中文版 | English
题名

碳纤维复合材料锂离子结构电池的研究

其他题名
STUDY ON CARBON FIBRE COMPOSITE LITHIUM-ION STRUCTURAL BATTERY
姓名
姓名拼音
LI Jianxun
学号
12232639
学位类型
硕士
学位专业
085601 材料工程
学科门类/专业学位类别
08 工学
导师
周利民
导师单位
系统设计与智能制造学院
论文答辩日期
2024-05-13
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

复合材料结构电池,是一种集电化学能量存储与机械承载能力于一体的新型储能设备,因其多功能性而受到广泛关注。这类电池通过将复合材料与电池技术相结合,实现了其组成部分的多功能化。碳纤维(Carbon fibre, CF)不仅可以作为正极活性材料的集流体(结构正极),也能作为锂电池的负极材料,而聚合物基质可以作为电解质以及纤维的结构性粘结剂。

碳纤维结构正极作为结构电池的重要组分,对电池的电化学性能起关键作用。但其制造面临着活性材料与碳纤维结合强度、成本、工艺以及规模化生产等方面的挑战,如何解决这些问题成为了当前研究的焦点。为此,本研究提出了一种新型的LiFePO4/PEO-LiTFSI/CF复合结构正极,该结构采用聚氧化乙烯(PEO)作为粘结剂,通过在碳纤维表面形成LiFePO4LFP)的均匀稳定涂层,配合多壁碳纳米管增强的导电网络,优化了结构正极的充放电性能。该正极实现了0.1 C充放电倍率下133.21 mAh·g-1的首圈放电比容量,在1 C充放电速率下循环200圈后实现了93.7%的容量保持率,证实了其在实际应用中的潜力。

基于这一结构正极技术,进一步设计并制造了一种可拓展层合板型的碳纤维复合材料锂离子结构电池。该结构电池使用碳纤维作为集流体和导线,通过在单层碳纤维布上集成多块活性材料涂层,实现并制造了2×2多单元结构电池。该器件展现出了优异的机械强度,能够承受638.48 MPa的弯曲应力,达到了纯复合材料板所能承受最大弯曲应力的98.5%,并在500 MPa弯曲应力下仍能保持正常充放电功能,放电比容量为初始容量的82.6%。实验验证了其作为结构器件在载荷下的可靠性和制造工艺的可行性,为进一步优化完善层合板型复合材料结构电池提供了策略。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1]习近平. 在第七十五届联合国大会一般性辩论上的讲话[J]. 人民日报, 2020, 9(23): 3.
[2]工业和信息化部 发展改革委 科技部关于印发《汽车产业中长期发展规划》的通知[J].中华人民共和国国务院公报,2017(28):91-101.
[3]国务院关于印发《中国制造2025》的通知[J].中华人民共和国国务院公报,2015(16):10-26.
[4]Thomas J, Qidwai M, Matic P, et al. Multifunctional approaches for structure-plus-power concepts[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2002: 1239.
[5]Thomas J P, Keennon M T, DuPasquier A, et al. Multifunctional structure-battery materials for enhanced performance in small unmanned air vehicles[C]//ASME International Mechanical Engineering Congress and Exposition. 2003, 3719: 289-292.
[6]Wetzel E D. Reducing weight: Multifunctional composites integrate power, communications, and structure[J]. AMPTIAC Q, 2004, 8(4): 91-95.
[7]Galos J, Pattarakunnan K, Best A S, et al. Energy storage structural composites with integrated lithium‐ion batteries: a review[J]. Advanced Materials Technologies, 2021, 6(8): 2001059.
[8]Asp L E, Johansson M, Lindbergh G, et al. Structural battery composites: a review[J]. Functional Composites and Structures, 2019, 1(4): 042001.
[9]Danzi F, Salgado R M, Oliveira J E, et al. Structural batteries: A review[J]. Molecules, 2021, 26(8): 2203.
[10]Asp L E, Greenhalgh E S. Structural power composites[J]. Composites science and technology, 2014, 101: 41-61.
[11]Ekstedt S, Wysocki M, Asp L E. Structural batteries made from fibre reinforced composites[J]. Plastics, rubber and composites, 2010, 39(3-5): 148-150.
[12]Asp L E, Bouton K, Carlstedt D, et al. A structural battery and its multifunctional performance[J]. Advanced Energy and Sustainability Research, 2021, 2(3): 2000093.
[13]Fredi G, Jeschke S, Boulaoued A, et al. Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes[J]. Multifunctional Materials, 2018, 1(1): 015003.
[14]Hopkins B J, Long J W, Rolison D R, et al. High-performance structural batteries[J]. Joule, 2020, 4(11): 2240-2243.
[15]Thomas J P, Qidwai S M, Pogue III W R, et al. Multifunctional structure-battery composites for marine systems[J]. Journal of Composite Materials, 2013, 47(1): 5-26.
[16]Pereira T, Guo Z, Nieh S, et al. Energy storage structural composites: a review[J]. Journal of composite Materials, 2009, 43(5): 549-560.
[17]Roberts S C, Aglietti G S. Structural performance of a multifunctional spacecraft structure based on plastic lithium-ion batteries[J]. Acta Astronautica, 2010, 67(3-4): 424-439.
[18]Galos J, Khatibi A A, Mouritz A P. Vibration and acoustic properties of composites with embedded lithium-ion polymer batteries[J]. Composite Structures, 2019, 220: 677-686.
[19]Attar P, Galos J, Best A S, et al. Compression properties of multifunctional composite structures with embedded lithium-ion polymer batteries[J]. Composite Structures, 2020, 237: 111937.
[20]Galos J, Best A S, Mouritz A P. Multifunctional sandwich composites containing embedded lithium-ion polymer batteries under bending loads[J]. Materials & Design, 2020, 185: 108228.
[21]Galos J, Fredriksson C, Das R. Multifunctional sandwich panel design with lithium-ion polymer batteries[J]. Journal of Sandwich Structures & Materials, 2021, 23(8): 3794-3813.
[22]Pattarakunnan K, Galos J, Das R, et al. Tensile properties of multifunctional composites embedded with lithium-ion polymer batteries[J]. Composites Part A: Applied Science and Manufacturing, 2020, 136: 105966.
[23]Shirshova N, Qian H, Shaffer M S P, et al. Structural composite supercapacitors[J]. Composites Part A: Applied Science and Manufacturing, 2013, 46: 96-107.
[24]Greenhalgh E S, Ankersen J, Asp L E, et al. Mechanical, electrical and microstructural characterisation of multifunctional structural power composites[J]. Journal of composite materials, 2015, 49(15): 1823-1834.
[25]Johannisson W, Ihrner N, Zenkert D, et al. Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries[J]. Composites Science and Technology, 2018, 168: 81-87.
[26]Schneider L M, Ihrner N, Zenkert D, et al. Bicontinuous electrolytes via thermally initiated polymerization for structural lithium ion batteries[J]. ACS Applied Energy Materials, 2019, 2(6): 4362-4369.
[27]Thomas J P, Qidwai M A. The design and application of multifunctional structure-battery materials systems[J]. Jom, 2005, 57(3): 18.
[28]Roberts S C, Aglietti G S. Multifunctional power structures for spacecraft applications[C]//57th International Astronautical Congress. 2006: C2. 5.01.
[29]Pereira T, Guo Z, Nieh S, et al. Embedding thin-film lithium energy cells in structural composites[J]. Composites Science and Technology, 2008, 68(7-8): 1935-1941.
[30]Gasco F, Feraboli P. Manufacturability of composite laminates with integrated thin film Li-ion batteries[J]. Journal of composite materials, 2014, 48(8): 899-910.
[31]Shalouf S M, Zhang J, Wang C H. Effects of mechanical deformation on electric performance of rechargeable batteries embedded in load carrying composite structures[J]. Plastics, Rubber and Composites, 2014, 43(3): 98-104.
[32]Ladpli P, Nardari R, Kopsaftopoulos F, et al. Multifunctional energy storage composite structures with embedded lithium-ion batteries[J]. Journal of Power Sources, 2019, 414: 517-529.
[33]Galos J, Khatibi A A, Mouritz A P. Vibration and acoustic properties of composites with embedded lithium-ion polymer batteries[J]. Composite Structures, 2019, 220: 677-686.
[34]Attar P, Galos J, Best A S, et al. Compression properties of multifunctional composite structures with embedded lithium-ion polymer batteries[J]. Composite Structures, 2020, 237: 111937.
[35]Galos J, Best A S, Mouritz A P. Multifunctional sandwich composites containing embedded lithium-ion polymer batteries under bending loads[J]. Materials & Design, 2020, 185: 108228.
[36]Galos J, Fredriksson C, Das R. Multifunctional sandwich panel design with lithium-ion polymer batteries[J]. Journal of Sandwich Structures & Materials, 2021, 23(8): 3794-3813.
[37]Wetzel E D, O'Brien D J, Snyder J F, et al. Multifunctional structural power and energy composites for US army applications[J]. Defence Technical Information Center: Fort Belvoir, VA, USA, 2006.
[38]Wong E L, Baechle D M, Xu K, et al. Design and processing of structural composite batteries[J]. Proceedings of SAMPE, 2007: 3-7.
[39]Snyder J F, Wong E L, Hubbard C W. Evaluation of commercially available carbon fibers, fabrics, and papers for potential use in multifunctional energy storage applications[J]. Journal of the Electrochemical Society, 2009, 156(3): A215.
[40]Kjell M H, Jacques E, Zenkert D, et al. PAN-based carbon fiber negative electrodes for structural lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(12): A1455.
[41]Jacques E, Kjell M H, Zenkert D, et al. Impact of electrochemical cycling on the tensile properties of carbon fibres for structural lithium-ion composite batteries[J]. Composites Science and Technology, 2012, 72(7): 792-798.
[42]Jacques E, Kjell M H, Zenkert D, et al. The effect of lithium-intercalation on the mechanical properties of carbon fibres[J]. Carbon, 2014, 68: 725-733.
[43]Fu Y, Zhou H, Yin S, et al. Facile synthesis of substrate supported ultrathin two-dimensional cobalt-based metal organic frameworks nanoflakes[J]. Composites Part A: Applied Science and Manufacturing, 2020, 134: 105910.
[44]Gao L, Surjadi J U, Cao K, et al. Flexible fiber-shaped supercapacitor based on nickel–cobalt double hydroxide and pen ink electrodes on metallized carbon fiber[J]. ACS applied materials & interfaces, 2017, 9(6): 5409-5418.
[45]Salinas-Torres D, Sieben J M, Lozano-Castello D, et al. Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre–PANI electrodes[J]. Electrochimica Acta, 2013, 89: 326-333.
[46]Aso K, Sakuda A, Hayashi A, et al. All-solid-state lithium secondary batteries using NiS-carbon fiber composite electrodes coated with Li2S–P2S5 solid electrolytes by pulsed laser deposition[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 686-690.
[47]Liang H, Lin J, Jia H, et al. Hierarchical NiCo-LDH@ NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor[J]. Journal of Power Sources, 2018, 378: 248-254.
[48]Li H, Wang S, Feng M, et al. MOF-derived ZnCo2O4/C wrapped on carbon fiber as anode materials for structural lithium-ion batteries[J]. Chinese Chemical Letters, 2019, 30(2): 529-532.
[49]Cheng C, Zhou G, Du J, et al. Hierarchical porous Co3O4 nanosheet arrays directly grown on carbon cloth by an electrochemical route for high performance Li-ion batteries[J]. New Journal of Chemistry, 2014, 38(6): 2250-2253.
[50]Han Q, Li X, Wang F, et al. Carbon fiber@ pore-ZnO composite as anode materials for structural lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2019, 833: 39-46.
[51]Fu Y, Zhou H, Hu Z, et al. Temperature-induced microstructure optimization of Co3O4 for the achievement of a high-areal-capacity carbon cloth-based lithium ion battery anode[J]. Composites Communications, 2020, 22: 100446.
[52]Xu J, Creighton C, Johansen M, et al. Effect of tension during stabilization on carbon fiber multifunctionality for structural battery composites[J]. Carbon, 2023, 209: 117982.
[53]Willgert M, Kjell M H, Jacques E, et al. Photoinduced free radical polymerization of thermoset lithium battery electrolytes[J]. European polymer journal, 2011, 47(12): 2372-2378.
[54]Snyder J F, Carter R H, Wetzel E D. Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries[J]. Chemistry of materials, 2007, 19(15): 3793-3801.
[55]Asp L E, Leijonmarck S, Carlson T, et al. Realisation of structural battery composite materials[C]//20th International Conference on Composite Materials (Proceedings). 2015: 1121-1122.
[56]Liu P, Sherman E, Jacobsen A. Design and fabrication of multifunctional structural batteries[J]. Journal of Power Sources, 2009, 189(1): 646-650.
[57]Ihrner N, Johannisson W, Sieland F, et al. Structural lithium ion battery electrolytes via reaction induced phase-separation[J]. Journal of Materials Chemistry A, 2017, 5(48): 25652-25659.
[58]Schneider L M, Ihrner N, Zenkert D, et al. Bicontinuous electrolytes via thermally initiated polymerization for structural lithium ion batteries[J]. ACS Applied Energy Materials, 2019, 2(6): 4362-4369.
[59]Schulze M W, McIntosh L D, Hillmyer M A, et al. High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation[J]. Nano letters, 2014, 14(1): 122-126.
[60]Asp L E, Bouton K, Carlstedt D, et al. A structural battery and its multifunctional performance[J]. Advanced Energy and Sustainability Research, 2021, 2(3): 2000093.
[61]Bryntesen S N, Strømman A H, Tolstorebrov I, et al. Opportunities for the state-of-the-art production of lib electrodes—a review[J]. Energies, 2021, 14(5): 1406.
[62]Liu X, Li H, Wang J, et al. Achieving mechanically sturdy properties and high energy density for Zn-ion structural batteries based on carbon-fiber-reinforced composites[J]. Composites Science and Technology, 2022, 218: 109156.
[63]Kim J M, Kim J A, Kim S H, et al. All‐Nanomat Lithium‐Ion Batteries: A New Cell Architecture Platform for Ultrahigh Energy Density and Mechanical Flexibility[J]. Advanced Energy Materials, 2017, 7(22): 1701099.
[64]Park S K, Seong C Y, Piao Y. A simple dip-coating approach for preparation of three-dimensional multilayered graphene-metal oxides hybrid nanostructures as high performance lithium-ion battery electrodes[J]. Electrochimica Acta, 2015, 176: 1182-1190.
[65]Park H W, Jang M S, Choi J S, et al. Characteristics of woven carbon fabric current collector electrodes for structural battery[J]. Composite Structures, 2021, 256: 112999.
[66]Richardson J J, Björnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms[J]. science, 2015, 348(6233): aaa2491.
[67]Wang Z, VahidMohammadi A, Ouyang L, et al. Layer‐by‐Layer Self‐Assembled Nanostructured Electrodes for Lithium‐Ion Batteries[J]. Small, 2021, 17(6): 2006434.
[68]Zhu H W, Ge J, Peng Y C, et al. Dip-coating processed sponge-based electrodes for stretchable Zn-MnO2 batteries[J]. Nano Research, 2018, 11: 1554-1562.
[69]Lipton J, Weng G M, Rӧhr J A, et al. Layer-by-layer assembly of two-dimensional materials: meticulous control on the nanoscale[J]. Matter, 2020, 2(5): 1148-1165.
[70]Bouton K, Zenkert D, Lindbergh G, et al. Structural Positive Electrodes for Multifunctional Composite Materials[C]//22nd International Conference on Composite Materials (ICCM22), Melbourne, August 11th-16th, 2019. 2019.
[71]Lalau C C, Low C T J. Electrophoretic deposition for lithium‐ion battery electrode manufacture[J]. Batteries & supercaps, 2019, 2(6): 551-559.
[72]Diba M, Fam D W H, Boccaccini A R, et al. Electrophoretic deposition of graphene-related materials: A review of the fundamentals[J]. Progress in Materials Science, 2016, 82: 83-117.
[73]Amrollahi P, Krasinski J S, Vaidyanathan R, et al. Electrophoretic deposition (EPD): Fundamentals and applications from nano-to micro-scale structures[J]. Handbook of Nanoelectrochemistry, Springer International Publishing Switzerland, 2015.
[74]Lee S H, Woo S P, Kakati N, et al. A comprehensive review of nanomaterials developed using electrophoresis process for high-efficiency energy conversion and storage systems[J]. Energies, 2018, 11(11): 3122.
[75]Hagberg J, Maples H A, Alvim K S P, et al. Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries[J]. Composites Science and Technology, 2018, 162: 235-243.
[76]Sanchez J S, Xu J, Xia Z, et al. Electrophoretic coating of LiFePO4/Graphene oxide on carbon fibers as cathode electrodes for structural lithium ion batteries[J]. Composites Science and Technology, 2021, 208: 108768.
[77]Yadav A, De B, Singh S K, et al. Facile development strategy of a single carbon-fiber-based all-solid-state flexible lithium-ion battery for wearable electronics[J]. ACS applied materials & interfaces, 2019, 11(8): 7974-7980.
[78]Gu T, Cao Z, Wei B. All‐Manganese‐Based Binder‐Free Stretchable Lithium‐Ion Batteries[J]. Advanced Energy Materials, 2017, 7(18): 1700369.
[79]Kumar V, Panda H S. Growth of bimodal NiCo2O4·MnO2 nanorods in situ on carbon fiber paper synergistically affects their electrochemical properties[J]. New Journal of Chemistry, 2021, 45(12): 5399-5409.
[80]Liu B, Zhang J, Wang X, et al. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries[J]. Nano letters, 2012, 12(6): 3005-3011.
[81]Xia Q, Ni M, Chen M, et al. Low-temperature synthesized self-supported single-crystalline LiCoO2 nanoflake arrays as advanced 3D cathodes for flexible lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(11): 6187-6196.
[82]Liu Y H, Lin H H, Tai Y J. Binder-free carbon fiber-based lithium-nickel-manganese-oxide composite cathode with improved electrochemical stability against high voltage: Effects of composition on electrode performance[J]. Journal of Alloys and Compounds, 2018, 735: 580-587.
[83]Zhang H, Ning H, Busbee J, et al. Electroplating lithium transition metal oxides[J]. Science advances, 2017, 3(5): e1602427.
[84]Waller G H, Lai S Y, Rainwater B H, et al. Hydrothermal synthesis of LiMn2O4 onto carbon fiber paper current collector for binder free lithium-ion battery positive electrodes[J]. Journal of Power Sources, 2014, 251: 411-416.
[85]Chen J, Zhou Y, Islam M S, et al. Carbon fiber reinforced Zn–MnO2 structural composite batteries[J]. Composites Science and Technology, 2021, 209: 108787.
[86]Sutrisnoh N A A, Lim G J H, Chan K K, et al. Structural cathodes: navigating the challenges in fabrication and multifunctional performance analysis[J]. Composites Science and Technology, 2023: 110147.
[87]Pradeepa P, Edwinraj S, Sowmya G, et al. Composite polymer electrolyte based on PEO/Pvdf-HFP with MWCNT for lithium battery applications[C]//AIP Conference Proceedings. AIP Publishing, 2016, 1728(1).
[88]ASTM International. Standard test method for flexural properties of polymer matrix composite materials[M]. ASTM International, 2007.
[89]Lyu Z, Lim G J H, Guo R, et al. 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries[J]. Advanced Functional Materials, 2019, 29(1): 1806658.
[90]Asp L E, Greenhalgh E S. Structural power composites[J]. Composites science and technology, 2014, 101: 41-61.
[91]Thakur A, Dong X. Additive manufacturing of 3D structural battery composites with coextrusion deposition of continuous carbon fibers[J]. Manufacturing Letters, 2020, 26: 42-47.
[92]ASTM International.Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials[M]. ASTM International, 2017. Moyer K, Meng C, Marshall B, et al. Carbon fiber reinforced structural lithium-ion battery composite: Multifunctional power integration for CubeSats[J]. Energy Storage Materials, 2020, 24: 676-681.

所在学位评定分委会
材料与化工
国内图书分类号
TB34
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766042
专题南方科技大学
工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
李建勋. 碳纤维复合材料锂离子结构电池的研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232639-李建勋-系统设计与智能(10053KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李建勋]的文章
百度学术
百度学术中相似的文章
[李建勋]的文章
必应学术
必应学术中相似的文章
[李建勋]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。