLU A, ZHONG Y, et al. Acceptor Functionalization via Green Chemistry Enables High-Performance n-Type Organic Electrochemical Transistors for Biosensing, Memory Applications [J]. Advanced Functional Materials, n/a(n/a): 2304103.
[35] CHEN X, MARKS A, PAULSEN B D, et al. n-Type Rigid Semiconducting Polymers Bearing Oligo(Ethylene Glycol) Side Chains for High-Performance Organic Electrochemical Transistors [J]. Angewandte Chemie International Edition, 2021, 60(17): 9368-73.
[36] FENG K, GUO H, WANG J, et al. Cyano-Functionalized Bithiophene Imide-Based n-Type Polymer Semiconductors: Synthesis, Structure–Property Correlations, and Thermoelectric Performance [J]. Journal of the American Chemical Society, 2021, 143(3): 1539-52.
[37] GIOVANNITTI A, NIELSEN C B, SBIRCEA D-T, et al. N-type organicelectrochemical transistors with stability in water [J]. Nature Communications, 2016, 7(1): 13066.
[38] GIOVANNITTI A, MARIA I P, HANIFI D, et al. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes [J]. Chemistry of Materials, 2018, 30(9): 2945-53.
[39] BISCHAK C G, FLAGG L Q, YAN K, et al. Fullerene Active Layers for n-Type Organic Electrochemical Transistors [J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28138-44.
[40] TANG H, LIANG Y, LIU C, et al. A solution-processed n-type conducting polymer with ultrahigh conductivity [J]. Nature, 2022, 611(7935): 271-7.
[41] LETIZIA J A, SALATA M R, TRIBOUT C M, et al. n-Channel Polymers by Design: Optimizing the Interplay of Solubilizing Substituents, Crystal Packing, and Field-Effect Transistor Characteristics in Polymeric Bithiophene-Imide Semiconductors [J]. Journal of the American Chemical Society, 2008, 130(30): 9679-94.
[42] FENG K, SHAN W, MA S, et al. Fused Bithiophene Imide Dimer-Based n-Type Polymers for High-Performance Organic Electrochemical Transistors [J]. Angewandte Chemie International Edition, 2021, 60(45): 24198-205.
[43] GUO X, FACCHETTI A, MARKS T J. Imide- and Amide-Functionalized Polymer Semiconductors [J]. Chemical Reviews, 2014, 114(18): 8943-9021.
[44] WANG Y, GUO H, HARBUZARU A, et al. (Semi)ladder-Type Bithiophene Imide-Based All-Acceptor Semiconductors: Synthesis, Structure–Property Correlations, and Unipolar n-Type Transistor Performance [J]. Journal of the American Chemical Society, 2018, 140(19): 6095-108.
[45] FENG K, SHAN W, MA S, et al. Fused Bithiophene Imide Dimer‐Based n‐Type Polymers for High‐Performance Organic Electrochemical Transistors [J]. Angewandte Chemie International Edition, 2021, 60(45): 24198-205.
[46] HüTTER P C, ROTHLäNDER T, SCHEIPL G, et al. All Screen-Printed Logic Gates Based on Organic Electrochemical Transistors [J]. IEEE Transactions on Electron Devices, 2015, 62(12): 4231-6.
[47] BAI L, ELóSEGUI C G, LI W, et al. Biological Applications of Organic Electrochemical Transistors: Electrochemical Biosensors and Electrophysiology Recording [J]. Frontiers in Chemistry, 2019, 7.
[48] GUALANDI I, TONELLI D, MARIANI F, et al. Selective detection of dopamine with an all PEDOT:PSS Organic Electrochemical Transistor [J]. Scientific Reports, 2016, 6(1): 35419.
[49] TYBRANDT K, KOLLIPARA S B, BERGGREN M. Organic electrochemical transistors for signal amplification in fast scan cyclic voltammetry [J]. Sensors and Actuators B-chemical, 2014, 195: 651-6.
[50] BIHAR E, DENG Y, MIYAKE T, et al. A Disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor [J]. Scientific Reports, 2016, 6(1): 27582.
[51] ZHOU Y, MA M, HE H, et al. Highly sensitive nitrite sensor based on AuNPs/RGO nanocomposites modified graphene electrochemical transistors [J]. Biosensors and Bioelectronics, 2019, 146: 111751.
[52] CICOIRA F, SESSOLO M, YAGHMAZADEH O, et al. Influence of Device Geometry on Sensor Characteristics of Planar Organic Electrochemical Transistors [J]. Advanced Materials, 2010, 22(9): 1012-6.
[53] JI W, WU D, TANG W, et al. Carbonized silk fabric-based flexible organic electrochemical transistors for highly sensitive and selective dopamine detection [J]. Sensors and Actuators B: Chemical, 2020, 304: 127414.
[54] ZHAO Z, TIAN Z, YAN F. Flexible organic electrochemical transistors for bioelectronics [J]. Cell Reports Physical Science, 2023, 4(11): 101673.
[55] BONAFè F, DECATALDO F, ZIRONI I, et al. AC amplification gain in organic electrochemical transistors for impedance-based single cell sensors [J]. Nature Communications, 2022, 13(1): 5423.
[56] MACAYA D J, NIKOLOU M, TAKAMATSU S, et al. Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors [J]. Sensors and Actuators B: Chemical, 2007, 123(1): 374-8.
[57] YANG S Y, CICOIRA F, BYRNE R, et al. Electrochemical transistors with ionic liquids for enzymatic sensing [J]. Chemical Communications, 2010, 46(42): 7972-4.
[58] KIM Y, DO J, KIM J, et al. A Glucose Sensor Based on an Organic Electrochemical Transistor Structure Using a Vapor Polymerized Poly(3,4-ethylenedioxythiophene) Layer [J]. Japanese Journal of Applied Physics, 2010, 49(1S): 01AE10.
[59] KANAKAMEDALA S K, ALSHAKHOURI H T, AGARWAL M, et al. A simple polymer based electrochemical transistor for micromolar glucose sensing [J]. Sensors and Actuators B: Chemical, 2011, 157(1): 92-7.
[60] TANG H, YAN F, LIN P, et al. Highly Sensitive Glucose Biosensors Based on Organic Electrochemical Transistors Using Platinum Gate Electrodes Modified with Enzyme and Nanomaterials [J]. Advanced Functional Materials, 2011, 21(12): 2264-72.
[61] LIAO C, ZHANG M, NIU L, et al. Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes [J]. Journal of Materials Chemistry B, 2013, 1(31): 3820-9.
[62] LIAO J, LIN S, YANG Y, et al. Highly selective and sensitive glucose sensors based on organic electrochemical transistors using TiO2 nanotubearrays-based gate electrodes [J]. Sensors and Actuators B: Chemical, 2015, 208: 457-63.
[63] SAVVA A, OHAYON D, SURGAILIS J, et al. Solvent Engineering for High-Performance n-Type Organic Electrochemical Transistors [J]. Advanced Electronic Materials, 2019, 5(8): 1900249.
[64] GUALANDI I, TESSAROLO M, MARIANI F, et al. Layered Double Hydroxide-Modified Organic Electrochemical Transistor for Glucose and Lactate Biosensing [J]. Sensors, 2020, 20(12): 3453.
[65] DIACCI C, LEE J W, JANSON P, et al. Real-Time Monitoring of Glucose Export from Isolated Chloroplasts Using an Organic Electrochemical Transistor [J]. Advanced Materials Technologies, 2020, 5(3): 1900262.
[66] DIACCI C, ABEDI T, LEE J W, et al. Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors [J]. iScience, 2021, 24(1): 101966.
[67] KOKLU A, OHAYON D, WUSTONI S, et al. Microfluidics integrated n-type organic electrochemical transistor for metabolite sensing [J]. Sensors and Actuators B: Chemical, 2021, 329: 129251.
[68] ZHANG L, WANG G, WU D, et al. Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid [J]. Biosensors and Bioelectronics, 2018, 100: 235-41.
[69] HALLANI R K, PAULSEN B D, PETTY A J, II, et al. Regiochemistry-Driven Organic Electrochemical Transistor Performance Enhancement in Ethylene Glycol-Functionalized Polythiophenes [J]. Journal of the American Chemical Society, 2021, 143(29): 11007-18.
[70] JIA H, HUANG Z, LI P, et al. Engineering donor–acceptor conjugated polymers for high-performance and fast-response organic electrochemical transistors [J]. Journal of Materials Chemistry C, 2021, 9(14): 4927-34.
[71] DING B, KIM G, KIM Y, et al. Influence of Backbone Curvature on the Organic Electrochemical Transistor Performance of Glycolated Donor–Acceptor Conjugated Polymers [J]. Angewandte Chemie International Edition, 2021, 60(36): 19679-84.
[72] WANG Y, HAMIDI-SAKR A, SURGAILIS J, et al. The effect of the donor moiety of DPP based polymers on the performance of organic electrochemical transistors [J]. Journal of Materials Chemistry C, 2021, 9(38): 13338-46.
[73] LUO X, SHEN H, PERERA K, et al. Designing Donor–Acceptor Copolymers for Stable and High-Performance Organic Electrochemical Transistors [J]. ACS Macro Letters, 2021, 10(8): 1061-7.
[74] SHI S, TANG L, GUO H, et al. Bichalcogenophene Imide-BasedHomopolymers: Chalcogen-Atom Effects on the Optoelectronic Property and Device Performance in Organic Thin-Film Transistors [J]. Macromolecules, 2019, 52(19): 7301-12.
[75] KANG I, AN T K, HONG J-A, et al. Effect of Selenophene in a DPP Copolymer Incorporating a Vinyl Group for High-Performance Organic Field-Effect Transistors [J]. Advanced Materials, 2013, 25(4): 524-8.
[76] LIU Q, HE W, SHI Y, et al. Directional Carrier Polarity Tunability in Ambipolar Organic Transistors Based on Diketopyrrolopyrrole and Bithiophene Imide Dual-Acceptor Semiconducting Polymers [J]. Chemistry of Materials, 2022, 34(7): 3140-51.
[77] LIU Q, KUMAGAI S, MANZHOS S, et al. Synergistic Use of Pyridine and Selenophene in a Diketopyrrolopyrrole-Based Conjugated Polymer Enhances the Electron Mobility in Organic Transistors [J]. Advanced Functional Materials, 2020, 30(34): 2000489.
[78] FAN B, LIN F, WU X, et al. Selenium-Containing Organic Photovoltaic Materials [J]. Accounts of Chemical Research, 2021, 54(20): 3906-16.
[79] KRANTHIRAJA K, GUNASEKAR K, CHO W, et al. Influential effects of π-spacers, alkyl side chains, and various processing conditions on the photovoltaic properties of alkylselenyl substituted benzodithiophene based polymers [J]. Journal of Materials Chemistry C, 2015, 3(4): 796-808.
[80] ASHRAF R S, MEAGER I, NIKOLKA M, et al. Chalcogenophene Comonomer Comparison in Small Band Gap Diketopyrrolopyrrole-Based Conjugated Polymers for High-Performing Field-Effect Transistors and Organic Solar Cells [J]. Journal of the American Chemical Society, 2015, 137(3): 1314-21.
[81] LI J, LIU M, YANG K, et al. Selenium Substitution in Bithiophene Imide Polymer Semiconductors Enables High-Performance n-Type Organic Thermoelectric [J]. Advanced Functional Materials, 2023, 33(23): 2213911.
[82] CHEN X, ZHANG Z, DING Z, et al. Diketopyrrolopyrrole-based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices [J]. Angewandte Chemie International Edition, 2016, 55(35): 10376-80.
[83] MENG B, SONG H, CHEN X, et al. Replacing Alkyl with Oligo(ethylene glycol) as Side Chains of Conjugated Polymers for Close π–π Stacking [J]. Macromolecules, 2015, 48(13): 4357-63.
[84] KANIMOZHI C, YAACOBI-GROSS N, BURNETT E K, et al. Use of side-chain for rational design of n-type diketopyrrolopyrrole-based conjugated polymers: what did we find out? [J]. Physical Chemistry Chemical Physics, 2014, 16(32): 17253-65.
[85] KIM R, KANG B, SIN D H, et al. Oligo(ethylene glycol)-incorporated hybrid linear alkyl side chains for n-channel polymer semiconductors and their effect on the thin-film crystalline structure [J]. Chemical Communications, 2015, 51(8): 1524-7.
[86] RIVNAY J, INAL S, COLLINS B A, et al. Structural control of mixed ionic and electronic transport in conducting polymers [J]. Nature Communications, 2016, 7(1): 11287.
[87] FENG K, WANG J, JEONG S Y, et al. High-Performance n-Type Organic Thermoelectrics Enabled by Synergistically Achieving High Electron Mobility and Doping Efficiency [J]. Advanced Science, 2023, 10(29): 2302629.
[88] WEI C, XU P, ZHANG W, et al. Incorporation of Cyano-Substituted Aromatic Blocks into Naphthalene Diimide-Based Copolymers: Toward Unipolar n-Channel Field-Effect Transistors [J]. Small Science, 2021, 1(9): 2100016.
[89] SAVVA A, HALLANI R, CENDRA C, et al. Balancing Ionic and Electronic Conduction for High-Performance Organic Electrochemical Transistors [J]. Advanced Functional Materials, 2020, 30(11): 1907657.
[90] FENG K, GUO H, SUN H, et al. n-Type Organic and Polymeric Semiconductors Based on Bithiophene Imide Derivatives [J]. Accounts of Chemical Research, 2021, 54(20): 3804-17.
[91] JEFFRIES-EL M, KOBILKA B M, HALE B J. Optimizing the Performance of Conjugated Polymers in Organic Photovoltaic Cells by Traversing Group 16 [J]. Macromolecules, 2014, 47(21): 7253-71.
[92] BEATTY J W, STEPHENSON C R J. Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis [J]. Accounts of Chemical Research, 2015, 48(5): 1474-84.
[93] HEENEY M, ZHANG W, CROUCH D J, et al. Regioregular poly(3-hexyl)selenophene: a low band gap organic hole transporting polymer [J]. Chemical Communications, 2007, (47): 5061-3.
[94] BALLANTYNE A M, CHEN L, NELSON J, et al. Studies of Highly Regioregular Poly(3-hexylselenophene) for Photovoltaic Applications [J]. Advanced Materials, 2007, 19(24): 4544-7.
[95] MARSH A V, HEENEY M. Conjugated polymers based on selenophene building blocks [J]. Polymer Journal, 2023, 55(4): 375-85.
[96] WELCH M E, DOUBLET T, BERNARD C, et al. A glucose sensor via stable immobilization of the GOx enzyme on an organic transistor using a polymer brush [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2015, 53(2): 372-7.
[97] MA X, CHEN H, ZHANG P, et al. OFET and OECT, Two Types of Organic Thin-Film Transistor Used in Glucose and DNA Biosensors: A Review [J]. IEEE Sensors Journal, 2022, 22(12): 11405-14.
[98] GUISEPPI-ELIE A. Electroconductive hydrogels: Synthesis, characterization and biomedical applications [J]. Biomaterials, 2010, 31(10): 2701-16.
[99] GREEN R A, BAEK S, POOLE-WARREN L A, et al. Conducting polymer-hydrogels for medical electrode applications [J]. Science and Technology of Advanced Materials, 2010, 11(1): 014107.
[100] PAN L, YU G, ZHAI D, et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity [J]. Proceedings of the National Academy of Sciences, 2012, 109(24): 9287-92.
[101] ZHAI D, LIU B, SHI Y, et al. Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures [J]. ACS Nano, 2013, 7(4): 3540-6.

所在学位评定分委会
电子科学与技术
国内图书分类号
TN321.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766023
专题南方科技大学
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
吴汶昌. 双噻吩酰亚胺基n型有机电化学晶体管的制备与应用[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132084-吴汶昌-材料科学与工程(4474KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴汶昌]的文章
百度学术
百度学术中相似的文章
[吴汶昌]的文章
必应学术
必应学术中相似的文章
[吴汶昌]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。