[1] OHTOMO A, MULLER D A, GRAZUL J L, et al. Artificial charge-modulationinatomic-scale perovskite titanate superlattices.[J]. Nature, 2002, 419: 378–380.
[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect inatomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[3] MOORE C E. Atomic energy levels as derived from the analyses of opticalspectra, vol 3[M]. Washington D. C.: US Department of Commerce, NationalBureau of Standards, 1949.
[4] NAGAO T, SADOWSKI J T, SAITO M, et al. Nanofilm allotrope and phasetransformation of ultrathin Bi film on Si(111)− 7×7[J]. Physical Review Letters,2004, 93(10): 105501.
[5] LIU Z, LIU CX, WU YS, et al. Stable nontrivial Z2 topology in ultrathin Bi (111)films: a first-principles study[J]. Physical Review Letters, 2011, 107(13):136805.
[6] REIS F, LI G, DUDY L, et al. Bismuthene on a SiC substrate: a candidate for ahigh-temperature quantum spin Hall material[J]. Science, 2017, 357(6348): 287-290.
[7] HÄUSSERMANN U, SDERBERG K, NORRESTAM R. Comparative study of thehigh-pressure behavior of As, Sb, and Bi[J]. Journal of the American ChemicalSociety, 2003, 124(51):15359-15367.
[8] HOFMANN P. The surfaces of bismuth: structural and electronic properties[J].Progress in Surface Science, 2006, 81(5):191-245.
[9] ZHANG HJ, LIU CX, QI XL, et al. Topological insulators in Bi2Se3, Bi2Te3 andSb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6):438-442.
[10] WANG G, ZHU X G, SUN Y Y, et al. Topological insulator thin films of Bi2Te3with controlled electronic structure[J]. Advanced Materials, 2011, 23(26):2929 -2932.
[11] PEI J, CAI B, ZHUANG HL, et al. Bi2Te3-based applied thermoelectric materials:Research advances and new challenges[J]. National Science Review, 2020, 7(12):1856-1858.
[12] ZHANG KF, YANG F, SONG YR, et al. Strongly compressed Bi (111) bilayerfilms on Bi2Se3 studied by scanning tunneling microscopy[J]. Applied PhysicsLetters, 2015, 107(12): 121601.
[13] VENKATASUBRAMANIAN R, SIIVOLA E, COLPITTS T, et al. Thin-filmthermoelectric devices with high room-temperature figures of merit[J]. Nature,2001, 413(6856): 597-602.
[14] CULEBRAS M, URIOL B, GÓMEZ C M, et al. Controlling the thermoelectric properties of polymers: application to PEDOT and polypyrrole[J]. PhysicalChemistry Chemical Physics, 2015, 17(23): 15140-15145.
[15] AHISKA R, MAMUR H. Development and application of a new power analysissystem for testing of geothermal thermoelectric generators[J]. InternationalJournal of Green Energy, 2016, 13(7): 672-681.
[16] AHISKA R, MAMUR H. Design and implementation of a new portablethermoelectric generator for low geothermal temperatures[J]. IET RenewablePower Generation, 2013, 7(6): 700-706.
[17] SMITH C J W, CAHILL J S, NUHOGLU A. Macro to nano: scaling effects ofBi2Te3 thermoelectric generators for applications in space[J]. PAM ReviewEnergy Science & Technology, 2016, 3: 86-99.
[18] AKRAM M, NAZAR F M, Magnetic properties of CrTe, Cr23Te24, Cr7Te8, Cr5Te6,and Cr3Te4 compounds[J]. Journal of Materials Science, 1983, 18(2): 423-429.
[19] BURN D M, DUFFY L B, FUJITA R, et al. Cr2Te3 thin films for integration inmagnetic topological insulator heterostructures[J]. Scientific Reports, 2019, 9(1):10793.
[20] ZHOU L, CHEN JS, DU ZZ, et al. Magnetotransport properties of Cr1− δTe thinfilms with strong perpendicular magnetic anisotropy[J]. AIP Advances, 2017,7(12): 125116.
[21] PRAMANIK T, ROY A, DEY R, et al. Angular dependence of magnetizationreversal in epitaxial chromium telluride thin films with perpendicular magneticanisotropy[J]. Journal of Magnetism and Magnetic Materials, 2017, 437: 72 -77.
[22] ROY A, GUCHHAIT S, DEY R, et al. Perpendicular magnetic anisotropy and spinglass-like behavior in molecular beam epitaxy grown chromium telluride thinfilms[J]. ACS nano, 2015, 9(4): 3772-3779.
[23] OHRING M. Materials Science of Thin Films: deposition and structure[M]. 2nded. New York: Academic Press, 2001.
[24] MANTL S. Molecular beam allotaxy: a new approach to epitaxialheterostructures[J]. Journal of Physics D: Applied Physics, 1998, 31(1): 1.
[25] WHITE A E, SHORT K T, DYNES R C, et al. Mesotaxy: formation of buriedsingle-crystal CoSi2 layers by implantation[J]. MRS Online Proceedings Library(OPL), 1986, 74: 481.
[26] CHEN JS, WANG LJ, ZHANG M, et al. Evidence for magnetic skyrmions at theinterface of ferromagnet/topological-insulator heterostructures[J]. Nano Letters,2019, 19(9): 6144-6151.
[27] LI B, ZHANG RN, ZHOU L, et al. The construction of Cr2Te3/Bi2/Bi2Te3superlattice via reduction method by molecular beam epitaxy[J]. Applied Physics Letters, 2022(9):120.
[28] LIU X, HUANG P, XIA Y, et al. Wafer-Scale Epitaxial Growth of the ThicknessControllable Van Der Waals Ferromagnet CrTe2 for Reliable Magnetic MemoryApplications[J]. Advanced Functional Materials, 2023: 2304454.
[29] OURA K, LIFSHITS V G, SARANIN A A, et al. Surface science: anintroduction[M]. Berlin: Springer-Verlag. 2003: 20.
[30] SAKSAGANSKII G L. Getter and getter-ion vacuum pumps[M]. London:Routledge, 1994: 177-197.
[31] CHO A Y. Film deposition by molecular-beam techniques[J]. Journal of VacuumScience and Technology, 1971, 8(5): S31-S38.
[32] CHO A Y, ARTHUR J R. Molecular beam epitaxy[J]. Progress in Solid StateChemistry, 1975, 10: 157-191.
[33] ICHIMIYA A, COHEN P I. Reflection high-energy electron diffraction[M].Cambridge: Cambridge University Press, 2004.
[34] HARRIS J J, JOYCE B A, DOBSON P J. Oscillations in the surface structure ofSn-doped GaAs during growth by MBE[J]. Surface Science, 1981, 103(1): L90-L96.
[35] NEAVE J H, JOYCE B A, DOBSON P J. Dynamic RHEED observations of theMBE growth of GaAs: Substrate temperature and beam azimuth effects[J].Applied Physics A, 1984, 34: 179-184.
[36] COHEN P I, PUKITE P R, VAN HOVE J M, et al. Reflection high energy electrondiffraction studies of epitaxial growth on semiconductor surfaces[J]. Journal ofVacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986, 4(3):1251-1258.
[37] BLOCK T R, EIYNK K G, NEIKIRK D P, et al. Diffraction condition dependenceof reflection high-energy electron diffraction (RHEED) dampening duringmolecular-beam epitaxy (MBE) growth[C]. Epitaxial Growth Processes. SPIE,1994, 2140: 10-24.
[38] VAN DER WAGT J, HARRIS J S. Reflection high‐energy electron diffractionintensity oscillations during molecular‐beam epitaxy on rotating substrates[J].Journal of Vacuum Science & Technology B: Microelectronics and NanometerStructures Processing, Measurement, and Phenomena, 1994, 12(2): 1236-1238.
[39] PETRICH G S, PUKITE P R, WOWCHAK A M, et al. On the origin of RHEEDintensity oscillations[J]. Journal of Crystal Growth, 1989, 95(1 -4): 23-27.
[40] GIANNUZZI L A, STEVIE F A. Introduction to focused ion beams:Instrumentation, theory, techniques & practice[M]. New York: Springer, 2005.
[41] FULTZ B, HOWE J M. Transmission electron microscopy and diffractometry ofmaterials[M]. 4th ed. New York: Springer, 2013.
[42] CARTER C B, WILLIAMS D B. Transmission electron microscopy: Diffraction,imaging, and spectrometry[M]. New York: Springer, 2016.
[43] WANG RM, WANG C, ZHANG HZ, et al. Progress in nanoscale characterizationand manipulation[M]. Singapore: Springer Nature Singapore, 2018: 1-33.
修改评论