[1] ZHANG K, ZUO W, CHEN Y, et al. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[J]. IEEE transactions on image processing, 2017, 26(7): 31423155.
[2] KUPYN O, BUDZAN V, MYKHAILYCH M, et al. Deblurgan: Blind motion deblurring using conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 81838192.
[3] SHEN Z, LAI W S, XU T, et al. Deep semantic face deblurring[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 82608269.
[4] DONG C, DENG Y, LOY C C, et al. Compression artifacts reduction by a deep convolutional network[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 576584.
[5] CHEN Y, TAI Y, LIU X, et al. Fsrnet: Endtoend learning face superresolution with facial priors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 24922501.
[6] DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super resolution[C]//Proceedings of the European Conference on Computer Vision. Springer, 2014:184199.
[7] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017: 136144.
[8] ZHAO Y, SU Y C, CHU C T, et al. Rethinking Deep Face Restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 76527661.
[9] LI X, CHEN C, ZHOU S, et al. Blind face restoration via deep multiscale component dictionaries[C]//Proceedings of the European Conference on Computer Vision. 2020: 399415.
[10] ZHU F, ZHU J, CHU W, et al. Blind Face Restoration via Integrating Face Shape and GenIterative Priors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 76627671.
[11] GU Y, WANG X, XIE L, et al. VQFR: Blind Face Restoration with VectorQuantized Dictionary and Parallel Decoder[C]//Proceedings of the European Conference on Computer Vision. 2022: 126143.
[12] GOODFELLOW I, POUGETABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014, 27.
[13] KARRAS T, AILA T, LAINE S, et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation[C]//Proceedings of the the International Conference on Learning Representations. 2018.
[14] KARRAS T, LAINE S, AILA T. A stylebased generator architecture for generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 44014410.
[15] SONG J, MENG C, ERMON S. Denoising Diffusion Implicit Models[J]. CoRR, 2020,abs/2010.02502.
[16] DHARIWAL P, NICHOL A. Diffusion Models Beat GANs on Image Synthesis[J]. CoRR, 2021, abs/2105.05233.
[17] BULAT A, TZIMIROPOULOS G. Superfan: Integrated facial landmark localization and superresolution of realworld low resolution faces in arbitrary poses with gans[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 109117.
[18] YIN Y, ROBINSON J P, ZHANG Y, et al. Joint SuperResolution and Alignment of Tiny Faces [C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020: 1269312700.
[19] MA C, JIANG Z, RAO Y, et al. Deep face superresolution with iterative collaboration between attentive recovery and landmark estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 55695578.
[20] HU X, REN W, LAMASTER J, et al. Face superresolution guided by 3d facial priors[C]// European Conference on Computer Vision. Springer, 2020: 763780.
[21] ZHANG K, ZHANG Z, CHENG C W, et al. Superidentity convolutional neural network for face hallucination[C]//Proceedings of the European Conference on Computer Vision. 2018: 183198.
[22] Grm K, Scheirer W J, Štruc V. Face Hallucination Using Cascaded SuperResolution and Identity Priors[J]. IEEE Transactions on Image Processing, 2020, 29: 21502165.
[23] CHEN J, CHEN J, WANG Z, et al. Identityaware face superresolution for lowresolution face recognition[J]. IEEE Signal Processing Letters, 2020, 27: 645649.
[24] LEDIG C, THEIS L, HUSZÁR F, et al. Photorealistic single image superresolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 46814690.
[25] MENON S, DAMIAN A, HU S, et al. Pulse: Selfsupervised photo upsampling via latent space exploration of generative models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 24372445.
[26] WANG X, LI Y, ZHANG H, et al. Towards RealWorld Blind Face Restoration with Generative Facial Prior[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 91689178.
[27] CHAN K C, WANG X, XU X, et al. Glean: Generative latent bank for largefactor image superresolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 1424514254.
[28] YANG T, REN P, XIE X, et al. GAN Prior Embedded Network for Blind Face Restoration in the Wild[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 672681.
[29] HE J, SHI W, CHEN K, et al. GCFSR: a Generative and Controllable Face SuperResolution Method Without Facial and GAN Priors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 18891898.
[30] WANG Y, HU Y, ZHANG J. PaniniNet: GAN Prior Based DegradationAware Feature Interpolation for Face Restoration[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2022: 25762584.
[31] ESSER P, ROMBACH R, OMMER B. Taming transformers for highresolution image synthesis [M]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 1287312883.
[32] WANG Z, ZHANG J, CHEN R, et al. RestoreFormer: HighQuality Blind Face Restoration from Undegraded KeyValue Pairs[M]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 1751217521.
[33] ZHOU S, CHAN K C, LI C, et al. Towards Robust Blind Face Restoration with Codebook Lookup TransFormer[C]//Advances in Neural Information Processing Systems. 2022: 3059930611.
[34] YUE Z, LOY C C. DifFace: Blind Face Restoration with Diffused Error Contraction[J]. CoRR, 2022, abs/2212.06512.
[35] WANG Z, ZHANG Z, ZHANG X, et al. DR2: DiffusionBased Robust Degradation Remover for Blind Face Restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 17041713.
[36] YANG P, ZHOU S, TAO Q, et al. PGDiff: Guiding Diffusion Models for Versatile Face Restoration via Partial Guidance[C]//Advances in Neural Information Processing Systems. 2023.
[37] ZHAO Y, HOU T, SU Y, et al. Towards Authentic Face Restoration with Iterative Diffusion Models and Beyond[C]//Proceedings of the IEEE International Conference on Computer Vision. 2023: 72787288.
[38] QIU X, HAN C, ZHANG Z, et al. DiffBFR: Bootstrapping Diffusion Model for Blind Face Restoration[C]//Proceedings of the ACM International Conference on Multimedia. ACM, 2023: 77857795.
[39] WANG J, YUE Z, ZHOU S, et al. Exploiting Diffusion Prior for RealWorld Image Super Resolution[J]. CoRR, 2023, abs/2305.07015.
[40] LIN X, HE J, CHEN Z, et al. DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior[J]. CoRR, 2023, abs/2308.15070.
[41] SCHUHMANN C, BEAUMONT R, VENCU R, et al. Laion5b: An open largescale dataset for training next generation imagetext models[J]. Advances in Neural Information Processing Systems, 2022, 35: 2527825294.
[42] ROMBACH R, BLATTMANN A, LORENZ D, et al. Highresolution image synthesis with latent diffusion models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 1068410695.
[43] WANG X, XIE L, DONG C, et al. RealESRGAN: Training RealWorld Blind SuperResolution with Pure Synthetic Data[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. 2021: 19051914
[44] ZHANG K, LIANG J, VAN GOOL L, et al. Designing a Practical Degradation Model for DeepBlind Image SuperResolution[C]//IEEE International Conference on Computer Vision. 2021: 47914800.
[45] LUO Z, HUANG Y, LI S, et al. Learning the Degradation Distribution for Blind Image Super-Resolution[J]. CoRR, 2022, abs/2203.04962.
[46] LI X, CHEN C, LIN X, et al. From Face to Natural Image: Learning Real Degradation for Blind Image SuperResolution[C]//Proceedings of the European Conference on Computer Vision. 2022: 376392.
[47] LIU Z, LUO P, WANG X, et al. Deep Learning Face Attributes in the Wild[C]//Proceedings ofthe IEEE International Conference on Computer Vision. 2015: 37303738.
[48] F. ZHOU J B, LIN Z. Exemplarbased Graph Matching for Robust Facial Landmark Localization[C]//Proceedings of the IEEE International Conference on Computer Vision. 2013: 10251032.
[49] YI D, LEI Z, LIAO S, et al. Learning face representation from scratch[A]. 2014.
[50] LEARNEDMILLER G B H E. Labeled Faces in the Wild: Updates and New Reporting Procedures: UMCS2014003[R]. University of Massachusetts, Amherst, 2014.
[51] ZHANG R, ISOLA P, EFROS A A, et al. The Unreasonable Effectiveness of Deep Features asa Perceptual Metric[C]//Proceedings of the IEEE Conference on Computer Vision and PatternRecognition. 2018: 586595.
[52] DENG J, GUO J, VERVERAS E, et al. Retinaface: Singleshot multilevel face localisation in the wild[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 52035212.
[53] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascadedconvolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 14991503.
[54] NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation[C]//Proceedings of the European Conference on Computer Vision. Springer, 2016: 483499.
[55] SCHROFF F, KALENICHENKO D, PHILBIN J. Facenet: A unified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and PatternRecognition. 2015: 815823.
[56] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inceptionv4, inceptionresnet and the impact of residual connections on learning[C]//Proceedings of the AAAI Conference on ArtificialIntelligence: volume 31. 2017.
[57] DENG J, GUO J, XUE N, et al. Arcface: Additive angular margin loss for deep face recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019: 46904699.
[58] CHEN Y, TAI Y, LIU X, et al. FSRNet: Endtoend learning face superresolution with facialpriors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018: 24922501.
[59] WANG Y, PERAZZI F, MCWILLIAMS B, et al. A fully progressive approach to singleimage superresolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 864873
[60] MIRZA M, OSINDERO S. Conditional Generative Adversarial Nets[J]. CoRR, 2014,abs/1411.1784.
[61] ODENA A, OLAH C, SHLENS J. Conditional image synthesis with auxiliary classifier gans[C]//Proceedings of the International Conference on Machine Learning. 2017: 26422651.
[62] LE V, BRANDT J, LIN Z, et al. Interactive facial feature localization[C]//Proceedings of theEuropean Conference on Computer Vision. Springer, 2012: 679692.
[63] SMITH B M, ZHANG L, BRANDT J, et al. Exemplarbased face parsing[C]//Proceedings ofthe IEEE Conference on Computer Vision and Pattern Recognition. 2013: 34843491.
[64] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility tostructural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600612.
[65] LENG J, WANG Y. RCNet: Recurrent Collaboration Network Guided by Facial Priors forFace SuperResolution[C]//Proceedings of the IEEE International Conference on Multimediaand Expo. IEEE, 2022: 0106.
[66] LIU S, XIONG C, SHI X, et al. Progressive face superresolution with cascaded recurrentconvolutional network[J]. Neurocomputing, 2021, 449: 357367.
[67] LAI W S, HUANG J B, AHUJA N, et al. Deep laplacian pyramid networks for fast and accurate superresolution[C]//Proceedings of the IEEE Conference on Computer Vision and PatternRecognition. 2017: 624632.
[68] KIM J, LEE J K, LEE K M. Accurate image superresolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016: 16461654.
[69] MEI Y, FAN Y, ZHOU Y. Image superresolution with nonlocal sparse attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:35173526.
[70] HASSAN B, IZQUIERDO E, PIATRIK T. Soft biometrics: a survey[J]. Multimedia Tools andApplications, 2021: 144.
[71] ROTHE R, TIMOFTE R, GOOL L V. Deep expectation of real and apparent age from a singleimage without facial landmarks[J]. International Journal of Computer Vision, 2018, 126(24):144157.
[72] CHEN C, LI X, YANG L, et al. Progressive SemanticAware Style Transformation for BlindFace Restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 1189611905.
[73] SHEN Y, GU J, TANG X, et al. Interpreting the latent space of gans for semantic face editing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020: 92439252.
[74] HÄRKÖNEN E, HERTZMANN A, LEHTINEN J, et al. GANSpace: Discovering InterpretableGAN Controls[C]//Advances in Neural Information Processing Systems. 2020: 98419850.
[75] SHEN Y, ZHOU B. Closedform factorization of latent semantics in gans[C]//Proceedings ofthe IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 15321540.
[76] SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for LargeScale ImageRecognition[C]//Proceedings of the the International Conference on Learning Representations.2015.
[77] GONDAL M W, SCHÖLKOPF B, HIRSCH M. The unreasonable effectiveness of texturetransfer for single image superresolution[C]//Proceedings of the European Conference on Computer Vision. 2018: 8097.
[78] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from naturallanguage supervision[C]//Proceedings of the International Conference on Machine Learning.2021: 87488763.
[79] COURBARIAUX M, BENGIO Y, DAVID J. BinaryConnect: Training Deep Neural Networkswith binary weights during propagations[C]//Advances in Neural Information Processing Systems. 2015.
[80] OREL R, SENGUPTA S, FRIED O, et al. Lifespan age transformation synthesis[C]//Proceedings of the European Conference on Computer Vision. 2020: 739755.
[81] HUANG Z, SHAN S, WANG R, et al. A Benchmark and Comparative Study of VideoBasedFace Recognition on COX Face Database[J]. IEEE Transactions on Image Processing, 2015,24(12): 59675981.
[82] LEE C H, ZHANG K, LEE H C, et al. Attribute augmented convolutional neural network forface hallucination[C]//Proceedings of the IEEE Conference on Computer Vision and PatternRecognition Workshops. 2018: 721729.
[83] CHAN E R, LIN C Z, CHAN M A, et al. Efficient Geometryaware 3D Generative Adversarial Networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and PatternRecognition. 2022: 1612316133.
[84] LI X, LIU M, YE Y, et al. Learning warped guidance for blind face restoration[C]//Proceedingsof the European Conference on Computer Vision. 2018: 272289.
[85] MEISHVILI G, JENNI S, FAVARO P. Learning to have an ear for face superresolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:13641374
修改评论