[1] WHEELER T, VON BRAUN J. Climate change impacts on global food security [J]. Science (New York, NY), 2013, 341(6145): 508-13.
[2] ZHANG J, LIU Y-X, ZHANG N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice [J]. Nature Biotechnology, 2019, 37(6): 676-84.
[3] YANG J, KLOEPPER J W, RYU C-M. Rhizosphere bacteria help plants tolerate abiotic stress [J]. Trends in Plant Science, 2009, 14(1): 1-4.
[4] KWAK M-J, KONG H G, CHOI K, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato [J]. Nature Biotechnology, 2018, 36(11): 1100-9.
[5] SONG Y, WILSON A J, ZHANG X C, et al. FERONIA restricts pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species [J]. Nature Plants, 2021, 7(5): 644-54.
[6] YU P, HE X, BAER M, et al. Plant flavones enrich rhizosphere oxalobacteraceae to improve maize performance under nitrogen deprivation [J]. Nature Plants, 2021, 7(4): 481-99.
[7] HARBORT C J, HASHIMOTO M, INOUE H, et al. Root-secreted coumarins and the microbiota interact to improve iron nutrition in arabidopsis [J]. Cell Host & Microbe, 2020, 28(6): 825-37.e6.
[8] TEIXEIRA P J P, COLAIANNI N R, FITZPATRICK C R, et al. Beyond pathogens: Microbiota interactions with the plant immune system [J]. Current Opinion in Microbiology, 2019, 49: 7-17.
[9] XIN X F, KVITKO B, HE S Y. Pseudomonas syringae: What it takes to be a pathogen [J]. Nature Reviews Microbiology, 2018, 16(5): 316-28.
[10] JONES J D, DANGL J L. The plant immune system [J]. Nature, 2006, 444(7117): 323-9.
[11] WEI WANG D T. Synergistic cooperation between cell surface and intracellular immune receptors potentiates to activate robust plant defense [J]. Chinese Bulletin of Botany, 2021, 56(2): 142-6.
[12] TANG D, WANG G, ZHOU J M. Receptor kinases in plant-pathogen interactions: More than pattern recognition [J]. The Plant Cell, 2017, 29(4): 618-37.
[13] SUN Y, LI L, MACHO A P, et al. Structural basis for flg22-induced activation of the arabidopsis FLS2-BAK1 immune complex [J]. Science (New York, NY), 2013, 342(6158): 624-8.
[14] ZHOU J M, ZHANG Y. Plant immunity: Danger perception and signaling [J]. Cell, 2020, 181(5): 978-89.
[15] GRANT M, BROWN I, ADAMS S, et al. The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death [J]. The Plant Journal : For Cell and Molecular Biology, 2000, 23(4): 441-50.
[16] TORRES M A, JONES J D, DANGL J L. Reactive oxygen species signaling in response to pathogens [J]. Plant Physiology, 2006, 141(2): 373-8.
[17] DUBIELLA U, SEYBOLD H, DURIAN G, et al. Calcium-dependent protein kinase/nadph oxidase activation circuit is required for rapid defense signal propagation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): 8744-9.
[18] LI L, LI M, YU L, et al. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity [J]. Cell Host & Microbe, 2014, 15(3): 329-38.
[19] LU D, WU S, GAO X, et al. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(1): 496-501.
[20] TIAN W, HOU C, REN Z, et al. A calmodulin-gated calcium channel links pathogen patterns to plant immunity [J]. Nature, 2019, 572(7767): 131-5.
[21] SUN T, NITTA Y, ZHANG Q, et al. Antagonistic interactions between two map kinase cascades in plant development and immune signaling [J]. EMBO Reports, 2018, 19(7): e45324.
[22] ZHANG M, ZHANG S. Mitogen-activated protein kinase cascades in plant signaling [J]. Journal of Integrative Plant Biology, 2022, 64(2): 301-41.
[23] WAITE C, SCHUMACHER J, JOVANOVIC M, et al. Negative autogenous control of the master type III secretion system regulator hrpl in pseudomonas syringae [J]. mBio, 2017, 8(1).
[24] QI P, HUANG M, HU X, et al. A ralstonia solanacearum effector targets tga transcription factors to subvert salicylic acid signaling [J]. The Plant Cell, 2022, 34(5): 1666-83.
[25] BENT A F, MACKEY D. Elicitors, effectors, and r genes: The new paradigm and a lifetime supply of questions [J]. Annual Review of Phytopathology, 2007, 45: 399-436.
[26] WILLIAMS S J, YIN L, FOLEY G, et al. Structure and function of the tir domain from the grape NLR protein RPV1 [J]. Frontiers in Plant Science, 2016, 7: 1850.
[27] SUN Y, ZHU Y X, BALINT-KURTI P J, et al. Fine-tuning immunity: Players and regulators for plant NLRs [J]. Trends in Plant Science, 2020, 25(7): 695-713.
[28] JACOB F, VERNALDI S, MAEKAWA T. Evolution and conservation of plant NLR functions [J]. Frontiers in Immunology, 2013, 4: 297.
[29] KRASILEVA K V, DAHLBECK D, STASKAWICZ B J. Activation of an arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector [J]. The Plant Cell, 2010, 22(7): 2444-58.
[30] MA S, LAPIN D, LIU L, et al. Direct pathogen-induced assembly of an nlr immune receptor complex to form a holoenzyme [J]. Science (New York, NY), 2020, 370(6521).
[31] DANGL J L, JONES J D. Plant pathogens and integrated defence responses to infection [J]. Nature, 2001, 411(6839): 826-33.
[32] WU Y, GAO Y, ZHAN Y, et al. Loss of the common immune coreceptor BAK1 leads to NLR-dependent cell death [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(43): 27044-53.
[33] NGOU B P M, AHN H-K, DING P, et al. Mutual potentiation of plant immunity by cell-surface and intracellular receptors [J]. Nature, 2021, 592(7852): 110-5.
[34] PRUITT R N, LOCCI F, WANKE F, et al. The EDS1–PAD4–ADR1 node mediates arabidopsis pattern-triggered immunity [J]. Nature, 2021, 598(7881): 495-9.
[35] TIAN H, WU Z, CHEN S, et al. Activation of tir signalling boosts pattern-triggered immunity [J]. Nature, 2021, 598(7881): 500-3.
[36] YUAN M, JIANG Z, BI G, et al. Pattern-recognition receptors are required for NLR-mediated plant immunity [J]. Nature, 2021, 592(7852): 105-9.
[37] STRINGLIS I A, PROIETTI S, HICKMAN R, et al. Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists [J]. The Plant Journal, 2018, 93(1): 166-80.
[38] TZIPILEVICH E, RUSS D, DANGL J L, et al. Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria [J]. Cell Host & Microbe, 2021, 29(10): 1507-20.e4.
[39] COLAIANNI N R, PARYS K, LEE H S, et al. A complex immune response to flagellin epitope variation in commensal communities [J]. Cell Host & Microbe, 2021, 29(4): 635-49.e9.
[40] YU K, LIU Y, TICHELAAR R, et al. Rhizosphere-associated pseudomonas suppress local root immune responses by gluconic acid-mediated lowering of environmental pH [J]. Current Biology, 2019, 29(22): 3913-20.e4.
[41] FIORIN G L, SANCHéZ-VALLET A, DE TOLEDO THOMAZELLA D P, et al. Suppression of plant immunity by fungal chitinase-like effectors [J]. Current Biology, 2018, 28(18): 3023-30. e5.
[42] SáNCHEZ-VALLET A, MESTERS J R, THOMMA B P. The battle for chitin recognition in plant-microbe interactions [J]. FEMS Microbiology Reviews, 2015, 39(2): 171-83.
[43] STRINGLIS I A, ZAMIOUDIS C, BERENDSEN R L, et al. Type III secretion system of beneficial rhizobacteria pseudomonas simiae WCS417 and pseudomonas defensor WCS374 [J]. Frontiers in Microbiology, 2019, 10: 1631.
[44] MAVRODI D V, JOE A, MAVRODI O V, et al. Structural and functional analysis of the type III secretion system from pseudomonas fluorescens Q8r1-96 [J]. Journal of Bacteriology, 2011, 193(1): 177-89.
[45] REZZONICO F, BINDER C, DéFAGO G, et al. The type III secretion system of biocontrol pseudomonas fluorescens KD targets the phytopathogenic chromista pythium ultimum and promotes cucumber protection [J]. Molecular Plant-Microbe Interactions : MPMI, 2005, 18(9): 991-1001.
[46] YANG S, TANG F, GAO M, et al. R gene-controlled host specificity in the legume-rhizobia symbiosis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(43): 18735-40.
[47] ZHANG L, CHEN X-J, LU H-B, et al. Functional analysis of the type 3 effector nodulation outer protein l (nopl) from rhizobium sp. NGR234: Symbiotic effects, phosphorylation, and interference with mitogen-activated protein kinase signaling [J]. Journal of Biological Chemistry, 2011, 286(37): 32178-87.
[48] OKAZAKI S, KANEKO T, SATO S, et al. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(42): 17131-6.
[49] MA K W, NIU Y, JIA Y, et al. Coordination of microbe-host homeostasis by crosstalk with plant innate immunity [J]. Nature Plants, 2021, 7(6): 814-25.
[50] TEIXEIRA P, COLAIANNI N R, LAW T F, et al. Specific modulation of the root immune system by a community of commensal bacteria [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(16).
[51] NGOU B P M, DING P, JONES J D G. Thirty years of resistance: Zig-zag through the plant immune system [J]. The Plant Cell, 2022, 34(5): 1447-78.
[52] WANG N R, HANEY C H. Harnessing the genetic potential of the plant microbiome [J]. The Biochemist, 2020, 42(4): 20-5.
[53] EMONET A, ZHOU F, VACHERON J, et al. Spatially restricted immune responses are required for maintaining root meristematic activity upon detection of bacteria [J]. Current Biology, 2021, 31(5): 1012-28.e7.
[54] ZHOU F, EMONET A, DéNERVAUD TENDON V, et al. Co-incidence of damage and microbial patterns controls localized immune responses in roots [J]. Cell, 2020, 180(3): 440-53.e18.
[55] MILLET Y A, DANNA C H, CLAY N K, et al. Innate immune responses activated in arabidopsis roots by microbe-associated molecular patterns [J]. The Plant Cell, 2010, 22(3): 973-90.
[56] ZHENG X Y, SPIVEY N W, ZENG W, et al. Coronatine promotes pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation [J]. Cell Host & Microbe, 2012, 11(6): 587-96.
[57] DE SMET S, CUYPERS A, VANGRONSVELD J, et al. Gene networks involved in hormonal control of root development in arabidopsis thaliana: A framework for studying its disturbance by metal stress [J]. International Journal of Molecular Sciences, 2015, 16(8): 19195-224.
[58] VERBON E H, LIBERMAN L M, ZHOU J, et al. Cell-type-specific transcriptomics reveals that root hairs and endodermal barriers play important roles in beneficial plant-rhizobacterium interactions [J]. Molecular Plant, 2023, 16(7): 1160-77.
[59] BECK M, WYRSCH I, STRUTT J, et al. Expression patterns of FLAGELLIN SENSING 2 map to bacterial entry sites in plant shoots and roots [J]. Journal of Experimental Botany, 2014, 65(22): 6487-98.
[60] RICH-GRIFFIN C, EICHMANN R, REITZ M U, et al. Regulation of cell type-specific immunity networks in arabidopsis roots [J]. The Plant Cell, 2020, 32(9): 2742-62.
[61] 朱忠旭, 陈新. 单细胞测序技术及应用进展 [J]. 基因组学与应用生物学, 2015, 34(05): 902-8.
[62] TANG F, BARBACIORU C, WANG Y, et al. mRna-seq whole-transcriptome analysis of a single cell [J]. Nature Methods, 2009, 6(5): 377-82.
[63] MACOSKO E Z, BASU A, SATIJA R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets [J]. Cell, 2015, 161(5): 1202-14.
[64] DENYER T, MA X, KLESEN S, et al. Spatiotemporal developmental trajectories in the arabidopsis root revealed using high-throughput single-cell rna sequencing [J]. Developmental Cell, 2019, 48(6): 840-52.e5.
[65] JEAN-BAPTISTE K, MCFALINE-FIGUEROA J L, ALEXANDRE C M, et al. Dynamics of gene expression in single root cells of arabidopsis thaliana [J]. The Plant Cell, 2019, 31(5): 993-1011.
[66] RYU K H, HUANG L, KANG H M, et al. Single-cell rna sequencing resolves molecular relationships among individual plant cells [J]. Plant Physiology, 2019, 179(4): 1444-56.
[67] SHAHAN R, HSU C-W, NOLAN T M, et al. A single-cell arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants [J]. Developmental Cell, 2022, 57(4): 543-60. e9.
[68] ZHANG B, GAO Y, ZHANG L, et al. The plant cell wall: Biosynthesis, construction, and functions [J]. Journal of Integrative Plant Biology, 2021, 63(1): 251-72.
[69] BIRNBAUM K, SHASHA D E, WANG J Y, et al. A gene expression map of the arabidopsis root [J]. Science (New York, NY), 2003, 302(5652): 1956-60.
[70] SHULSE C N, COLE B J, CIOBANU D, et al. High-throughput single-cell transcriptome profiling of plant cell types [J]. Cell Reports, 2019, 27(7): 2241-7. e4.
[71] LIANG Q, DHARMAT R, OWEN L, et al. Single-nuclei rna-seq on human retinal tissue provides improved transcriptome profiling [J]. Nature Communications, 2019, 10(1): 5743.
[72] KALISH B T, BARKAT T R, DIEL E E, et al. Single-nucleus rna sequencing of mouse auditory cortex reveals critical period triggers and brakes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(21): 11744-52.
[73] FARMER A, THIBIVILLIERS S, RYU K H, et al. The impact of chromatin remodeling on gene expression at the single cell level in arabidopsis thaliana [J]. bioRxiv, 2020: 2020.07. 27.223156.
[74] ZHANG T Q, XU Z G, SHANG G D, et al. A single-cell rna sequencing profiles the developmental landscape of arabidopsis root [J]. Molecular Plant, 2019, 12(5): 648-60.
[75] WENDRICH J R, YANG B, VANDAMME N, et al. Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions [J]. Science, 2020, 370(6518): eaay4970.
[76] LIU Z, KONG X, LONG Y, et al. Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation [J]. Nature Plants, 2023, 9(4): 515-24.
[77] ZHU J, LOLLE S, TANG A, et al. Single-cell profiling of arabidopsis leaves to pseudomonas syringae infection [J]. Cell Reports, 2023, 42(7): 112676.
[78] TANG B, FENG L, HULIN M T, et al. Cell-type-specific responses to fungal infection in plants revealed by single-cell transcriptomics [J]. Cell Host & Microbe, 2023, 31(10): 1732-47.e5.
[79] STRINGLIS I A, YU K, FEUSSNER K, et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(22): E5213-e22.
[80] HUANG A C, JIANG T, LIU Y X, et al. A specialized metabolic network selectively modulates arabidopsis root microbiota [J]. Science (New York, NY), 2019, 364(6440).
[81] HIRUMA K, GERLACH N, SACRISTáN S, et al. Root endophyte colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent [J]. Cell, 2016, 165(2): 464-74.
[82] CASTRILLO G, TEIXEIRA P J, PAREDES S H, et al. Root microbiota drive direct integration of phosphate stress and immunity [J]. Nature, 2017, 543(7646): 513-8.
[83] CHIAPPERO J, DEL ROSARIO CAPPELLARI L, ALDERETE L G S, et al. Plant growth promoting rhizobacteria improve the antioxidant status in mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content [J]. Industrial Crops Products, 2019, 139: 111553.
[84] PIETERSE C M, BERENDSEN R L, DE JONGE R, et al. Pseudomonas simiae WCS417: Star track of a model beneficial rhizobacterium [J]. Plant Soil, 2021, 461: 245-63.
[85] LI C-H, WANG K-C, HONG Y-H, et al. Roles of different forms of lipopolysaccharides in ralstonia solanacearum pathogenesis [J]. Molecular Plant-Microbe Interactions, 2014, 27(5): 471-8.
[86] JIANG G, WEI Z, XU J, et al. Bacterial wilt in china: History, current status, and future perspectives [J]. Frontiers in Plant Science, 2017, 8: 1549.
[87] WOLF F A, ANGERER P, THEIS F J. Scanpy: Large-scale single-cell gene expression data analysis [J]. Genome Biology, 2018, 19(1): 15.
[88] GERMAIN P L, LUN A, GARCIA MEIXIDE C, et al. Doublet identification in single-cell sequencing data using scdblfinder [J]. F1000Research, 2021, 10: 979.
[89] HAO Y, HAO S, ANDERSEN-NISSEN E, et al. Integrated analysis of multimodal single-cell data [J]. Cell, 2021, 184(13): 3573-87.e29.
[90] MCINNES L, HEALY J, MELVILLE J. UMAP: Uniform manifold approximation and projection for dimension reduction [J]. arXiv, 2018: arXiv:1802.03426.
[91] WU T, HU E, XU S, et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data [J]. Innovation (Cambridge (Mass)), 2021, 2(3): 100141.
[92] LANGFELDER P, HORVATH S. WGCNA: An R package for weighted correlation network analysis [J]. BMC Bioinformatics, 2008, 9: 559.
[93] AMRINE K C, BLANCO-ULATE B, CANTU D. Discovery of core biotic stress responsive genes in arabidopsis by weighted gene co-expression network analysis [J]. PloS One, 2015, 10(3): e0118731.
[94] ZHU M, XIE H, WEI X, et al. WGCNA analysis of salt-responsive core transcriptome identifies novel hub genes in rice [J]. Genes, 2019, 10(9): 719.
[95] HE Y, WANG Z, GE H, et al. Weighted gene co-expression network analysis identifies genes related to anthocyanin biosynthesis and functional verification of hub gene SmWRKY44 [J]. Plant Science, 2021, 309: 110935.
[96] LIU Z, YANG J, LONG Y, et al. Single-nucleus transcriptomes reveal spatiotemporal symbiotic perception and early response in medicago [J]. Nature Plants, 2023, 9(10): 1734-48.
[97] MORABITO S, REESE F, RAHIMZADEH N, et al. HdWGCNA identifies co-expression networks in high-dimensional transcriptomics data [J]. Cell Reports Methods, 2023, 3(6): 100498.
[98] ZHAO C, WANG H, LU Y, et al. Deep sequencing reveals early reprogramming of arabidopsis root transcriptomes upon ralstonia solanacearum infection [J]. Molecular Plant-Microbe Interactions, 2019, 32(7): 813-27.
[99] MARRS K A. The functions and regulation of glutathione s-transferases in plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 127-58.
[100] SALAS-GONZáLEZ I, REYT G, FLIS P, et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis [J]. Science (New York, NY), 2021, 371(6525): eabd0695.
[101] SHUKLA V, BARBERON M. Building and breaking of a barrier: Suberin plasticity and function in the endodermis [J]. Current Opinion in Plant Biology, 2021, 64: 102153.
[102] DEL CARMEN MARTíNEZ-BALLESTA M, MORENO D A, CARVAJAL M. The physiological importance of glucosinolates on plant response to abiotic stress in brassica [J]. International Journal of Molecular Sciences, 2013, 14(6): 11607-25.
[103] THOMMA B P, NELISSEN I, EGGERMONT K, et al. Deficiency in phytoalexin production causes enhanced susceptibility of arabidopsis thaliana to the fungus alternaria brassicicola [J]. The Plant Journal, 1999, 19(2): 163-71.
[104] ORTIZ A, SANSINENEA E. Phenylpropanoid derivatives and their role in plants' health and as antimicrobials [J]. Current Microbiology, 2023, 80(12): 380.
[105] MIEDES E, VANHOLME R, BOERJAN W, et al. The role of the secondary cell wall in plant resistance to pathogens [J]. Frontiers in Plant Science, 2014, 5: 358.
[106] LORETI E, PERATA P. The many facets of hypoxia in plants [J]. Plants (Basel, Switzerland), 2020, 9(6).
[107] VALERI M C, NOVI G, WEITS D A, et al. Botrytis cinerea induces local hypoxia in arabidopsis leaves [J]. The New Phytologist, 2021, 229(1): 173-85.
[108] KOPRIVOVA A, SCHUCK S, JACOBY R P, et al. Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(31): 15735-44.
[109] YANG L, ZHANG Y, GUAN R, et al. Co-regulation of indole glucosinolates and camalexin biosynthesis by CPK5/CPK6 and MPK3/MPK6 signaling pathways [J]. Journal of Integrative Plant Biology, 2020, 62(11): 1780-96.
[110] LIU Y, WILSON A J, HAN J, et al. Amino acid availability determines plant immune homeostasis in the rhizosphere microbiome [J]. mBio, 2023, 14(2): e03424-22.
[111] PAASCH B C, SOHRABI R, KREMER J M, et al. A critical role of a eubiotic microbiota in gating proper immunocompetence in arabidopsis [J]. Nature Plants, 2023, 9(9): 1468-80.
[112] ZHANG X C, MILLET Y A, CHENG Z, et al. Jasmonate signalling in arabidopsis involves SGT1B-HSP70-HSP90 chaperone complexes [J]. Nature Plants, 2015, 1.
[113] SONG Y, ZHANG X-C, QIU Y, et al. A screen for mutants deficient in coronatine-mediated suppression of root immunity identifies arabidopsis SDA1 as a novel integrator of immunity and phytohormone signaling [J]. bioRxiv, 2021: 2021.09.12.459990.
[114] SCHWESSINGER B, ROUX M, KADOTA Y, et al. Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1 [J]. PLoS Genetics, 2011, 7(4): e1002046.
[115] PATRO R, DUGGAL G, LOVE M I, et al. Salmon provides fast and bias-aware quantification of transcript expression [J]. Nature Methods, 2017, 14(4): 417-9.
[116] CHEN S, ZHOU Y, CHEN Y, et al. Fastp: An ultra-fast all-in-one fastq preprocessor [J]. Bioinformatics, 2018, 34(17): i884-i90.
[117] KECHIN A, BOYARSKIKH U, KEL A, et al. Cutprimers: A new tool for accurate cutting of primers from reads of targeted next generation sequencing [J]. Journal of Computational Biology, 2017, 24(11): 1138-43.
[118] BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J]. Nature Biotechnol, 2019, 37(8): 852-7.
[119] SONG S, MORALES MOREIRA Z, BRIGGS A L, et al. PSKR1 balances the plant growth–defence trade-off in the rhizosphere microbiome [J]. Nature Plants, 2023, 9(12): 2071-84.
[120] HARRIS J M, BALINT-KURTI P, BEDE J C, et al. What are the top 10 unanswered questions in molecular plant-microbe interactions? [J]. Molecular Plant-Microbe Interactions, 2020, 33(12): 1354-65.
[121] LEóN J, CASTILLO M C, GAYUBAS B. The hypoxia-reoxygenation stress in plants [J]. Journal of Experimental Botany, 2021, 72(16): 5841-56.
[122] KERPEN L, NICCOLINI L, LICAUSI F, et al. Hypoxic conditions in crown galls induce plant anaerobic responses that support tumor proliferation [J]. Frontiers in Plant Science, 2019, 10: 427736.
[123] MOONEY B C, DOORLY C M, MANTZ M, et al. Repression of pattern-triggered immune responses by hypoxia [J]. bioRxiv, 2023: 2023.11.07.565979.
[124] JELENSKA J, VAN HAL J A, GREENBERG J T. Pseudomonas syringae hijacks plant stress chaperone machinery for virulence [J]. Proceedings of the National Academy of Sciences, 2010, 107(29): 13177-82.
[125] MAIMBO M, OHNISHI K, HIKICHI Y, et al. Induction of a small heat shock protein and its functional roles in nicotiana plants in the defense response against ralstonia solanacearum [J]. Plant Physiology, 2007, 145(4): 1588-99.
[126] PANGESTI N, REICHELT M, VAN DE MORTEL J E, et al. Jasmonic acid and ethylene signaling pathways regulate glucosinolate levels in plants during rhizobacteria-induced systemic resistance against a leaf-chewing herbivore [J]. Journal of Chemical Ecology, 2016, 42(12): 1212-25.
[127] AUGUSTIN J M, KUZINA V, ANDERSEN S B, et al. Molecular activities, biosynthesis and evolution of triterpenoid saponins [J]. Phytochemistry, 2011, 72(6): 435-57.
[128] ZHONG Y, XUN W, WANG X, et al. Root-secreted bitter triterpene modulates the rhizosphere microbiota to improve plant fitness [J]. Nature Plants, 2022, 8(8): 887-96.
[129] MIAO H, CAI C, WEI J, et al. Glucose enhances indolic glucosinolate biosynthesis without reducing primary sulfur assimilation [J]. Scientific Reports, 2016, 6(1): 31854.
[130] DU X-Q, WANG F-L, LI H, et al. The transcription factor MYB59 regulates K+/NO3− translocation in the arabidopsis response to low K+ stress [J]. The Plant Cell, 2019, 31(3): 699-714.
[131] WIŚNIEWSKA A, WOJSZKO K, RóŻAŃSKA E, et al. Arabidopsis thaliana MYB59 gene is involved in the response to heterodera schachtii infestation, and its overexpression disturbs regular development of nematode-induced syncytia [J]. International Journal of Molecular Sciences, 2021, 22(12).
修改评论