中文版 | English
题名

基于蒸汽平滑工艺对FDM零件的表面粗糙度控制研究

其他题名
RESEARCH ON SURFACE ROUGHNESS CONTROL OF FDM PARTS BASED ON VAPOR SMOOTHING PROCESS
姓名
姓名拼音
MU Feihong
学号
12233202
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
罗涛
导师单位
创新创意设计学院
论文答辩日期
2024-05-08
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

熔融沉积成型技术(FDM)因其原材料利用率高、适合复杂模型的快速验证以及可以生产定制化的产品等优势为实体产品设计带来了创新的制造方法,加速了原型制作和设计验证的过程。然而,由于FDM自身固有缺陷导致的阶梯效应以及层纹现象使其加工的产品或零件表面光洁度较差、粗糙度分布不均,限制了其在实体产品设计领域的发挥,尤其是实体产品表面粗糙度的设计验证和快速迭代。为响应国家工程教育改革新要求,本研究通过多学科交叉,致力于探索如何助推FDM技术更好地为实体产品设计过程赋能。

基于此背景,本研究通过化学蒸汽平滑工艺对FDM零件样品进行处理,探究零件表面粗糙度的变化规律,以实现对FDM零件粗糙度的控制,为实体产品的粗糙度设计提供一种快速迭代工具。为了让蒸汽平滑的过程变得缓和可控,本研究按照不同的体积比混合丙酮和乙酸乙酯溶液,通过加热的方式对ABS零件进行蒸汽平滑,得到了不同构建角度零件的表面粗糙度随时间的变化情况,并分析了平滑过程中零件表面粗糙度的变化规律。依据实验结果,为不同构建角度的零件分别选择了合适的平滑试剂比例,并拟合出了相应的粗糙度—时间变化曲线,得到了对应的函数方程。最后,为了验证该曲线的准确性,本文通过在函数方程中代入预设的粗糙度数值来求解相应的处理时间,并测试了在该时间条件下零件的粗糙度与理论粗糙度的一致性。

结果表明,蒸汽平滑过程中零件的粗糙度—时间曲线的拟合优度均高于99%;在验证实验中,不同构建角度零件的表面粗糙度表现出了显著的一致性,与预设粗糙度的最大偏差控制在了1μm范围内。证实了曲线拟合结果的准确性、以及使用蒸汽平滑工艺控制FDM零件表面粗糙度的可行性。

其他摘要

The Fusion Deposition Modeling (FDM) technique has revolutionized manufacturing methods in physical product design, offering advantages such as high material utilization, rapid validation of complex models, and customization capabilities. However, inherent deficiencies like the staircase effect and layering in FDM lead to poor surface finish and uneven roughness distribution, limiting its efficacy in physical product design, particularly in surface roughness design validation and rapid iteration. In response to the new requirements of national engineering education reform, this interdisciplinary study explores enhancing FDM technology's capabilities in the physical product design process.

In this context, chemical vapor smoothing processes were employed to treat FDM part samples, investigating the variation of surface roughness to achieve control over FDM part roughness. This provides a rapid iteration tool for surface roughness design in physical products. To ensure a controlled and gentle vapor smoothing process, various ratios of acetone and ethyl acetate solutions were mixed and heated to smooth ABS parts. The study observed changes in surface roughness over time for parts with different build angles and analyzed the patterns during the smoothing process. Based on experimental results, appropriate solution ratios were selected for parts with different build angles, and corresponding roughness-time curves were fitted, yielding respective function equations. Finally, to validate the accuracy of these curves, preset roughness values were inputted into the function equations to determine corresponding processing times. The study tested the consistency between the roughness of the parts at these times and the theoretical roughness.

The results indicate that the fitting goodness of the roughness-time curves during the vapor smoothing process exceeded 99\%. In validation experiments, significant consistency was observed in the surface roughness of parts with different build angles, with the maximum deviation from preset roughness controlled within a range of 1 μm. This confirms the accuracy of the curve fitting results and the feasibility of controlling FDM part surface roughness using vapor smoothing processes.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] SPOERK M, SAVANDAIAH C, ARBEITER F, et al. Optimization of mechanical properties of glass-spheres-filled polypropylene composites for extrusion-based additive manufacturing[J]. Polymer Composites, 2019, 40(2): 638-651.
[2] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B: Engineering, 2018, 143: 172-196.
[3] CARNEIRO O S, SILVA A, GOMES R. Fused deposition modeling with polypropylene[J]. Materials & Design, 2015, 83: 768-776.
[4] MATHEW A, KISHORE S R, TOMY A T, et al. Vapour polishing of fused deposition modelling (FDM) parts: a critical review of different techniques, and subsequent surface finish and mechanical properties of the post-processed 3D-printed parts[J]. Progress in Additive Manufacturing, 2023: 1-18.
[5] BOSCHETTO A, GIORDANO V, VENIALI F. Modelling micro geometrical profiles in fused deposition process[J]. The International Journal of Advanced Manufacturing Technology, 2012, 61: 945-956.
[6] HOPKINSON N, HAGUE R, DICKENS P. Introduction to rapid manufacturing[J]. Rapid manufacturing: An industrial revolution for the digital age, 2006: 1-4.
[7] HE Y, XUE G H, FU J Z. Fabrication of low cost soft tissue prostheses with the desktop 3D printer[J]. Scientific reports, 2014, 4(1): 6973.
[8] GU P, LI L. Fabrication of biomedical prototypes with locally controlled properties using FDM[J]. CIRP Annals, 2002, 51(1): 181-184.
[9] CENTOLA M, RAINER A, SPADACCIO C, et al. Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft[J]. Biofabrication, 2010, 2(1): 014102.
[10] WICKRAMASINGHE S, DO T, TRAN P. FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments[J]. Polymers, 2020, 12 (7): 1529.
[11] JIN Y, LI H, HE Y, et al. Quantitative analysis of surface profile in fused deposition modelling. Addit Manuf 8: 142–148[Z]. 2015.
[12] MOHAN N, SENTHIL P, VINODH S, et al. A review on composite materials and process parameters optimisation for the fused deposition modelling process[J]. Virtual and Physical Prototyping, 2017, 12(1): 47-59.
[13] SHIM J S, KIM J E, JEONG S H, et al. Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations[J]. The Journal of prosthetic dentistry, 2020, 124(4): 468-475.
[14] VALINO A D, DIZON J R C, ESPERA JR A H, et al. Advances in 3D printing of thermoplastic polymer composites and nanocomposites[J]. Progress in Polymer Science, 2019, 98: 101162.
[15] DEY A, YODO N. A systematic survey of FDM process parameter optimization and their influence on part characteristics[J]. Journal of Manufacturing and Materials Processing, 2019, 3(3): 64.
[16] PÉREZ M, MEDINA-SÁNCHEZ G, GARCÍA-COLLADO A, et al. Surface quality enhancement of fused deposition modeling (FDM) printed samples based on the selection of critical printing parameters[J]. Materials, 2018, 11(8): 1382.
[17] SINGH D, SINGH R, BOPARAI K, et al. In-vitro studies of SS 316 L biomedical implants prepared by FDM, vapor smoothing and investment casting[J]. Composites Part B: Engineering, 2018, 132: 107-114.
[18] KRUTH J P, LEU M C, NAKAGAWA T. Progress in additive manufacturing and rapid prototyping[J]. Cirp Annals, 1998, 47(2): 525-540.
[19] WOHLERS T. Future potential of rapid prototyping and manufacturing around the world[J]. Rapid Prototyping Journal, 1995, 1(1): 4-10.
[20] ARMILLOTTA A, BIGGIOGGERO G, CARNEVALE M, et al. Optimization of rapid prototypes with surface finish constraints: A Study on The FDM Technique[C]//Int. Conf. on Management of Innovative Technologies. 1999.
[21] BHARATH V. Sensitivity of RP surface finish to process parameter variation[J]. Solid Free Form Fabrication Proceedings, 2000, 2000.
[22] KATTETHOTA G, ANDERSON M. A design tool to control surface roughness in rapid fabrication[C]//Proceedings of the Solid freeform fabrication symposium, Austin, Texas. 1998: 10-12.
[23] PANDEY P M, REDDY N V, DHANDE S G. Improvement of surface finish by staircase machining in fused deposition modeling[J]. Journal of materials processing technology, 2003, 132(1-3): 323-331.
[24] GRZENDA M, BUSTILLO A. The evolutionary development of roughness prediction models[J]. Applied Soft Computing, 2013, 13(5): 2913-2922.
[25] PANDEY P M, THRIMURTHULU K, REDDY* N V. Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm[J]. International Journal of Production Research, 2004, 42(19): 4069-4089.
[26] THRIMURTHULU K, PANDEY P M, REDDY N V. Optimum part deposition orientation in fused deposition modeling[J]. International Journal of Machine Tools and Manufacture, 2004, 44(6): 585-594.
[27] AHN D, KIM H, LEE S. Surface roughness prediction using measured data and interpolation in layered manufacturing[J]. Journal of materials processing technology, 2009, 209(2): 664-671.
[28] AHN D, KWEON J H, KWON S, et al. Representation of surface roughness in fused deposition modeling[J]. Journal of Materials Processing Technology, 2009, 209(15-16): 5593-5600.
[29] MAHAPATRA S, SOOD A K. Bayesian regularization-based Levenberg–Marquardt neural model combined with BFOA for improving surface finish of FDM processed part[J]. The International Journal of Advanced Manufacturing Technology, 2012, 60: 1223-1235.
[30] MOHAN PANDEY P, VENKATA REDDY N, DHANDE S G. Slicing procedures in layered manufacturing: a review[J]. Rapid prototyping journal, 2003, 9(5): 274-288.
[31] RIANMORA S, KOOMSAP P. Recommended slicing positions for adaptive direct slicing by image processing technique[J]. The International Journal of Advanced Manufacturing Technology, 2010, 46: 1021-1033.
[32] WASSERFALL F, HENDRICH N, ZHANG J. Adaptive slicing for the FDM process revisited[C]//2017 13th IEEE Conference on Automation Science and Engineering (CASE). IEEE, 2017: 49-54.
[33] NSENGIMANA J, VAN DER WALT J, PEI E, et al. Effect of post-processing on the dimensional accuracy of small plastic additive manufactured parts[J]. Rapid Prototyping Journal, 2018, 25(1): 1-12.
[34] WILLIAMS R E, MELTON V L. Abrasive flow finishing of stereolithography prototypes[J]. Rapid Prototyping Journal, 1998, 4(2): 56-67.
[35] CHOHAN J S, SINGH R. Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications[J]. Rapid Prototyping Journal, 2017, 23(3): 495-513.
[36] BOSCHETTO A, GIORDANO V, VENIALI F. 3D roughness profile model in fused deposition modelling[J]. Rapid Prototyping Journal, 2013, 19(4): 240-252.
[37] GALANTUCCI L, DASSISTI M, LAVECCHIA F, et al. Improvement of fused deposition modelled surfaces through milling and physical vapor deposition[C]//1st Workshop on the State of the Art and Challenges of Research Efforts at POLIBA: Vol. 1. 2014: 87-92.
[38] ZINNIEL R L. Surface-treatment method for rapid-manufactured three-dimensional objects[M]. Google Patents, 2014.
[39] GALANTUCCI L M, LAVECCHIA F, PERCOCO G. Experimental study aiming to enhance the surface finish of fused deposition modeled parts[J]. CIRP annals, 2009, 58(1): 189-192.
[40] JAYANTH N, SENTHIL P, PRAKASH C. Effect of chemical treatment on tensile strength and surface roughness of 3D-printed ABS using the FDM process[J]. Virtual and Physical Prototyping, 2018, 13(3): 155-163.
[41] SCHMID M, SIMON C, LEVY G. Finishing of SLS-parts for rapid manufacturing (RM)-acomprehensive approach[C]//2009 International Solid Freeform Fabrication Symposium. University of Texas at Austin, 2009.
[42] GALANTUCCI L, LAVECCHIA F, PERCOCO G. Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling[J]. CIRP annals, 2010, 59(1): 247-250.
[43] PERCOCO G, LAVECCHIA F, GALANTUCCI L M. Compressive properties of FDM rapid prototypes treated with a low cost chemical finishing[J]. Research Journal of Applied Sciences, Engineering and Technology, 2012, 4(19): 3838-3842.
[44] RAO A S, DHARAP M A, VENKATESH J V, et al. Investigation of post processing techniques to reduce the surface roughness of fused deposition modeled parts[J]. International Journal of Mechanical Engineering and Technology, 2012, 3(3): 531-544.
[45] MCCULLOUGH E J, YADAVALLI V K. Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices[J]. Journal of Materials Processing Technology, 2013, 213(6): 947-954.
[46] OLIVERA S, MURALIDHARA H B, VENKATESH K, et al. Plating on acrylonitrile– butadiene–styrene (ABS) plastic: a review[J]. Journal of materials science, 2016, 51: 3657-3674.
[47] ARUN K, ARAVINDH K, RAJA K, et al. Metallization of PLA plastics prepared by FDM-RP process and evaluation of corrosion and hardness characteristics[J]. Materials Today: Proceedings, 2018, 5(5): 13107-13110.
[48] KANNAN S, SENTHILKUMARAN D. Assessment of mechanical properties of Ni-coated ABS plastics using FDM process[J]. International Journal of Mechanical & Mechatronics Engineering, 2014, 14(3): 30-35.
[49] KANNAN S, SENTHILKUMARAN D. Investigating the influence of electroplating layer thickness on the tensile strength for fused deposition processed ABS thermoplastics[J]. International Journal of Engineering and Technology, 2014, 6(2): 1047-1052.
[50] ANGEL K, TSANG H H, BEDAIR S S, et al. Selective electroplating of 3D printed parts[J]. Additive Manufacturing, 2018, 20: 164-172.
[51] DIXIT N K, SRIVASTAVA R, NARAIN R. Improving surface roughness of the 3D printed part using electroless plating[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(5): 942-954.
[52] TAMBURRINO F, BARONE S, PAOLI A, et al. Post-processing treatments to enhance additively manufactured polymeric parts: A review[J]. Virtual and Physical Prototyping, 2021, 16 (2): 221-254.
[53] NEFF C, ROJAS-NASTRUCCI E A, NUSSBAUM J, et al. Thermal and vapor smoothing of thermoplastic for reduced surface roughness of additive manufactured RF electronics[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(6): 1151-1160.
[54] ADEL M, ABDELAAL O, GAD A, et al. Polishing of fused deposition modeling products by hot air jet: Evaluation of surface roughness[J]. Journal of Materials Processing Technology, 2018, 251: 73-82.
[55] HART K R, DUNN R M, SIETINS J M, et al. Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing[J]. Polymer, 2018, 144: 192-204.
[56] LAVECCHIA F, PERCOCO G, PEI E, et al. Computer numerical controlled grinding and physical vapor deposition for fused deposition modelled workpieces[J]. Advances in Materials Science and Engineering, 2018, 2018.
[57] JIN Y, WAN Y, LIU Z. Surface polish of PLA parts in FDM using dichloromethane vapour[C]// MATEC Web of Conferences: Vol. 95. EDP Sciences, 2017: 05001.
[58] LALEHPOUR A, JANETEAS C, BARARI A. Surface roughness of FDM parts after post processing with acetone vapor bath smoothing process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95: 1505-1520.
[59] COLPANI A, FIORENTINO A, CERETTI E. Characterization of chemical surface finishing with cold acetone vapours on ABS parts fabricated by FDM[J]. Production Engineering, 2019, 13: 437-447.
[60] COLPANI A, FIORENTINO A, CERETTI E. Design and fabrication of customized tracheal stents by additive manufacturing[J]. Procedia Manufacturing, 2020, 47: 1029-1035.
[61] SINGH R, TRIVEDI A. Experimental investigations for surface roughness and dimensional accuracy of FDM components with barrel finishing[J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2017, 87: 455-463.
[62] CHOHAN J S, SINGH R, BOPARAI K S. Post-processing of ABS replicas with vapour smoothing for investment casting applications[J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2020: 1-6.
[63] GARG A, BHATTACHARYA A, BATISH A. On surface finish and dimensional accuracy of FDM parts after cold vapor treatment[J]. Materials and Manufacturing Processes, 2016, 31(4): 522-529.
[64] RAJAN A J, SUGAVANESWARAN M, PRASHANTHI B, et al. Influence of vapour smoothing process parameters on fused deposition modelling parts surface roughness at different build orientation[J]. Materials Today: Proceedings, 2020, 22: 2772-2778.
[65] KISHORE S R, MATHEW A, TOMY A T, et al. Design and development of hot vapour polishing system and optimization of it’s process parameters for FDM printed parts[J]. Tribology in Industry, 2022, 44(4): 551.
[66] MAIDIN S, RAJENDRAN T K, SHAHRUM M A, et al. Investigation on surface roughness of ultrasonic assisted vapour smoothing of acrylonitrile butadiene styrene printed sample[J]. Engineering Research Express, 2024, 6(2): 025402.
[67] MU M, OU C Y, WANG J, et al. Surface modification of prototypes in fused filament fabrication using chemical vapour smoothing[J]. Additive Manufacturing, 2020, 31: 100972.
[68] RIVA L, FIORENTINO A, CERETTI E. Characterization of chemical surface finishing with hot acetone vapours on ABS parts fabricated by FFF[J]. Progress in Additive Manufacturing, 2022, 7(4): 785-796.
[69] COLPANI A, FIORENTINO A, CERETTI E. Characterization of chemical surface finishing with cold acetone vapours on ABS parts fabricated by FDM[J]. Production Engineering, 2019, 13: 437-447.
[70] WJESUNDERA P, SCHUTTE J, POTGIETER J. The effects of acetone vapour inter-layer processing on fused deposition modelling 3D printed acrylonitrile butadiene styrene[C]//2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). IEEE, 2017: 1-6.
[71] NEFF C, TRAPUZZANO M, CRANE N B. Impact of vapor polishing on surface quality and mechanical properties of extruded ABS[J]. Rapid Prototyping Journal, 2018, 24(2): 501-508.
[72] GARG A, BHATTACHARYA A, BATISH A. Chemical vapor treatment of ABS parts built by FDM: Analysis of surface finish and mechanical strength[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89: 2175-2191.
[73] ZHANG S U, HAN J, KANG H W. Temperature-dependent mechanical properties of ABS parts fabricated by fused deposition modeling and vapor smoothing[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18: 763-769.
[74] SINGH D, SINGH R, BOPARAI K. Investigations on hardness of investment-casted implants fabricated after vapour smoothing of FDM replicas[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42: 1-12.
[75] ELLIS A, BROWN R, HOPKINSON N. The effect of build orientation and surface modification on mechanical properties of high speed sintered parts[J]. Surface Topography: Metrology and Properties, 2015, 3(3): 034005.
[76] 杨杰, 卢静, 王俊, 等. 触针式三维粗糙度仪的设计[J]. 机械设计与制造, 2013(5): 29-31.
[77] 周莉莉, 赵学增, 郑俊丽. 基于散斑强度相关函数的表面粗糙度测量方法[J]. 光电工程, 2004, 31(7): 50-53.
[78] 张蕴冬, 浦军. 光探针式表面形貌测量技术的研究[J]. 计量与测试技术, 2005, 32(7): 4-5.
[79] 赵洪志, 李达成, 曹芒. 高精度表面粗糙度外差干涉仪信号处理系统的研制[J]. 光学技术, 1997(5): 39-42.
[80] 陈英飞, 章海军, 张冬仙. 原子力显微镜在纳米粗糙度测量中的应用[J]. 光学仪器, 2003, 25(4): 25-29.
[81] 何宝凤, 丁思源, 魏翠娥, 等. 三维表面粗糙度测量方法综述[J]. 光学精密工程, 2019, 27 (1): 78-93.

所在学位评定分委会
材料与化工
国内图书分类号
TP391.73
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766033
专题南方科技大学
创新创意设计学院
推荐引用方式
GB/T 7714
慕飞虹. 基于蒸汽平滑工艺对FDM零件的表面粗糙度控制研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233202-慕飞虹-创新创意设计学(37550KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[慕飞虹]的文章
百度学术
百度学术中相似的文章
[慕飞虹]的文章
必应学术
必应学术中相似的文章
[慕飞虹]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。