[1] GRIFFITHS R. Dynamics of mantle thermals with constant buoyancy or anomalousinternal heating[J]. Earth and Planetary Science Letters, 1986, 78(4):435-446.
[2] GRIFFITHS R W, CAMPBELL I H. Stirring and structure in mantle startingplumes[J]. Earth and Planetary Science Letters, 1990, 99(1-2):66-78.
[3] COULLIETTE D, LOPER D. Experimental, numerical and analytical models ofmantle starting plumes[J]. Physics of the Earth and Planetary Interiors, 1995, 92(3-4):143-167.
[4] JELLINEK A M,MANGA M. Links between long-lived hot spots, mantle plumes,𝐷′′, and plate tectonics[J]. Reviews of Geophysics, 2004, 42(3).
[5] CARDIN P, OLSON P. Chaotic thermal convection in a rapidly rotating sphericalshell: Consequences for flowin the outer core[J]. Physics of the Earth and PlanetaryInteriors, 1994, 82(3-4):0-259.
[6] HELFRICH K R. Thermals with background rotation and stratification[J]. Journalof Fluid Mechanics, 1994, 259:265-280.
[7] HORNER-DEVINE A R, FONG D A, MONISMITH S G, et al. Laboratoryexperiments simulating a coastal river inflow[J]. Journal of Fluid Mechanics,2006, 555:203.
[8] COLES V J, BROOKSMT, HOPKINS J, et al. The pathways and properties of theamazon river plume in the tropical north atlantic ocean[J]. Journal of GeophysicalResearch: Oceans, 2013, 118(12):6894-6913.
[9] HEWITT I J. Subglacial plumes[J]. Annual Review of Fluid Mechanics, 2020,52:145-169.
[10] MCCARTHY J J, CANZIANI O, LEARY N, et al. Intergovernmental panel onclimate change, 2001[J]. Working Group II. Climate change, 2001.
[11] SLAWSON P, CSANADY G. The effect of atmospheric conditions on plume rise[J]. Journal of Fluid Mechanics, 1971, 47(1):33-49.
[12] COMMONSW. File:nasa depiction of earth global atmospheric circulation.jpg—wikimedia commons, the free media repository[EB/OL]. 2022. https://commons.wikimedia.org/w/index.php?title=File:NASA_depiction_of_earth_global_atmospheric_circulation.jpg&oldid=709572113.
[13] COMMONS W. File:oceanic spreading.png — wikimedia commons, the freemedia repository[EB/OL]. 2019. https://commons.wikimedia.org/w/index.php?title=File:Oceanic_spreading.png&oldid=341648199.
[14] AHLERS G, GROSSMANN S, LOHSE D. Heat transfer and large scale dynamicsin turbulent rayleigh-bénard convection[J]. Reviews of Modern Physics, 2009, 81(2):503.
[15] XIA K Q. Current trends and future directions in turbulent thermal convection[J].Theoretical and Applied Mechanics Letters, 2013, 3(5):052001.
[16] LI X M, HE J D, TIAN Y, et al. Effects of prandtl number in quasi-two-dimensionalrayleigh–bénard convection[J]. Journal of Fluid Mechanics, 2021, 915.
[17] KAWAGUCHI K, KAGEYAMA R, SANO M. Topological defects control collectivedynamics in neural progenitor cell cultures[J]. Nature, 2017, 545(7654):327-331.
[18] GRÉGOIRE G, CHATÉ H. Onset of collective and cohesive motion[J]. PhysicalReview Letters, 2004, 92(2):025702.
[19] GINOT F, THEURKAUFF I, LEVIS D, et al. Nonequilibrium equation of state insuspensions of active colloids[J]. Physical Review X, 2015, 5(1):011004.
[20] BIALKÉ J, SPECK T, LÖWEN H. Active colloidal suspensions: Clustering andphase behavior[J]. Journal of Non-Crystalline Solids, 2015, 407:367-375.
[21] ZHANG H P, BE’ER A, FLORIN E L, et al. Collective motion and densityfluctuations in bacterial colonies[J]. Proceedings of the National Academy ofSciences, 2010, 107(31):13626-13630.
[22] BECHINGER C, DI LEONARDOR,LÖWENH, et al. Active particles in complexand crowded environments[J]. Reviews of Modern Physics, 2016, 88(4):045006.
[23] LIU S, SHANKAR S, MARCHETTIMC, et al. Viscoelastic control of spatiotemporalorder in bacterial active matter[J]. Nature, 2021, 590(7844):80-84.
[24] CHEN X, DONG X, BE’ER A, et al. Scale-invariant correlations in dynamicbacterial clusters[J]. Physical Review Letters, 2012, 108(14):148101.
[25] NISHIGUCHI D, ARANSON I S, SNEZHKO A, et al. Engineering bacterialvortex lattice via direct laser lithography[J]. Nature Communications, 2018, 9(1):1-8.
[26] SCHALLERV,WEBERC,SEMMRICHC, et al. Polar patterns of driven filaments[J]. Nature, 2010, 467(7311):73-77.
[27] OPATHALAGE A,NORTONMM, JUNIPERMP, et al. Self-organized dynamicsand the transition to turbulence of confined active nematics[J]. Proceedings of theNational Academy of Sciences, 2019, 116(11):4788-4797.
[28] DELSUC F. Army ants trapped by their evolutionary history[J]. PLoS Biology,2003, 1(2):e37.
[29] DIBENSKI D. Auklet flock, shumagins[EB/OL]. 2006. https://commons.wikimedia.org/w/index.php?title=File:Oceanic_spreading.png&oldid=341648199.
[30] HAAS R B. Flamingos, yucatan peninsula[EB/OL]. 2007. https://www.nationalgeographic.com/photo-of-the-day/photo/flamingos-gulf-mexico.
[31] HUGHES R. Barracuda tornado[EB/OL]. 2007. https://www.flickr.com/photos/robinhughes/404457553/in/photolist-BJX96-CJZAK.
[32] CHANDRAGIRI S,DOOSTMOHAMMADIA,YEOMANSJ M, et al. Flowstatesand transitions of an active nematic in a three-dimensional channel[J]. PhysicalReview Letters, 2020, 125(14):148002.
[33] ZHANG B, YUAN H, SOKOLOV A, et al. Polar state reversal in active fluids[J].Nature Physics, 2022, 18(2):154-159.
[34] WORKAMP M, RAMIREZ G, DANIELS K E, et al. Symmetry-reversals in chiralactive matter[J]. Soft Matter, 2018, 14(27):5572-5580.
[35] BAIN N, BARTOLO D. Dynamic response and hydrodynamics of polarizedcrowds[J]. Science, 2019, 363(6422):46-49.
[36] OUELLETTE N T. Flowing crowds[J]. Science, 2019, 363(6422):27-28.
[37] REYNOLDS CW. Flocks, herds and schools: A distributed behavioral model[C]//Proceedings of the 14th annual conference on Computer graphics and interactivetechniques. [S.l.: s.n.], 1987: 25-34.
[38] VICSEK T, ZAFEIRIS A. Collective motion[J]. Physics Reports, 2012, 517(3-4):71-140.
[39] TONER J, TU Y. Long-range order in a two-dimensional dynamical xy model:how birds fly together[J]. Physical Review Letters, 1995, 75(23):4326.
[40] PROST J, JÜLICHER F, JOANNY J F. Active gel physics[J]. Nature Physics,2015, 11(2):111-117.
[41] BÉNARDH. Les tourbillons cellulaires dans une nappe liquide[J]. Revue Généraledes Sciences Pures et Appliquées, 1900, 11:1261-1271.
[42] RAYLEIGH L. Lix. on convection currents in a horizontal layer of fluid, when thehigher temperature is on the under side[J]. The London, Edinburgh, and DublinPhilosophical Magazine and Journal of Science, 1916, 32(192):529-546.
[43] KRISHNAMURTI R, HOWARD L N. Large-scale flow generation in turbulentconvection[J]. Proceedings of the National Academy of Sciences, 1981, 78(4):1981-1985.
[44] XIA K Q. Current trends and future directions in turbulent thermal convection[J].Theoretical and Applied Mechanics Letters, 2013, 3(5):052001.
[45] BÉNARDH. Les tourbillons cellulaires dans une nappe liquide.-méthodes optiquesd’observation et d’enregistrement[J]. Journal de Physique Théorique et Appliquée,1901, 10(1):254-266.
[46] SHANG X D, QIU X L, TONG P, et al. Measured local heat transport in turbulentrayleigh-bénard convection[J]. Physical Review Letters, 2003, 90(7):074501.
[47] VASILIEV A, SUKHANOVSKII A. Turbulent convection in a cube with mixedthermal boundary conditions: lowrayleigh number regime[J]. International Journalof Heat and Mass Transfer, 2021, 174:121290.
[48] GOLUSKIN D, DOERING C R. Bounds for convection between rough boundaries[J]. Journal of Fluid Mechanics, 2016, 804:370-386.
[49] URBAN P, HANZELKA P, KRÁLIK T, et al. Thermal waves and heat transferefficiency enhancement in harmonically modulated turbulent thermal convection[J]. Physical Review Letters, 2022, 128(13):134502.
[50] AHLERS G, BODENSCHATZ E, HARTMANN R, et al. Aspect ratio dependenceof heat transfer in a cylindrical rayleigh-bénard cell[J/OL]. PhysicalReviewLetters,2022, 128:084501. DOI: 10.1103/PhysRevLett.128.084501.
[51] REN L, TAO X, ZHANG L, et al. Flow states and heat transport in liquid metalconvection[J]. Journal of Fluid Mechanics, 2022, 951:R1.
[52] CHEN X, WANG D P, XI H D. Reduced flow reversals in turbulent convection inthe absence of corner vortices[J]. Journal of Fluid Mechanics, 2020, 891.
[53] BELKADI M, GUISLAIN L, SERGENT A, et al. Experimental and numericalshadowgraph in turbulent rayleigh–bénard convection with a rough boundary:investigation of plumes[J]. Journal of Fluid Mechanics, 2020, 895.
[54] ROSEVEARMG, GAYEN B, GRIFFITHS RW. Turbulent horizontal convectionunder spatially periodic forcing: a regime governed by interior inertia[J]. Journalof Fluid Mechanics, 2017, 831:491.
[55] XI H D, LAM S, XIA K Q. From laminar plumes to organized flows: the onsetof large-scale circulation in turbulent thermal convection[J]. Journal of FluidMechanics, 2004, 503:47-56.
[56] TURNER J. Buoyant plumes and thermals[J]. Annual Review of Fluid Mechanics,1969, 1(1):29-44.
[57] VAN KEKEN P. Evolution of starting mantle plumes: a comparison betweennumerical and laboratory models[J]. Earth and Planetary Science Letters, 1997,148(1-2):1-11.
[58] YIH C S. Laminar free convection due to a line source of heat[J]. Eos, TransactionsAmerican Geophysical Union, 1952, 33(5):669-672.
[59] BATCHELOR G. Heat convection and buoyancy effects in fluids[J]. QuarterlyJournal of the Royal Meteorological Society, 1954, 80(345):339-358.
[60] TURNER J. The ‘starting plume’in neutral surroundings[J]. Journal of FluidMechanics, 1962, 13(3):356-368.
[61] FUJII T. Theory of the steady laminar natural convectiol above a horizontal lineheat source and a point heat source[J]. International Journal of Heat and MassTransfer, 1963, 6(7):597-606.
[62] BRAND R, LAHEY F. The heated laminar vertical jet[J]. Journal of FluidMechanics, 1967, 29(2):305-315.
[63] SHLIEN D. Some laminar thermal and plume experiments[J]. The Physics ofFluids, 1976, 19(8):1089-1098.
[64] SHLIEN D. Transition of the axisymmetric starting plume cap[J]. The Physics ofFluids, 1978, 21(12):2154-2158.
[65] MORTON B, TAYLOR G I, TURNER J S. Turbulent gravitational convectionfrom maintained and instantaneous sources[J]. Proceedings of the Royal Societyof London. Series A. Mathematical and Physical Sciences, 1956, 234(1196):1-23.
[66] STOTHERS R B. Turbulent atmospheric plumes above line sources with an applicationto volcanic fissure eruptions on the terrestrial planets[J]. Journal ofAtmospheric Sciences, 1989, 46(17):2662-2670.
[67] MOSES E, ZOCCHI G, PROCACCIA I, et al. The dynamics and interaction oflaminar thermal plumes[J]. Europhysics Letters, 1991, 14(1):55.
[68] MOSES E, ZOCCHI G, LIBCHABERII A. An experimental study of laminarplumes[J]. Journal of Fluid Mechanics, 1993, 251:581-601.
[69] KAMINSKI E, JAUPART C. Laminar starting plumes in high-prandtl-numberfluids[J]. Journal of Fluid Mechanics, 2003, 478:287-298.
[70] WORSTER M G. The axisymmetric laminar plume: asymptotic solution for largeprandtl number[J]. Studies in Applied Mathematics, 1986, 75(2):139-152.
[71] DAVAILLE A, LIMARE A, TOUITOU F, et al. Anatomy of a laminar startingthermal plume at high prandtl number[J]. Experiments in Fluids, 2011, 50(2):285-300.
[72] MORTON B. Weak thermal vortex rings[J]. Journal of Fluid Mechanics, 1960, 9(1):107-118.
[73] SHLIEN D, THOMPSON D. Some experiments on the motion of an isolatedlaminar thermal[J]. Journal of Fluid Mechanics, 1975, 72(1):35-47.
[74] GRIFFITHS R. Thermals in extremely viscous fluids, including the effects oftemperature-dependent viscosity[J]. Journal of Fluid Mechanics, 1986, 166:115-138.
[75] WHITTAKER R J, LISTER J R. The self-similar rise of a buoyant thermal in veryviscous flow[J]. Journal of Fluid Mechanics, 2008, 606:295.
[76] HATTORI T, BARTOS N, NORRIS S, et al. Experimental and numerical investigationof unsteady behaviour in the near-field of pure thermal planar plumes[J].Experimental Thermal and Fluid Science, 2013, 46:139-150.
[77] GRIFFITHS R W, GAYEN B. Turbulent convection insights from small-scalethermal forcing with zero net heat flux at a horizontal boundary[J]. PhysicalReview Letters, 2015, 115(20):204301.
[78] PERA L, GEBHART B. Laminar plume interactions[J]. Journal of Fluid Mechanics,1975, 68(2):259-271.
[79] ROONEY G. Merging of two or more plumes arranged around a circle[J]. Journalof Fluid Mechanics, 2016, 796:712-731.
[80] ROONEY G. Merging of a row of plumes or jets with an application to plume risein a channel[J]. Journal of Fluid Mechanics, 2015, 771.
[81] LI S, FLYNN M. Merging of long rows of plumes: Crosswinds, multiple rows,and applications to cooling towers[J]. Physical Review Fluids, 2020, 5(9):094502.
[82] LI S, FLYNN M. Merging of two plumes from area sources with applications tocooling towers[J]. Physical Review Fluids, 2020, 5(5):054502.
[83] BERTSCH A, BONGARZONE A, YIM E, et al. Swinging jets[J]. Physical ReviewFluid, 2020, 5:110505.
[84] ATTANASI A, CAVAGNA A, DEL CASTELLO L, et al. Finite-size scaling as away to probe near-criticality in natural swarms[J]. Physical Review Letters, 2014,113(23):238102.
[85] PRIGOGINE I, LEFEVER R. Symmetry breaking instabilities in dissipative systems.ii[J]. The Journal of Chemical Physics, 1968, 48(4):1695-1700.
[86] MARCHETTI M C, JOANNY J F, RAMASWAMY S, et al. Hydrodynamics ofsoft active matter[J]. Reviews of Modern Physics, 2013, 85(3):1143.
[87] ISING E. Beitrag zur theorie des ferromagnetismus[J]. Zeitschrift Für Physik,1925, 31(1):253-258.
[88] C. R. Boids[EB/OL]. 1986. http://www.red3d.com/cwr/boids/.
[89] VICSEK T, CZIROK A, BEN-JACOB E, et al. Novel type of phase transition in asystem of self-driven particles[J]. Physical Review Letters, 1995, 75(6):1226.
[90] COUZIN I D, KRAUSE J, JAMES R, et al. Collective memory and spatial sortingin animal groups[J]. Journal of Theoretical Biology, 2002, 218(1):1-11.
[91] CUCKER F, SMALE S. Emergent behavior in flocks[J]. IEEE Transactions onAutomatic Control, 2007, 52(5):852-862.
[92] VÁSÁRHELYI G, VIRÁGH C, SOMORJAI G, et al. Outdoor flocking and formationflight with autonomous aerial robots[C]//2014 IEEE/RSJ International Conferenceon Intelligent Robots and Systems. [S.l.]: IEEE, 2014: 3866-3873.
[93] RAMASWAMY S, RAO M. Active-filament hydrodynamics: instabilities, boundaryconditions and rheology[J]. New Journal of Physics, 2007, 9(11):423.
[94] MARTIN P C, PARODI O, PERSHAN P S. Unified hydrodynamic theory forcrystals, liquid crystals, and normal fluids[J]. Physical Review A, 1972, 6(6):2401.
[95] TONER J, TU Y. Flocks, herds, and schools: A quantitative theory of flocking[J].Physical Review E, 1998, 58(4):4828.
[96] EMRICH R J. Fluid dynamics[M]. [S.l.]: Academic Press, 1981.
[97] MERZKIRCH W. Flow visualization[M]. [S.l.]: Elsevier, 2012.
[98] ANUTA P E. Spatial registration of multispectral and multitemporal digital imageryusing fast fourier transform techniques[J/OL]. IEEE Transactions on GeoscienceElectronics, 1970, 8(4):353-368. DOI: 10.1109/TGE.1970.271435.
[99] KEATING T J, WOLF P, SCARPACE F. An improved method of digital imagecorrelation[J]. Photogrammetric Engineering and Remote Sensing, 1975, 41(8):993-1002.
[100] CHU T, RANSON W, SUTTON M A. Applications of digital-image-correlationtechniques to experimental mechanics[J]. Experimental Mechanics, 1985, 25:232-244.
[101] SUTTON M A, ORTEU J J, SCHREIER H. Image correlation for shape, motionand deformation measurements: basic concepts, theory and applications[M]. [S.l.]:Springer Science & Business Media, 2009.
[102] YANGJ,BHATTACHARYAK. Combining image compression with digital imagecorrelation[J]. Experimental Mechanics, 2019, 59:629-642.
[103] DYNAMICS D. Dantec dynamics a/s[M]. [S.l.]: Nova Instruments Company,2016.
[104] BRANDT L, COLETTI F. Particle-laden turbulence: progress and perspectives[J]. Annual Review of Fluid Mechanics, 2022, 54:159-189.
[105] JANKE T, MICHAELIS D. Uncertainty quantification for ptv/lpt data and adaptivetrack filtering[C]//14th International Symposium on Particle Image Velocimetry:volume 1. [S.l.: s.n.], 2021.
[106] VOTH G A, LA PORTA A, CRAWFORD A M, et al. Measurement of particleaccelerations in fully developed turbulence[J]. Journal of Fluid Mechanics, 2002,469:121-160.
[107] GESEMANN S, HUHN F, SCHANZ D, et al. From noisy particle tracks tovelocity, acceleration and pressure fields using b-splines and penalties[C]//18thinternational symposium on applications of laser and imaging techniques to fluidmechanics, Lisbon, Portugal: volume 4. [S.l.: s.n.], 2016.
[108] GESEMANN S. Trackfit: uncertainty quantification, optimal filtering and interpolationof tracks for time-resolved lagrangian particle tracking[C]//14th InternationalSymposium on Particle Image Velocimetry: volume 1. [S.l.: s.n.], 2021.
[109] MORDANT N, CRAWFORD A M, BODENSCHATZ E. Experimental lagrangianacceleration probability density function measurement[J]. Physica D: NonlinearPhenomena, 2004, 193(1-4):245-251.
[110] KOLODNER P, TYSON J A. Microscopic fluorescent imaging of surface temperatureprofiles with 0.01 c resolution[J]. Applied Physics Letters, 1982, 40(9):782-784.
[111] TROPEA C, YARIN A L, FOSS J F, et al. Springer handbook of experimentalfluid mechanics: volume 1[M]. [S.l.]: Springer, 2007.
[112] SCHRÖDER A, SCHANZ D. 3d lagrangian particle tracking in fluid mechanics[J]. Annual Review of Fluid Mechanics, 2023, 55:511-540.
[113] GAO Z Y, LUO J H, BAO Y. Numerical study of heat-transfer in two-and quasitwo-dimensional rayleigh–bénard convection[J]. Chinese Physics B, 2018, 27(10):104702.
[114] ZHANG Y Z, SUN C, BAO Y, et al. How surface roughness reduces heat transportfor small roughness heights in turbulent rayleigh–bénard convection[J]. Journal ofFluid Mechanics, 2018, 836.
[115] BAO Y, LUO J, YE M. Parallel direct method of dns for two-dimensional turbulentrayleigh-bénard convection[J]. Journal of Mechanics, 2018, 34(2):159-166.
[116] SPIEGEL E A, VERONIS G. On the boussinesq approximation for a compressiblefluid.[J]. The Astrophysical Journal, 1960, 131:442.
[117] BUCKINGHAM E. On physically similar systems; illustrations of the use ofdimensional equations[J]. Physical Review, 1914, 4(4):345.
[118] HARLOW F H, WELCH J E. Numerical calculation of time-dependent viscousincompressible flow of fluid with free surface[J]. Physics of Fluids, 1965, 8(12):2182-2189.
[119] GONG Z, FU X. A pencil distributed direct numerical simulation solver with versatiletreatments for viscous term[J]. Computers&Mathematics with Applications,2021, 100:141-151.
[120] WESSELINGP. Principles of computational fluid dynamics: volume 29[M]. [S.l.]:Springer Science & Business Media, 2009.
[121] CHORIN A J. On the convergence of discrete approximations to the navier-stokesequations[J]. Mathematics of Computation, 1969, 23(106):341-353.calculations[J]. Journal of Computational Physics, 1970, 6(2):322-325.
[124] SCHUMANN U, SWEET R A. Fast fourier transforms for direct solution of poisson’sequation with staggered boundary conditions[J]. Journal of ComputationalPhysics, 1988, 75(1):123-137.
[125] DODDMS, FERRANTE A. A fast pressure-correction method for incompressibletwo-fluid flows[J]. Journal of Computational Physics, 2014, 273:416-434.
[126] KOLMOGOROV A N. Equations of turbulent motion in an incompressible fluid[C]//Dokl. Akad. Nauk SSSR: volume 30. [S.l.: s.n.], 1941: 299-303.
[127] BATCHELOR G K. Small-scale variation of convected quantities like temperaturein turbulent fluid part 1. general discussion and the case of small conductivity[J].Journal of Fluid Mechanics, 1959, 5(1):113-133.
[128] SHISHKINA O, STEVENS R J, GROSSMANN S, et al. Boundary layer structurein turbulent thermal convection and its consequences for the required numericalresolution[J]. New Journal of Physics, 2010, 12(7):075022.
[129] GROSSMANN S, LOHSE D. Thermal convection for large prandtl numbers[J].Physical Review Letters, 2001, 86(15):3316.
[130] GROSSMANN S, LOHSE D. Scaling in thermal convection: a unifying theory[J].Journal of Fluid Mechanics, 2000, 407:27-56.
[131] ATKINSON J, DAVIDSON P. The evolution of laminar thermals[J]. Journal ofFluid Mechanics, 2019, 878:907-931.
[132] PARSONS J, J. R., MULLIGANJ C. Onset ofNatural Convection from a SuddenlyHeated Horizontal Cylinder[J]. Journal of Heat Transfer, 1980, 102(4):636-639.
[133] BIRD R B, STEWART W E, LIGHTFOOT E N, et al. Transport phenomena[J].Journal of The Electrochemical Society, 1961, 108(3):78C.
[134] ZHOU Q, XIA K Q. Thermal boundary layer structure in turbulent rayleigh–bénard convection in a rectangular cell[J]. Journal of Fluid Mechanics, 2013, 721:199-224.
[135] PATTERSON J, IMBERGER J. Unsteady natural convection in a rectangularcavity[J]. Journal of Fluid Mechanics, 1980, 100(1):65-86.
[136] VEST C, LAWSON M. Onset of convection near a suddenly heated horizontalwire[J]. International Journal of Heat and Mass Transfer, 1972, 15(6):1281-1283.
[137] TAKESHITA T, SEGAWA T, GLAZIER J A, et al. Thermal turbulence in mercury[J]. Physical Review Letters, 1996, 76(9):1465.
[138] LI X M, HE J D, HAO P, et al. Effects of prandtl number in quasi-two-dimensionalturbulent rayleigh-bénard convection[C]//APS Division of Fluid Dynamics MeetingAbstracts. [S.l.: s.n.], 2019: H14-004.
[139] LI X, SHI Y Z,WANG K, et al. Thermally activated delayed fluorescence carbonylderivatives for organic light-emitting diodes with extremely narrow full widthat half-maximum[J]. ACS Applied Materials & Interfaces, 2019, 11(14):13472-13480.
[140] KIDA S, TAKAOKA M. Vortex reconnection[J]. Annual Review of Fluid Mechanics,1994, 26(1):169-177.
[141] HE Z, ZHANG W, JIANG H, et al. Dynamic interaction and mixing of twoturbulent forced plumes in linearly stratified ambience[J]. Journal of HydraulicEngineering, 2018, 144(12):04018072.
[142] LOU Y, HE Z, JIANG H, et al. Numerical simulation of two coalescing turbulentforced plumes in linearly stratified fluids[J]. Physics of Fluids, 2019, 31(3).
[143] CHONGKL, XIAKQ. Exploring the severely confined regime in rayleigh–bénardconvection[J]. Journal of Fluid Mechanics, 2016, 805:R4.
[144] XIAKQ,HUANGS D, XIEYC, et al. Tuning heat transport via coherent structuremanipulation: Recent advances in thermal turbulence[J]. National Science Review,2023:nwad012.
[145] MOTOKI S, KAWAHARA G, SHIMIZU M. Multi-scale steady solution forrayleigh–bénard convection[J]. Journal of Fluid Mechanics, 2021, 914:A14.
[146] HUANG S D, XIA K Q. Effects of geometric confinement in quasi-2-d turbulentrayleigh–bénard convection[J]. Journal of Fluid Mechanics, 2016, 794:639-654.
[147] CHONG K L, YANG Y, HUANG S D, et al. Confined rayleigh-bénard, rotatingrayleigh-bénard, and double diffusive convection: A unifying view on turbulenttransport enhancement through coherent structure manipulation[J]. Physical ReviewLetters, 2017, 119(6):064501.
[148] KHURANA A. Rayleigh-bénard experiment probes transition from chaos to turbulence[J]. Physics Today, 1988, 41(6):17.G, BODENSCHATZ E, HARTMANN R, et al. Aspect ratio dependenceof heat transfer in a cylindrical rayleigh-bénard cell[J]. Physical Review Letters,2022, 128(8):084501.
[151] WAGNER S, SHISHKINA O. Aspect-ratio dependency of rayleigh-bénard convectionin box-shaped containers[J]. Physics of Fluids, 2013, 25(8):085110.
[152] FILELLA A, NADAL F, SIRE C, et al. Model of collective fish behavior withhydrodynamic interactions[J]. Physical Review Letters, 2018, 120(19):198101.
[153] LIU P, ZHU H, ZENG Y, et al. Oscillating collective motion of active rotors inconfinement[J]. Proceedings of the National Academy of Sciences, 2020, 117(22):11901-11907.
[154] NAGAI K H, SUMINO Y, MONTAGNE R, et al. Collective motion of selfpropelledparticles with memory[J]. Physical Review Letters, 2015, 114(16):168001.
[155] CALLAHAM J L, LOISEAU J C, RIGAS G, et al. Nonlinear stochastic modellingwith langevin regression[J]. Proceedings of the Royal Society A, 2021, 477(2250):20210092.
[156] ZHANG Y, HUANG Y X, JIANG N, et al. Statistics of velocity and temperaturefluctuations in two-dimensional rayleigh-bénard convection[J]. Physical ReviewE, 2017, 96(2):023105.
[157] SHANG X D, TONG P, XIA K Q. Scaling of the local convective heat flux inturbulent rayleigh-bénard convection[J/OL]. Physical Review Letters, 2008, 100:244503. DOI: 10.1103/PhysRevLett.100.244503.
[158] SCHINDLER F, ECKERT S, ZÜRNER T, et al. Collapse of coherent large scaleflow in strongly turbulent liquid metal convection[J]. Physical Review Letters,2022, 128(16):164501.
[159] FUNFSCHILLING D, BROWN E, NIKOLAENKO A, et al. Heat transport byturbulent rayleigh–bénard convection in cylindrical samples with aspect ratio oneand larger[J]. Journal of Fluid Mechanics, 2005, 536:145-154.
[160] HARTMANN R, CHONG K L, STEVENS R J, et al. Heat transport enhancementin confined rayleigh-bénard convection feels the shape of the container (a)[J].Europhysics Letters, 2021, 135(2):24004.
[161] NIKOLAENKO A, BROWN E, FUNFSCHILLING D, et al. Heat transport byturbulent rayleigh–bénard convection in cylindrical cells with aspect ratio one andless[J]. Journal of Fluid Mechanics, 2005, 523:251-260.
[162] ZHANG X, ECKE R E, SHISHKINA O. Boundary zonal flows in rapidly rotatingturbulent thermal convection[J]. Journal of Fluid Mechanics, 2021, 915:A62.
[163] WEISS S, AHLERS G. Turbulent rayleigh–bénard convection in a cylindricalcontainer with aspect ratio 𝛾= 0.50 and prandtl number pr= 4.38[J]. Journal ofFluid Mechanics, 2011, 676:5-40.
[164] BAILON-CUBA J, EMRAN M S, SCHUMACHER J. Aspect ratio dependenceof heat transfer and large-scale flow in turbulent convection[J]. Journal of FluidMechanics, 2010, 655:152–173.
[165] AHLERS G, HE X, FUNFSCHILLING D, et al. Heat transport by turbulentrayleigh–bénard convection for pr 0.8 and 3× 1012 ra 1015: aspect ratio 𝛾= 0.50[J]. New Journal of Physics, 2012, 14(10):103012.
修改评论