[1] SPOERK M, SAVANDAIAH C, ARBEITER F, et al. Optimization of mechanical properties of glass-spheres-filled polypropylene composites for extrusion-based additive manufacturing[J]. Polymer Composites, 2019, 40(2): 638-651.
[2] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B: Engineering, 2018, 143: 172-196.
[3] CARNEIRO O S, SILVA A, GOMES R. Fused deposition modeling with polypropylene[J]. Materials & Design, 2015, 83: 768-776.
[4] MATHEW A, KISHORE S R, TOMY A T, et al. Vapour polishing of fused deposition modelling (FDM) parts: a critical review of different techniques, and subsequent surface finish and mechanical properties of the post-processed 3D-printed parts[J]. Progress in Additive Manufacturing, 2023: 1-18.
[5] BOSCHETTO A, GIORDANO V, VENIALI F. Modelling micro geometrical profiles in fused deposition process[J]. The International Journal of Advanced Manufacturing Technology, 2012, 61: 945-956.
[6] HOPKINSON N, HAGUE R, DICKENS P. Introduction to rapid manufacturing[J]. Rapid manufacturing: An industrial revolution for the digital age, 2006: 1-4.
[7] HE Y, XUE G H, FU J Z. Fabrication of low cost soft tissue prostheses with the desktop 3D printer[J]. Scientific reports, 2014, 4(1): 6973.
[8] GU P, LI L. Fabrication of biomedical prototypes with locally controlled properties using FDM[J]. CIRP Annals, 2002, 51(1): 181-184.
[9] CENTOLA M, RAINER A, SPADACCIO C, et al. Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft[J]. Biofabrication, 2010, 2(1): 014102.
[10] WICKRAMASINGHE S, DO T, TRAN P. FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments[J]. Polymers, 2020, 12 (7): 1529.
[11] JIN Y, LI H, HE Y, et al. Quantitative analysis of surface profile in fused deposition modelling. Addit Manuf 8: 142–148[Z]. 2015.
[12] MOHAN N, SENTHIL P, VINODH S, et al. A review on composite materials and process parameters optimisation for the fused deposition modelling process[J]. Virtual and Physical Prototyping, 2017, 12(1): 47-59.
[13] SHIM J S, KIM J E, JEONG S H, et al. Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations[J]. The Journal of prosthetic dentistry, 2020, 124(4): 468-475.
[14] VALINO A D, DIZON J R C, ESPERA JR A H, et al. Advances in 3D printing of thermoplastic polymer composites and nanocomposites[J]. Progress in Polymer Science, 2019, 98: 101162.
[15] DEY A, YODO N. A systematic survey of FDM process parameter optimization and their influence on part characteristics[J]. Journal of Manufacturing and Materials Processing, 2019, 3(3): 64.
[16] PÉREZ M, MEDINA-SÁNCHEZ G, GARCÍA-COLLADO A, et al. Surface quality enhancement of fused deposition modeling (FDM) printed samples based on the selection of critical printing parameters[J]. Materials, 2018, 11(8): 1382.
[17] SINGH D, SINGH R, BOPARAI K, et al. In-vitro studies of SS 316 L biomedical implants prepared by FDM, vapor smoothing and investment casting[J]. Composites Part B: Engineering, 2018, 132: 107-114.
[18] KRUTH J P, LEU M C, NAKAGAWA T. Progress in additive manufacturing and rapid prototyping[J]. Cirp Annals, 1998, 47(2): 525-540.
[19] WOHLERS T. Future potential of rapid prototyping and manufacturing around the world[J]. Rapid Prototyping Journal, 1995, 1(1): 4-10.
[20] ARMILLOTTA A, BIGGIOGGERO G, CARNEVALE M, et al. Optimization of rapid prototypes with surface finish constraints: A Study on The FDM Technique[C]//Int. Conf. on Management of Innovative Technologies. 1999.
[21] BHARATH V. Sensitivity of RP surface finish to process parameter variation[J]. Solid Free Form Fabrication Proceedings, 2000, 2000.
[22] KATTETHOTA G, ANDERSON M. A design tool to control surface roughness in rapid fabrication[C]//Proceedings of the Solid freeform fabrication symposium, Austin, Texas. 1998: 10-12.
[23] PANDEY P M, REDDY N V, DHANDE S G. Improvement of surface finish by staircase machining in fused deposition modeling[J]. Journal of materials processing technology, 2003, 132(1-3): 323-331.
[24] GRZENDA M, BUSTILLO A. The evolutionary development of roughness prediction models[J]. Applied Soft Computing, 2013, 13(5): 2913-2922.
[25] PANDEY P M, THRIMURTHULU K, REDDY* N V. Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm[J]. International Journal of Production Research, 2004, 42(19): 4069-4089.
[26] THRIMURTHULU K, PANDEY P M, REDDY N V. Optimum part deposition orientation in fused deposition modeling[J]. International Journal of Machine Tools and Manufacture, 2004, 44(6): 585-594.
[27] AHN D, KIM H, LEE S. Surface roughness prediction using measured data and interpolation in layered manufacturing[J]. Journal of materials processing technology, 2009, 209(2): 664-671.
[28] AHN D, KWEON J H, KWON S, et al. Representation of surface roughness in fused deposition modeling[J]. Journal of Materials Processing Technology, 2009, 209(15-16): 5593-5600.
[29] MAHAPATRA S, SOOD A K. Bayesian regularization-based Levenberg–Marquardt neural model combined with BFOA for improving surface finish of FDM processed part[J]. The International Journal of Advanced Manufacturing Technology, 2012, 60: 1223-1235.
[30] MOHAN PANDEY P, VENKATA REDDY N, DHANDE S G. Slicing procedures in layered manufacturing: a review[J]. Rapid prototyping journal, 2003, 9(5): 274-288.
[31] RIANMORA S, KOOMSAP P. Recommended slicing positions for adaptive direct slicing by image processing technique[J]. The International Journal of Advanced Manufacturing Technology, 2010, 46: 1021-1033.
[32] WASSERFALL F, HENDRICH N, ZHANG J. Adaptive slicing for the FDM process revisited[C]//2017 13th IEEE Conference on Automation Science and Engineering (CASE). IEEE, 2017: 49-54.
[33] NSENGIMANA J, VAN DER WALT J, PEI E, et al. Effect of post-processing on the dimensional accuracy of small plastic additive manufactured parts[J]. Rapid Prototyping Journal, 2018, 25(1): 1-12.
[34] WILLIAMS R E, MELTON V L. Abrasive flow finishing of stereolithography prototypes[J]. Rapid Prototyping Journal, 1998, 4(2): 56-67.
[35] CHOHAN J S, SINGH R. Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications[J]. Rapid Prototyping Journal, 2017, 23(3): 495-513.
[36] BOSCHETTO A, GIORDANO V, VENIALI F. 3D roughness profile model in fused deposition modelling[J]. Rapid Prototyping Journal, 2013, 19(4): 240-252.
[37] GALANTUCCI L, DASSISTI M, LAVECCHIA F, et al. Improvement of fused deposition modelled surfaces through milling and physical vapor deposition[C]//1st Workshop on the State of the Art and Challenges of Research Efforts at POLIBA: Vol. 1. 2014: 87-92.
[38] ZINNIEL R L. Surface-treatment method for rapid-manufactured three-dimensional objects[M]. Google Patents, 2014.
[39] GALANTUCCI L M, LAVECCHIA F, PERCOCO G. Experimental study aiming to enhance the surface finish of fused deposition modeled parts[J]. CIRP annals, 2009, 58(1): 189-192.
[40] JAYANTH N, SENTHIL P, PRAKASH C. Effect of chemical treatment on tensile strength and surface roughness of 3D-printed ABS using the FDM process[J]. Virtual and Physical Prototyping, 2018, 13(3): 155-163.
[41] SCHMID M, SIMON C, LEVY G. Finishing of SLS-parts for rapid manufacturing (RM)-acomprehensive approach[C]//2009 International Solid Freeform Fabrication Symposium. University of Texas at Austin, 2009.
[42] GALANTUCCI L, LAVECCHIA F, PERCOCO G. Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling[J]. CIRP annals, 2010, 59(1): 247-250.
[43] PERCOCO G, LAVECCHIA F, GALANTUCCI L M. Compressive properties of FDM rapid prototypes treated with a low cost chemical finishing[J]. Research Journal of Applied Sciences, Engineering and Technology, 2012, 4(19): 3838-3842.
[44] RAO A S, DHARAP M A, VENKATESH J V, et al. Investigation of post processing techniques to reduce the surface roughness of fused deposition modeled parts[J]. International Journal of Mechanical Engineering and Technology, 2012, 3(3): 531-544.
[45] MCCULLOUGH E J, YADAVALLI V K. Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices[J]. Journal of Materials Processing Technology, 2013, 213(6): 947-954.
[46] OLIVERA S, MURALIDHARA H B, VENKATESH K, et al. Plating on acrylonitrile– butadiene–styrene (ABS) plastic: a review[J]. Journal of materials science, 2016, 51: 3657-3674.
[47] ARUN K, ARAVINDH K, RAJA K, et al. Metallization of PLA plastics prepared by FDM-RP process and evaluation of corrosion and hardness characteristics[J]. Materials Today: Proceedings, 2018, 5(5): 13107-13110.
[48] KANNAN S, SENTHILKUMARAN D. Assessment of mechanical properties of Ni-coated ABS plastics using FDM process[J]. International Journal of Mechanical & Mechatronics Engineering, 2014, 14(3): 30-35.
[49] KANNAN S, SENTHILKUMARAN D. Investigating the influence of electroplating layer thickness on the tensile strength for fused deposition processed ABS thermoplastics[J]. International Journal of Engineering and Technology, 2014, 6(2): 1047-1052.
[50] ANGEL K, TSANG H H, BEDAIR S S, et al. Selective electroplating of 3D printed parts[J]. Additive Manufacturing, 2018, 20: 164-172.
[51] DIXIT N K, SRIVASTAVA R, NARAIN R. Improving surface roughness of the 3D printed part using electroless plating[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(5): 942-954.
[52] TAMBURRINO F, BARONE S, PAOLI A, et al. Post-processing treatments to enhance additively manufactured polymeric parts: A review[J]. Virtual and Physical Prototyping, 2021, 16 (2): 221-254.
[53] NEFF C, ROJAS-NASTRUCCI E A, NUSSBAUM J, et al. Thermal and vapor smoothing of thermoplastic for reduced surface roughness of additive manufactured RF electronics[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(6): 1151-1160.
[54] ADEL M, ABDELAAL O, GAD A, et al. Polishing of fused deposition modeling products by hot air jet: Evaluation of surface roughness[J]. Journal of Materials Processing Technology, 2018, 251: 73-82.
[55] HART K R, DUNN R M, SIETINS J M, et al. Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing[J]. Polymer, 2018, 144: 192-204.
[56] LAVECCHIA F, PERCOCO G, PEI E, et al. Computer numerical controlled grinding and physical vapor deposition for fused deposition modelled workpieces[J]. Advances in Materials Science and Engineering, 2018, 2018.
[57] JIN Y, WAN Y, LIU Z. Surface polish of PLA parts in FDM using dichloromethane vapour[C]// MATEC Web of Conferences: Vol. 95. EDP Sciences, 2017: 05001.
[58] LALEHPOUR A, JANETEAS C, BARARI A. Surface roughness of FDM parts after post processing with acetone vapor bath smoothing process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95: 1505-1520.
[59] COLPANI A, FIORENTINO A, CERETTI E. Characterization of chemical surface finishing with cold acetone vapours on ABS parts fabricated by FDM[J]. Production Engineering, 2019, 13: 437-447.
[60] COLPANI A, FIORENTINO A, CERETTI E. Design and fabrication of customized tracheal stents by additive manufacturing[J]. Procedia Manufacturing, 2020, 47: 1029-1035.
[61] SINGH R, TRIVEDI A. Experimental investigations for surface roughness and dimensional accuracy of FDM components with barrel finishing[J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2017, 87: 455-463.
[62] CHOHAN J S, SINGH R, BOPARAI K S. Post-processing of ABS replicas with vapour smoothing for investment casting applications[J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2020: 1-6.
[63] GARG A, BHATTACHARYA A, BATISH A. On surface finish and dimensional accuracy of FDM parts after cold vapor treatment[J]. Materials and Manufacturing Processes, 2016, 31(4): 522-529.
[64] RAJAN A J, SUGAVANESWARAN M, PRASHANTHI B, et al. Influence of vapour smoothing process parameters on fused deposition modelling parts surface roughness at different build orientation[J]. Materials Today: Proceedings, 2020, 22: 2772-2778.
[65] KISHORE S R, MATHEW A, TOMY A T, et al. Design and development of hot vapour polishing system and optimization of it’s process parameters for FDM printed parts[J]. Tribology in Industry, 2022, 44(4): 551.
[66] MAIDIN S, RAJENDRAN T K, SHAHRUM M A, et al. Investigation on surface roughness of ultrasonic assisted vapour smoothing of acrylonitrile butadiene styrene printed sample[J]. Engineering Research Express, 2024, 6(2): 025402.
[67] MU M, OU C Y, WANG J, et al. Surface modification of prototypes in fused filament fabrication using chemical vapour smoothing[J]. Additive Manufacturing, 2020, 31: 100972.
[68] RIVA L, FIORENTINO A, CERETTI E. Characterization of chemical surface finishing with hot acetone vapours on ABS parts fabricated by FFF[J]. Progress in Additive Manufacturing, 2022, 7(4): 785-796.
[69] COLPANI A, FIORENTINO A, CERETTI E. Characterization of chemical surface finishing with cold acetone vapours on ABS parts fabricated by FDM[J]. Production Engineering, 2019, 13: 437-447.
[70] WJESUNDERA P, SCHUTTE J, POTGIETER J. The effects of acetone vapour inter-layer processing on fused deposition modelling 3D printed acrylonitrile butadiene styrene[C]//2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). IEEE, 2017: 1-6.
[71] NEFF C, TRAPUZZANO M, CRANE N B. Impact of vapor polishing on surface quality and mechanical properties of extruded ABS[J]. Rapid Prototyping Journal, 2018, 24(2): 501-508.
[72] GARG A, BHATTACHARYA A, BATISH A. Chemical vapor treatment of ABS parts built by FDM: Analysis of surface finish and mechanical strength[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89: 2175-2191.
[73] ZHANG S U, HAN J, KANG H W. Temperature-dependent mechanical properties of ABS parts fabricated by fused deposition modeling and vapor smoothing[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18: 763-769.
[74] SINGH D, SINGH R, BOPARAI K. Investigations on hardness of investment-casted implants fabricated after vapour smoothing of FDM replicas[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42: 1-12.
[75] ELLIS A, BROWN R, HOPKINSON N. The effect of build orientation and surface modification on mechanical properties of high speed sintered parts[J]. Surface Topography: Metrology and Properties, 2015, 3(3): 034005.
[76] 杨杰, 卢静, 王俊, 等. 触针式三维粗糙度仪的设计[J]. 机械设计与制造, 2013(5): 29-31.
[77] 周莉莉, 赵学增, 郑俊丽. 基于散斑强度相关函数的表面粗糙度测量方法[J]. 光电工程, 2004, 31(7): 50-53.
[78] 张蕴冬, 浦军. 光探针式表面形貌测量技术的研究[J]. 计量与测试技术, 2005, 32(7): 4-5.
[79] 赵洪志, 李达成, 曹芒. 高精度表面粗糙度外差干涉仪信号处理系统的研制[J]. 光学技术, 1997(5): 39-42.
[80] 陈英飞, 章海军, 张冬仙. 原子力显微镜在纳米粗糙度测量中的应用[J]. 光学仪器, 2003, 25(4): 25-29.
[81] 何宝凤, 丁思源, 魏翠娥, 等. 三维表面粗糙度测量方法综述[J]. 光学精密工程, 2019, 27 (1): 78-93.
修改评论