中文版 | English
题名

磁性范德华异质结铋-碲化铬的外延生长研究

其他题名
STUDIES ON THE EPITAXIAL GROWTH OF MAGNETIC VAN DER WAALS HETEROSTRUCTURES Bi/Cr2Te3
姓名
姓名拼音
ZHOU Jinming
学号
11930043
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
王干
导师单位
物理系
论文答辩日期
2023-12
论文提交日期
2024-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,单质铋(Bi)由于其显著的自旋轨道耦合效应及独特的二维结构引起了人们的广泛关注。 特别是当二维铋与铁磁材料 Cr2Te3 形成界面时,会引发 Dzyaloshinskii-Moriya 相互作用,从而为磁性斯格明子的产生提供了平台。然而,生长二维铋薄膜的条件相当苛刻,这为在异质结界面精确控制其生长带来了极大的挑战。

本文以 Bi 基范德华异质结 Cr2Te3/Bi/Bi2Te3 为研究对象,采用分子束外延技术(MBE),通过还原反应成功克服了生长二维铋的条件限制,最终在Cr2Te3/Bi2Te3 异质结的界面处成功合成了具有黑磷结构的双层 Bi 纳米片。通过对生长条件的深入探索和优化,我们构筑了高质量的 Bi 基范德华异质结, 其具体结果如下:

利用 MBE 技术,我们在 Al2O3(0001)、 SrTiO3(100)和 GaAs(111)三种衬底外延生长了 Bi2Te3 薄膜。通过向薄膜表面沉积 Cr 原子的方式还原出铋的纳米片,我们在 Al2O3(0001)和 GaAs(111)衬底上构建出 Cr2Te3/Bi 的异质结,并证明了衬底与薄膜匹配程度是决定异质外延薄膜质量的关键因素。

借助透射电子显微镜对所有样品进行了结构和形貌表征,结果显示还原方法产生的 Bi 纳米片均为黑磷结构。通过比较三种不同衬底上的薄膜形貌,我们观察到生长在 SrTiO3衬底上的 Bi2Te3薄膜具有双晶畴结构,而在Al2O3 和 GaAs 衬底上的薄膜则没有这种双晶畴结构。此外,我们还发现在GaAs(111)衬底上还原出的 Bi 纳米片在尺寸和层数上均大于在 Al2O3(0001)衬底上得到的 Bi 片。 与前人通过退火方式制备的 Bi 片相比,我们的还原方法制备的铋片不仅尺寸更大, 并且更加平整。本文展示了 Bi 基异质结在不同衬底上的制备, 揭示了衬底类型对薄膜生长质量的影响。通过优化生长条件和调整衬底选择, 我们可以有效地控制 Bi 纳米片的尺寸和分布, 为在磁性界面引入重元素提供了一种可行的途径,这进一步推动了在自旋电子学和磁性拓扑材料领域的研究进展。

其他摘要

In recent years, elemental bismuth (Bi) has garnered widespread interest due to  its  pronounced  spin-orbit  coupling  effect  and  unique  two-dimensional structure.  Particularly,  when  two-dimensional  bismuth  interfaces  with  the ferromagnetic material Cr2Te3, it triggers the Dzyaloshinskii-Moriya interaction, providing a platform for the generation of magnetic skyrmions. However, the stringent conditions required for growing two-dimensional bismuth thin films pose significant challenges in precisely controlling its growth at heterostructure interfaces.
This  study  focuses  on  the  Bi-based  van  der  Waals  heterostructure
Cr2Te3/Bi/Bi2Te3. Employing molecular beam epitaxy (MBE) and a reduction reaction technique, we successfully overcame the limitations of growing two -dimensional  bismuth,  synthesizing  black-phosphorus-structured  bilayer  Bi
nanosheets at the Cr2Te3/Bi2Te3 interface. Through extensive exploration and optimization of growth conditions, we constructed high-quality Bi-based van derWaals heterostructures, with key findings as follows:
Utilizing  MBE,  we epitaxially  grew  Bi2Te3  thin  films  on Al2O3(0001),
SrTiO3(100), and GaAs(111) substrates. By depositing Cr atoms on the film
surfaces,  we  reduced  bismuth  nanosheets  and  constructed  Cr2Te3/Bi
heterostructures on Al2O3(0001) and GaAs(111) substrates, demonstrating that the  compatibility  between  substrate  and  film  is  crucial  for  the  quality  of heteroepitaxial films.
Structural  and  morphological  characterizations  of  all  samples  were
conducted using transmission electron microscopy (TEM). The results revealed that the Bi nanosheets produced through the reduction method all possessed a black  phosphorus  structure.  Comparative  analysis  across  different  substrates showed  that  Bi2Te3 films  grown  on  SrTiO3 substrates  featured  twin  grain boundary structures, which were absent in films grown on Al2O3 and GaAs substrates. Additionally, Bi nanosheets reduced on GaAs(111) were larger and more  numerous  in  layers  compared  to  those  on Al2O3(0001).  Relative  to previously  annealed  Bi  sheets,  our  reduction  method  produced  larger  and smoother bismuth sheets.
In conclusion, this paper presents the synthesis of Bi-based heterostructures on various substrates, highlighting the influence of substrate type on film growth quality. By optimizing growth conditions and selecting appropriate substrates,
we can effectively control the size and distribution of Bi nanosheets, offering a viable method for incorporating heavy elements into magnetic interfaces. This advancement  propels  research  in  the  fields  of  spintronics  and  magnetic topological materials.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-06
参考文献列表

[1] OHTOMO A, MULLER D A, GRAZUL J L, et al. Artificial charge-modulationinatomic-scale perovskite titanate superlattices.[J]. Nature, 2002, 419: 378–380.
[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect inatomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[3] MOORE C E. Atomic energy levels as derived from the analyses of opticalspectra, vol 3[M]. Washington D. C.: US Department of Commerce, NationalBureau of Standards, 1949.
[4] NAGAO T, SADOWSKI J T, SAITO M, et al. Nanofilm allotrope and phasetransformation of ultrathin Bi film on Si(111)− 7×7[J]. Physical Review Letters,2004, 93(10): 105501.
[5] LIU Z, LIU CX, WU YS, et al. Stable nontrivial Z2 topology in ultrathin Bi (111)films: a first-principles study[J]. Physical Review Letters, 2011, 107(13):136805.
[6] REIS F, LI G, DUDY L, et al. Bismuthene on a SiC substrate: a candidate for ahigh-temperature quantum spin Hall material[J]. Science, 2017, 357(6348): 287-290.
[7] HÄUSSERMANN U, SDERBERG K, NORRESTAM R. Comparative study of thehigh-pressure behavior of As, Sb, and Bi[J]. Journal of the American ChemicalSociety, 2003, 124(51):15359-15367.
[8] HOFMANN P. The surfaces of bismuth: structural and electronic properties[J].Progress in Surface Science, 2006, 81(5):191-245.
[9] ZHANG HJ, LIU CX, QI XL, et al. Topological insulators in Bi2Se3, Bi2Te3 andSb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6):438-442.
[10] WANG G, ZHU X G, SUN Y Y, et al. Topological insulator thin films of Bi2Te3with controlled electronic structure[J]. Advanced Materials, 2011, 23(26):2929 -2932.
[11] PEI J, CAI B, ZHUANG HL, et al. Bi2Te3-based applied thermoelectric materials:Research advances and new challenges[J]. National Science Review, 2020, 7(12):1856-1858.
[12] ZHANG KF, YANG F, SONG YR, et al. Strongly compressed Bi (111) bilayerfilms on Bi2Se3 studied by scanning tunneling microscopy[J]. Applied PhysicsLetters, 2015, 107(12): 121601.
[13] VENKATASUBRAMANIAN R, SIIVOLA E, COLPITTS T, et al. Thin-filmthermoelectric devices with high room-temperature figures of merit[J]. Nature,2001, 413(6856): 597-602.
[14] CULEBRAS M, URIOL B, GÓMEZ C M, et al. Controlling the thermoelectric properties of polymers: application to PEDOT and polypyrrole[J]. PhysicalChemistry Chemical Physics, 2015, 17(23): 15140-15145.
[15] AHISKA R, MAMUR H. Development and application of a new power analysissystem for testing of geothermal thermoelectric generators[J]. InternationalJournal of Green Energy, 2016, 13(7): 672-681.
[16] AHISKA R, MAMUR H. Design and implementation of a new portablethermoelectric generator for low geothermal temperatures[J]. IET RenewablePower Generation, 2013, 7(6): 700-706.
[17] SMITH C J W, CAHILL J S, NUHOGLU A. Macro to nano: scaling effects ofBi2Te3 thermoelectric generators for applications in space[J]. PAM ReviewEnergy Science & Technology, 2016, 3: 86-99.
[18] AKRAM M, NAZAR F M, Magnetic properties of CrTe, Cr23Te24, Cr7Te8, Cr5Te6,and Cr3Te4 compounds[J]. Journal of Materials Science, 1983, 18(2): 423-429.
[19] BURN D M, DUFFY L B, FUJITA R, et al. Cr2Te3 thin films for integration inmagnetic topological insulator heterostructures[J]. Scientific Reports, 2019, 9(1):10793.
[20] ZHOU L, CHEN JS, DU ZZ, et al. Magnetotransport properties of Cr1− δTe thinfilms with strong perpendicular magnetic anisotropy[J]. AIP Advances, 2017,7(12): 125116.
[21] PRAMANIK T, ROY A, DEY R, et al. Angular dependence of magnetizationreversal in epitaxial chromium telluride thin films with perpendicular magneticanisotropy[J]. Journal of Magnetism and Magnetic Materials, 2017, 437: 72 -77.
[22] ROY A, GUCHHAIT S, DEY R, et al. Perpendicular magnetic anisotropy and spinglass-like behavior in molecular beam epitaxy grown chromium telluride thinfilms[J]. ACS nano, 2015, 9(4): 3772-3779.
[23] OHRING M. Materials Science of Thin Films: deposition and structure[M]. 2nded. New York: Academic Press, 2001.
[24] MANTL S. Molecular beam allotaxy: a new approach to epitaxialheterostructures[J]. Journal of Physics D: Applied Physics, 1998, 31(1): 1.
[25] WHITE A E, SHORT K T, DYNES R C, et al. Mesotaxy: formation of buriedsingle-crystal CoSi2 layers by implantation[J]. MRS Online Proceedings Library(OPL), 1986, 74: 481.
[26] CHEN JS, WANG LJ, ZHANG M, et al. Evidence for magnetic skyrmions at theinterface of ferromagnet/topological-insulator heterostructures[J]. Nano Letters,2019, 19(9): 6144-6151.
[27] LI B, ZHANG RN, ZHOU L, et al. The construction of Cr2Te3/Bi2/Bi2Te3superlattice via reduction method by molecular beam epitaxy[J]. Applied Physics Letters, 2022(9):120.
[28] LIU X, HUANG P, XIA Y, et al. Wafer-Scale Epitaxial Growth of the ThicknessControllable Van Der Waals Ferromagnet CrTe2 for Reliable Magnetic MemoryApplications[J]. Advanced Functional Materials, 2023: 2304454.
[29] OURA K, LIFSHITS V G, SARANIN A A, et al. Surface science: anintroduction[M]. Berlin: Springer-Verlag. 2003: 20.
[30] SAKSAGANSKII G L. Getter and getter-ion vacuum pumps[M]. London:Routledge, 1994: 177-197.
[31] CHO A Y. Film deposition by molecular-beam techniques[J]. Journal of VacuumScience and Technology, 1971, 8(5): S31-S38.
[32] CHO A Y, ARTHUR J R. Molecular beam epitaxy[J]. Progress in Solid StateChemistry, 1975, 10: 157-191.
[33] ICHIMIYA A, COHEN P I. Reflection high-energy electron diffraction[M].Cambridge: Cambridge University Press, 2004.
[34] HARRIS J J, JOYCE B A, DOBSON P J. Oscillations in the surface structure ofSn-doped GaAs during growth by MBE[J]. Surface Science, 1981, 103(1): L90-L96.
[35] NEAVE J H, JOYCE B A, DOBSON P J. Dynamic RHEED observations of theMBE growth of GaAs: Substrate temperature and beam azimuth effects[J].Applied Physics A, 1984, 34: 179-184.
[36] COHEN P I, PUKITE P R, VAN HOVE J M, et al. Reflection high energy electrondiffraction studies of epitaxial growth on semiconductor surfaces[J]. Journal ofVacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986, 4(3):1251-1258.
[37] BLOCK T R, EIYNK K G, NEIKIRK D P, et al. Diffraction condition dependenceof reflection high-energy electron diffraction (RHEED) dampening duringmolecular-beam epitaxy (MBE) growth[C]. Epitaxial Growth Processes. SPIE,1994, 2140: 10-24.
[38] VAN DER WAGT J, HARRIS J S. Reflection high‐energy electron diffractionintensity oscillations during molecular‐beam epitaxy on rotating substrates[J].Journal of Vacuum Science & Technology B: Microelectronics and NanometerStructures Processing, Measurement, and Phenomena, 1994, 12(2): 1236-1238.
[39] PETRICH G S, PUKITE P R, WOWCHAK A M, et al. On the origin of RHEEDintensity oscillations[J]. Journal of Crystal Growth, 1989, 95(1 -4): 23-27.
[40] GIANNUZZI L A, STEVIE F A. Introduction to focused ion beams:Instrumentation, theory, techniques & practice[M]. New York: Springer, 2005.
[41] FULTZ B, HOWE J M. Transmission electron microscopy and diffractometry ofmaterials[M]. 4th ed. New York: Springer, 2013.
[42] CARTER C B, WILLIAMS D B. Transmission electron microscopy: Diffraction,imaging, and spectrometry[M]. New York: Springer, 2016.
[43] WANG RM, WANG C, ZHANG HZ, et al. Progress in nanoscale characterizationand manipulation[M]. Singapore: Springer Nature Singapore, 2018: 1-33.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766034
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
周金铭. 磁性范德华异质结铋-碲化铬的外延生长研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930043-周金铭-物理系.pdf(4492KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周金铭]的文章
百度学术
百度学术中相似的文章
[周金铭]的文章
必应学术
必应学术中相似的文章
[周金铭]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。