[1] LIU J, WANG J C, ZHANG Z T, et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array[J]. Nature Communications, 2020, 11(1): 3362.
[2] KOKI T, TAKAFUMI U, NAOKO N, et al. Heterogeneous functional dielectric patterns for charge-carrier modulation in ultra flexible organic integrated circuits[J]. Advanced Materials, 2021, 33(45): e2104446.
[3] ERJUAN G, SHEN X, FELIX D, et al. Integrated complementary inverters and ring oscillators based on vertical-channel dual-base organic thin-film transistors[J]. Nature Electronics, 2021, 4(8): 588-594.
[4] XU M S, NAKAMURA M, SAKAI M, et al. High-performance bottom-contact organic thin-film transistors with controlled molecule-crystal/electrode interface[J]. Advanced Materials, 2007, 19(3): 371-375.
[5] TOMOYUKI Y, TAKASHI K, REN S, et al. A few-layer molecular film on polymer substrates to enhance the performance of organic devices[J]. Nature Nanotechnology, 2018, 13(2): 139-144.
[6] DU P P, LI J H, WANG L, et al. Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement[J]. Nature Communications, 2021, 12(1): 4751.
[7] JUNHO B, YUSEOP S, HYUNGYU Y, et al. Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit[J]. Nature Communications, 2022, 13(1): 1862.
[8] KEITH B, IOANNIS K. Micro light-emitting diodes[J]. Nature Electronics, 2022, 5(9): 564-573.
[9] CAI Y F, ZHU C Q, ZHONG W, et al. Monolithically integrated μLEDs/HEMTs microdisplay on a single chip by a direct epitaxial approach[J]. Advanced Materials Technologies, 2021, 6(6): 100214.
[10] REINKE M, KUZMINYKH Y, HOFFMANN P. Limitations of patterning thin films by shadow mask high vacuum chemical vapor deposition[J]. Thin Solid Films, 2014, 563: 56-61.
[11] JIAN S, ZHAO D L, ALEXANDER K, et al. Electron microscopy observation of TiO2 nanocrystal evolution in high-temperature atomic layer deposition[J]. Nano Letters, 2013, 13(11): 27-34.
[12] RACZ Z, SEABAUGH A. Characterization and control of unconfined lateral diffusion under stencil masks[J]. Journal of Vacuum Science Technology & B, 2007, 25(3): 857-861.
[13] ELINA F, MARIANNA K, MIKKO R, et al. Selective-area atomic layer deposition using poly (methyl methacrylate) films as mask layers[J]. Journal of Physical Chemistry C, 2008, 112(40): 15791-15795.
[14] SARAH A H, CORTINO S, CHRISTOS G T, et al. Simple masking method for selective atomic layer deposition of thin films[J]. Journal of Vacuum Science Technology & B, 2020, 38(2): 025001.
[15] PANKAJ B A, RISHI S, DHARMESH M, et al. Silicon shadow mask technology for aligning and in situ sorting of semiconducting SWNTs for sensitivity enhancement: a case study of NO2 gas sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40901-40909.
[16] WANG X, LUO Y, LIAO J, et al. Selective-area growth of aligned organic semiconductor nanowires and their device integration[J]. Advanced Functional Materials, 2023, 34(7): 2308708.
[17] BAHLKE E M, MENDOZA A H, ASHALL T D, et al. Organic semiconductors: dry lithography of large-area, thin-film organic semiconductors using frozen CO2 resists[J]. Advanced Materials, 2012, 24(46): 6116.
[18] LEE S, SO C, SIM M K, et al. Ultrathin, flexible, and reusable silicon shadow masks manipulated via transfer printing[J]. Advanced Materials Technologies, 2023, 8(21): 2300721.
[19] YUDI T, TORU U, TAKASHI I, et al. Vacuum-ultraviolet promoted oxidative micro photoetching of graphene oxide[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10627-10635.
[20] LI Y, XU G, ZHU X, et al. A hierarchical dual-phase photoetching template route to assembling functional layers on Si photoanode with tunable nanostructures for efficient water splitting[J]. Applied Catalysis B: Environmental, 2019, 25(9): 118115.
[21] GADGIL V, TONG H, CESA Y, et al. Fabrication of nano structures in thin membranes with focused ion beam technology[J]. Surface Coatings Technology, 2009, 203(17): 2436-2441.
[22] PAN Z, GUO C, WANG X, et al. Wafer-scale micro-LEDs transferred onto an adhesive film for planar and flexible displays[J]. Advanced Materials Technologies, 2020, 5(12): 2000549.
[23] DASGUPTA P N, JOON H J, ORLANDO T, et al. Atomic layer deposition of lead sulfide quantum dots on nanowire surfaces[J]. Nano Letters, 2011, 11(3): 934-940.
[24] NIU W, LI X, KARUTURI K S, et al. Applications of atomic layer deposition in solar cells[J]. Nanotechnology, 2015, 26(6): 064001.
[25] LANGSTON C M, USUI T, PRINZ B F. Mechanical masking of films deposited by atomic layer deposition[J]. Journal of Vacuum Science & Technology A, 2012, 30(1): 01A153.
[26] SWEET W J, OLDHAM C J, PARSONS G N. Atomic layer deposition of metal oxide patterns on nonwoven fiber mats using localized physical compression[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9280-9289.
[27] BAPTISTE L, YU Y H, NICOLA M, et al. Flexible fluid-based encapsulation platform for water-sensitive materials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(34): e2308804120.
[28] WU J, PIKE R T, WONG C P, et al. Evaluation and characterization of reliable non-hermetic conformal coatings for microelectromechanical system (MEMS) device encapsulation[J]. IEEE Transactions on Advanced Packaging, 2000, 23: 721-728.
[29] 孙超, 孙帮雄, 马凤国. LED封装用高折射率液体硅橡胶的研究进展[J]. 有机硅材料, 2017, 31(1): 51-55.
[30] 毛步本. 新型液体密封[J]. 煤矿机电, 1986, 6(20): 52-53.
[31] GEORGE M S. Atomic layer deposition: an overview[J]. Chemical Reviews, 2010, 110(1): 111-131.
[32] AHVENNIEMI E, AKBASHEV A R, ALI S, et al. Review article: recommended reading list of early publications on atomic layer deposition-outcome of the "Virtual project on the history of ALD"[J]. Journal of Vacuum Science & Technology A, 2017, 35(1): 010801.
[33] LIN J, SHIN K, KIM H, et al. Enhancement of ZnO nucleation in ZnO epitaxy by atomic layer epitaxy[J]. Thin Soild Films, 2005, 475(1): 256-261.
[34] MISTRY K, ALLEN C, AUTH C, et al. A 45 nm logic technology with high-k metal gate transistors, strained silicon, 9 cu interconnect layers, 193 nm dry patterning and 100% Pb-free packaging[C]. Washington, DC: IEEE IEDM 2007 Proceedings, 2007: 247-250.
[35] GEORGE S M, OTT A W, KLAUS J W. Surface chemistry for atomic layer growth[J]. Journal of Physical Chemistry, 1996, 100(31): 13121-13131.
[36] LIU J L, JEFFREY W E, PETER C S. Synthesis and stabilization of supported metal catalysts by atomic layer deposition[J]. Accounts of Chemical Research, 2013, 46(8): 1806-1815.
[37] NICOLA P, MATO K. Atomic layer deposition of nanostructured materials[M]. Wiley-VCH Verlag GmbH Co KGaA, 2011.
[38] NIE S, EMORY S R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering[J]. Science, 1997, 275: 1102-1106.
[39] YEE K S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307.
[40] KRESSE G, FURTHMÜLLER J. Efficiency of ab initio total-energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.
[41] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 78(7): 3865-3868.
[42] STEFAN G, STEPHAN E, LARS G. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465.
[43] BRENNING H T, KUBATKIN S E, ERTS D, et al. A single electron transistor on an atomic force microscope probe[J]. Nano Letters, 2006, 6(5): 937-941.
[44] XANTHEAS S S. Ab initio studies of cyclic water clusters (H2O)n, n=1–6. III. Comparison of density functional with MP2 results[J]. The Journal of Chemical Physics, 1995, 102(11): 4505-4517.
[45] AGMON N. Estimation of the hydrogen-bond lengths to H3O+ and H5O2+ in liquid water[J]. Journal of Molecular Liquids, 1997, 73: 513-520.
[46] DAINTY J C. Laser speckle and related phenomena[J]. Applied Optics, 1984, 23(16): 2661.
[47] GOREN C, RABIN Y, ROSENBLUH M, et al. Elastic recovery of gels on mesoscopic length scales. A photon correlation spectroscopy study[J]. Macromolecules, 2000, 33(16): 5757-5759.
[48] PALOMBO F, FIORETTO D. Brillouin light scattering: applications in biomedical sciences[J]. Chemical Reviews, 2019, 119(13): 7833-7847.
[49] SEO S, WOO W, LEE Y, et al. Reaction mechanisms of non-hydrolytic atomic layer deposition of Al2O3 with a series of alcohol oxidants[J]. The Journal of Physical Chemistry C, 2021, 125(33): 18151-18160.
[50] PUURUNEN L R. Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process[J]. Journal of Applied Physics, 2005, 97(12): 121301.
[51] LIU T L, BENT S F. Area-selective atomic layer deposition on chemically similar materials: achieving selectivity on oxide/oxide patterns[J]. Chemistry of Materials, 2021, 33(2): 513-523.
[52] MYERS T, JAMES A T, BORRELLI R A, et al. Smoothing surface roughness using Al2O3 atomic layer deposition[J]. Applied Surface Science, 2021, 569(15): 150878.
[53] JINESH K B, SANDEN M C, FRED R, et al. Dielectric properties of thermal and plasma-assisted atomic layer deposited Al2O3 thin films[J]. Journal of The Electrochemical Society, 2011, 158(2): G21-G26.
[54] XIN W, KUMAR S G, MAHYAR A, et al. Atomic layer deposition of zirconium oxide thin films[J]. Journal of Materials Research, 2020, 35(7): 804-812.
[55] KIM C J, CHO S Y, MOON H S. Atomic layer deposition of HfO2 onto Si using Hf(NMe2)4[J]. Japanese Journal of Applied Physics, 2009, 48(6): 066515.
[56] DUFOND M E, MAIMOUNA W, BADIE C, et al. Quantifying the extent of ligand incorporation and the effect on properties of TiO2 thin films grown by atomic layer deposition using an alkoxide or an alkylamide[J]. Chemistry of Materials, 2020, 23(32): 1393-1407.
修改评论