中文版 | English
题名

基于显示的GaN Micro-LED器件效率优化与色转换技术研究

其他题名
RESEARCH ON EFFICIENCY OPTIMIZATION AND COLOR CONVERSION OF GAN MICRO-LED DEVICES FOR DISPLAY APPLICATIONS
姓名
姓名拼音
HUANG Wenjun
学号
12031316
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
刘召军
导师单位
电子与电气工程系
论文答辩日期
2024-05-10
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

在现代显示技术领域,Micro-LED展示出巨大的应用潜力,尤其在高性能显示应用中表现引人注目。随着技术发展,进一步优化Micro-LED的器件效率和实现高质量的全彩显示成为了研究的重点。本论文深入探讨了Micro-LED在这两个关键领域的研究,旨在提供新的思路和解决方案。

在器件效率优化方面,论文首先通过修正表面复合的器件效率理论模型,深入分析了非辐射复合、辐射复合和俄歇复合这三个基本过程对Micro-LED器件性能的影响。修正后的模型不仅为理解Micro-LED的效率提供了一种全面的视角,还揭示了尺寸效应和表面状态如何影响器件的性能。基于这一理论框架,进一步探索了通过器件表面钝化处理以抑制表面非辐射复合,从而提高Micro-LED的发光效率和性能。

本文详细介绍了采用溶胶-凝胶法SiO2钝化处理对Micro-LED表面进行优化的研究。该表面处理方法有效减少了表面缺陷密度,降低了非辐射复合损失(相较于PECVD钝化,理想因子降低了0.6),提升了器件的外量子效率(20 × 20 μm器件钝化后效率提高了13.4%)和表面发光均匀性。此外,利用KOH化学处理对Micro-LED器件侧壁形貌进行精细控制,改善了光提取效率,为实现高亮度和高效率的Micro-LED显示提供了有效的技术途径。同时,还制备了性能优越的5000 PPI超高分辨率Micro-LED阵列。

在全彩显示技术研究方面,本论文提出了一种创新的空心圆柱Micro-LED结构设计,以优化量子点的色转换效果。通过喷墨打印技术精确地将量子点集成到Micro-LED的内部空心圆柱结构中,实现了红光9600、绿光10000 nits的超高亮度,并且实现了更高的色转换效率(红光37.7%、绿光41.7%)。这种设计有效减少了蓝光泄漏比例(红光2.1%、绿光5.3%),同时简化了工艺,对于Micro-LED全彩显示具有重要意义。

综上所述,本论文的研究成果不仅深化了对Micro-LED器件效率和全彩显示技术的理解,还提供了针对性的优化策略和实用的技术方案。这些研究进展为Micro-LED技术的进一步发展奠定了坚实的理论和实验基础,也为未来高性能、高效率的显示技术提供了重要的技术支撑。

其他摘要

In the modern display technology field, Micro-LED technology, with its high efficiency, brightness, and longevity, has demonstrated immense potential, particularly in high-performance display applications. As technology advances, further optimization of Micro-LED device efficiency and the realization of high-quality full-color displays have become key research areas. This dissertation systematically analyzes and experimentally validates technological progress in these two crucial areas of Micro-LED, aiming to provide new insights and solutions for future developments.

Regarding device efficiency optimization, this dissertation first refines the surface recombination theory model to deeply analyze the impact of non-radiative recombination, radiative recombination, and Auger recombination on Micro-LED performance. The establishment of this model not only offers a comprehensive perspective for understanding the efficiency of Micro-LEDs but also reveals how size effects and surface states influence device performance. Based on this theoretical framework, the dissertation further explores the optimization of these recombination processes through improved material surface treatment and sidewall structure morphology, thereby enhancing the luminous efficiency and performance of Micro-LEDs.

This study details the optimization of Micro-LED surfaces using the sol-gel method SiO2 passivation treatment. These surface treatment methods effectively reduce surface defect density and non-radiative recombination losses, significantly improving the device's external quantum efficiency (20 × 20 μm devices showed a 13.4% improvement) and surface luminance uniformity. Additionally, the application of KOH chemical treatment for precise control over the Micro-LED device's sidewall morphology further improves light extraction efficiency, providing an effective technical pathway for achieving high brightness and high-efficiency Micro-LED displays. The study also successfully prepared high-performance 5000 PPI ultra-high resolution Micro-LED arrays.

Regarding full-color display technology research, this dissertation proposes an innovative hollow cylindrical Micro-LED structure design to optimize the color conversion efficiency of quantum dots. By precisely integrating quantum dots into the internal hollow cylindrical structure of Micro-LEDs using inkjet printing technology, it achieves ultra-high brightness for red (9600 nits) and green (10000 nits) light, and higher color conversion efficiency (37.7% for red and 41.7% for green). This design also reduces blue light leakage (2.1% for red and 5.3% for green) while simplifying the production process, which is of significant importance for advancing the commercialization of Micro-LED full-color display technology.

In summary, the research findings of this dissertation deepen the understanding of Micro-LED device efficiency and full-color display technology while providing targeted optimization strategies and practical technical solutions. These advancements lay a solid theoretical and experimental foundation for the further development of Micro-LED technology and provide significant technical support for the future of high-performance, high-efficiency display technology.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020-09
学位授予年份
2024-07
参考文献列表

[1] LIN J Y, JIANG H X. Development of MicroLED [J]. Applied Physics Letters, 2020, 116(10): 100502.
[2] HUANG Y, HSIANG E-L, DENG M-Y, et al. Mini-LED, Micro-LED and OLED Displays: Present Status and Future Perspectives [J]. Light: Science & Applications, 2020, 9(1): 105.
[3] RYU J-E, PARK S, PARK Y, et al. Technological Breakthroughs in Chip Fabrication, Transfer, and Color Conversion for High-Performance Micro-LED Displays [J]. Advanced Materials, 2023, 35(43): 2204947.
[4] CHEN D, CHEN Y-C, ZENG G, et al. Integration Technology of Micro-LED for Next-Generation Display [J]. Research, 2023, 6: 0047.
[5] ANWAR A R, SAJJAD M T, JOHAR M A, et al. Recent Progress in Micro-LED-Based Display Technologies [J]. Laser & Photonics Reviews, 2022, 16(6): 2100427.
[6] FEEZELL D F, SPECK J S, DENBAARS S P, et al. Semipolar (20-2-1) InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting [J]. Journal of Display Technology, 2013, 9(4): 190-198.
[7] ARTEEV D S, SAKHAROV A V, ZAVARIN E E, et al. Investigation of Statistical Broadening in InGaN Alloys [J]. Journal of Physics: Conference Series, 2018, 1135(1): 012050.
[8] HOLONYAK N, JR., BEVACQUA S F. Coherent (Visible) Light Emission from Ga(As1−xPx) Junctions [J]. Applied Physics Letters, 1962, 1(4): 82-83.
[9] MARUSKA H P, TIETJEN J J. The Preparation and Properties of Vapor‐Deposited Single‐Crystal‐Line GaN [J]. Applied Physics Letters, 1969, 15(10): 327-329.
[10] PANKOVE J I, MILLER E A, BERKEYHEISER J E. Electroluminescence in GaN [C]. Luminescence of Crystals, Molecules, and Solutions: Proceedings of the International Conference on Luminescence, Boston, MA: Springer US, 1973: 426-430.
[11] AMANO H, SAWAKI N, AKASAKI I, et al. Metalorganic Vapor Phase Epitaxial Growth of a High Quality GaN Film Using an AlN Buffer Layer [J]. Applied Physics Letters, 1986, 48(5): 353-355.
[12] AMANO H, KITO M, HIRAMATSU K, et al. P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI) [J]. Japanese Journal of Applied Physics, 1989, 28(12A): L2112.
[13] SHUJI NAKAMURA S N. GaN Growth Using GaN Buffer Layer [J]. Japanese Journal of Applied Physics, 1991, 30(10A): L1705.
[14] NAKAMURA S, MUKAI T, MASAYUKI SENOH M S, et al. Thermal Annealing Effects on P-Type Mg-Doped GaN Films [J]. Japanese Journal of Applied Physics, 1992, 31(2B): L139.
[15] NAKAMURA S, IWASA N, MASAYUKI SENOH M S, et al. Hole Compensation Mechanism of P-Type GaN Films [J]. Japanese Journal of Applied Physics, 1992, 31(5R): 1258.
[16] NAKAMURA S, TAKASHI MUKAI T M, MASAYUKI SENOH M S. High-Power GaN P-N Junction Blue-Light-Emitting Diodes [J]. Japanese Journal of Applied Physics, 1991, 30(12A): L1998.
[17] NAKAMURA S, MASAYUKI SENOH M S, TAKASHI MUKAI T M. P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes [J]. Japanese Journal of Applied Physics, 1993, 32(1A): L8.
[18] NAKAMURA S, SENOH M, IWASA N, et al. Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes [J]. Japanese Journal of Applied Physics, 1995, 34(10B): L1332.
[19] LINGLEY A R, ALI M, LIAO Y, et al. A Single-Pixel Wireless Contact Lens Display [J]. Journal of Micromechanics and Microengineering, 2011, 21(12): 125014.
[20] LIU Z J, CHONG W C, WONG K M, et al. A Novel Blu-Free Full-Color LED Projector Using LED on Silicon Micro-Displays [J]. IEEE Photonics Technology Letters, 2013, 25(23): 2267-2270.
[21] JIN S X, LI J, LI J Z, et al. GaN Microdisk Light Emitting Diodes [J]. Applied Physics Letters, 2000, 76(5): 631-633.
[22] JIANG H X, JIN S X, LI J, et al. III-Nitride Blue Microdisplays [J]. Applied Physics Letters, 2001, 78(9): 1303-1305.
[23] LIU Z, LIN C-H, HYUN B-R, et al. Micro-Light-Emitting Diodes with Quantum Dots in Display Technology [J]. Light: Science & Applications, 2020, 9(1): 83.
[24] XU F, TAO T, ZHANG D, et al. Wafer-Scale Monolithic Integration of Blue Micro-Light-Emitting Diodes and Green/Red Quantum Dots for Full-Color Displays [J]. IEEE Electron Device Letters, 2023, 44(8): 1320-1323.
[25] SHEN H-T, WEISBUCH C, SPECK J S, et al. Three-Dimensional Modeling of Minority-Carrier Lateral Diffusion Length Including Random Alloy Fluctuations in (In,Ga)N and (Al,Ga)N Single Quantum Wells [J]. Physical Review Applied, 2021, 16(2): 024054.
[26] LIN C-C, WU Y-R, KUO H-C, et al. The Micro-LED Roadmap: Status Quo and Prospects [J]. Journal of Physics: Photonics, 2023, 5(4): 042502.
[27] WANG L, GE C, WANG M, et al. An Artefact-Resist Optrode with Internal Shielding Structure for Low-Noise Neural Modulation [J]. Journal of Neural Engineering, 2020, 17(4): 046024.
[28] SUH J M, EOM T H, CHO S H, et al. Light-Activated Gas Sensing: A Perspective of Integration with Micro-LEDs and Plasmonic Nanoparticles [J]. Materials Advances, 2021, 2(3): 827-844.
[29] ELFSTRöM D, GUILHABERT B, MCKENDRY J, et al. Mask-Less Ultraviolet Photolithography Based on CMOS-Driven Micro-Pixel Light Emitting Diodes [J]. Optics Express, 2009, 17(26): 23522-23529.
[30] WU T, SHER C-W, LIN Y, et al. Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology [J]. Applied Sciences, 2018, 8(9): 1557
[31] JIANG F, HYUN B-R, ZHANG Y, et al. Role of Intrinsic Surface States in Efficiency Attenuation of GaN-Based Micro-Light-Emitting-Diodes [J]. Physica Status Solidi (RRL) – Rapid Research Letters, 2021, 15(2): 2000487.
[32] CHO J, SCHUBERT E F, KIM J K. Efficiency Droop in Light-Emitting Diodes: Challenges and Countermeasures [J]. Laser & Photonics Reviews, 2013, 7(3): 408-421.
[33] PIPREK J. Efficiency Droop in Nitride-Based Light-Emitting Diodes [J]. Physica Status Solidi (a), 2010, 207(10): 2217-2225.
[34] VERZELLESI G, SAGUATTI D, MENEGHINI M, et al. Efficiency Droop in InGaN/GaN Blue Light-Emitting Diodes: Physical Mechanisms and Remedies [J]. Journal of Applied Physics, 2013, 114(7): 071101.
[35] KONOPLEV S S, BULASHEVICH K A, KARPOV S Y. From Large-Size to Micro-LEDs: Scaling Trends Revealed by Modeling [J]. Physica Status Solidi (a), 2018, 215(10): 1700508.
[36] DAI Q, SHAN Q, WANG J, et al. Carrier Recombination Mechanisms and Efficiency Droop in GaInN/GaN Light-Emitting Diodes [J]. Applied Physics Letters, 2010, 97(13): 133507.
[37] GARDNER N F, MüLLER G O, SHEN Y C, et al. Blue-Emitting InGaN–GaN Double-Heterostructure Light-Emitting Diodes Reaching Maximum Quantum Efficiency above 200 A/cm2 [J]. Applied Physics Letters, 2007, 91(24): 243506.
[38] XIA C S, SIMON LI Z M, LI Z Q, et al. Optimal Number of Quantum Wells for Blue InGaN/GaN Light-Emitting Diodes [J]. Applied Physics Letters, 2012, 100(26): 263504.
[39] LI C K, WU Y R. Study on the Current Spreading Effect and Light Extraction Enhancement of Vertical GaN/InGaN LEDs [J]. IEEE Transactions on Electron Devices, 2012, 59(2): 400-407.
[40] ALBERT S, BENGOECHEA-ENCABO A, KONG X, et al. Monolithic Integration of InGaN Segments Emitting in the Blue, Green, and Red Spectral Range in Single Ordered Nanocolumns [J]. Applied Physics Letters, 2013, 102(18): 181103.
[41] WAAG A, WANG X, FüNDLING S, et al. The Nanorod Approach: GaN NanoLEDs for Solid State Lighting [J]. Physica Status Solidi (c), 2011, 8(7-8): 2296-2301.
[42] CHOI S, KIM H J, KIM S-S, et al. Improvement of Peak Quantum Efficiency and Efficiency Droop in III-Nitride Visible Light-Emitting Diodes with an InAlN Electron-Blocking Layer [J]. Applied Physics Letters, 2010, 96(22): 221105.
[43] CHUNG R B, HAN C, PAN C-C, et al. The Reduction of Efficiency Droop by Al0.82In0.18N/GaN Superlattice Electron Blocking Layer in (0001) Oriented GaN-Based Light Emitting Diodes [J]. Applied Physics Letters, 2012, 101(13): 131113.
[44] SCHUBERT M F, XU J, KIM J K, et al. Polarization-Matched GaInN∕AlGaInN Multi-Quantum-Well Light-Emitting Diodes with Reduced Efficiency Droop [J]. Applied Physics Letters, 2008, 93(4): 041102.
[45] KUO Y-K, CHANG J-Y, TSAI M-C, et al. Advantages of Blue InGaN Multiple-Quantum Well Light-Emitting Diodes with InGaN Barriers [J]. Applied Physics Letters, 2009, 95(1): 011116.
[46] KUO Y-K, WANG T-H, CHANG J-Y, et al. Advantages of InGaN Light-Emitting Diodes with GaN-InGaN-GaN Barriers [J]. Applied Physics Letters, 2011, 99(9): 091107.
[47] KUO Y-K, WANG T-H, CHANG J-Y. Advantages of Blue InGaN Light-Emitting Diodes with InGaN-AlGaN-InGaN Barriers [J]. Applied Physics Letters, 2012, 100(3): 031112.
[48] WANG C H, CHANG S P, KU P H, et al. Hole Transport Improvement in InGaN/GaN Light-Emitting Diodes by Graded-Composition Multiple Quantum Barriers [J]. Applied Physics Letters, 2011, 99(17): 171106.
[49] SHENG XIA C, SIMON LI Z M, LU W, et al. Droop Improvement in Blue InGaN/GaN Multiple Quantum Well Light-Emitting Diodes with Indium Graded Last Barrier [J]. Applied Physics Letters, 2011, 99(23): 233501.
[50] ZHU D, NOEMAUN A N, SCHUBERT M F, et al. Enhanced Electron Capture and Symmetrized Carrier Distribution in GaInN Light-Emitting Diodes Having Tailored Barrier Doping [J]. Applied Physics Letters, 2010, 96(12): 121110.
[51] CHANG S P, WANG C H, CHIU C H, et al. Characteristics of Efficiency Droop in GaN-Based Light Emitting Diodes with an Insertion Layer between the Multiple Quantum Wells and N-GaN Layer [J]. Applied Physics Letters, 2010, 97(25): 251114.
[52] LI Z, LESTRADE M, XIAO Y, et al. Improvement of Performance in P-Side Down InGaN/GaN Light-Emitting Diodes with Graded Electron Blocking Layer [J]. Japanese Journal of Applied Physics, 2011, 50(8R): 080212.
[53] AKYOL F, NATH D N, KRISHNAMOORTHY S, et al. Suppression of Electron Overflow and Efficiency Droop in N-Polar GaN Green Light Emitting Diodes [J]. Applied Physics Letters, 2012, 100(11): 111118.
[54] LI X, NI X, LEE J, et al. Efficiency Retention at High Current Injection Levels in m-Plane InGaN Light Emitting Diodes [J]. Applied Physics Letters, 2009, 95(12): 121107.
[55] NI X, LI X, LEE J, et al. Hot Electron Effects on Efficiency Degradation in InGaN Light Emitting Diodes and Designs to Mitigate Them [J]. Journal of Applied Physics, 2010, 108(3): 033112.
[56] NI X, LI X, LEE J, et al. InGaN Staircase Electron Injector for Reduction of Electron Overflow in InGaN Light Emitting Diodes [J]. Applied Physics Letters, 2010, 97(3): 031110.
[57] KUO Y K, TSAI M C, YEN S H, et al. Effect of P-Type Last Barrier on Efficiency Droop of Blue InGaN Light-Emitting Diodes [J]. IEEE Journal of Quantum Electronics, 2010, 46(8): 1214-1220.
[58] YAN ZHANG Y, AN YIN Y. Performance Enhancement of Blue Light-Emitting Diodes with a Special Designed AlGaN/GaN Superlattice Electron-Blocking Layer [J]. Applied Physics Letters, 2011, 99(22): 221103.
[59] WANG C H, KE C C, LEE C Y, et al. Hole Injection and Efficiency Droop Improvement in InGaN/GaN Light-Emitting Diodes by Band-Engineered Electron Blocking Layer [J]. Applied Physics Letters, 2010, 97(26): 261103.
[60] ZHUANG D, EDGAR J H. Wet Etching of GaN, AlN, and SiC: A Review [J]. Materials Science and Engineering: R: Reports, 2005, 48(1): 1-46.
[61] NEDY J G, YOUNG N G, KELCHNER K M, et al. Low Damage Dry Etch for III-Nitride Light Emitters [J]. Semiconductor Science and Technology, 2015, 30(8): 085019.
[62] DAVID A, YOUNG N G, LUND C, et al. Review—the Physics of Recombinations in III-Nitride Emitters [J]. ECS Journal of Solid State Science and Technology, 2020, 9(1): 016021.
[63] HWANG D, MUGHAL A, PYNN C D, et al. Sustained High External Quantum Efficiency in Ultrasmall Blue III–Nitride Micro-LEDs [J]. Applied Physics Express, 2017, 10(3): 032101.
[64] BULASHEVICH K A, KONOPLEV S S, KARPOV S Y. Effect of Die Shape and Size on Performance of III-Nitride Micro-LEDs: A Modeling Study [J]. Photonics, 2018, 5(4): 41
[65] OLIVIER F, DAAMI A, LICITRA C, et al. Shockley-Read-Hall and Auger Non-Radiative Recombination in GaN Based LEDs: A Size Effect Study [J]. Applied Physics Letters, 2017, 111(2): 022104.
[66] SELBERHERR S. Analysis and Simulation of Semiconductor Devices [M]. Springer Science & Business Media, 2012.
[67] ONUMA T, SAKAI N, IGAKI T, et al. Comparative Study of Surface Recombination in Hexagonal GaN and ZnO Surfaces [J]. Journal of Applied Physics, 2012, 112(6): 063509.
[68] ZHANG S, LI Y, FATHOLOLOUMI S, et al. On the Efficiency Droop of Top-Down Etched InGaN/GaN Nanorod Light Emitting Diodes under Optical Pumping [J]. AIP Advances, 2013, 3(8): 082103.
[69] KITAGAWA H, FUJITA M, SUTO T, et al. Green GaInN Photonic-Crystal Light-Emitting Diodes with Small Surface Recombination Effect [J]. Applied Physics Letters, 2011, 98(18): 181104.
[70] FITZGERALD D J, GROVE A S. Surface Recombination in Semiconductors [J]. Surface Science, 1968, 9(2): 347-369.
[71] PARK J-H, CAI W, CHEONG H, et al. The Effect of Dry Etching Condition on the Performance of Blue Micro Light-Emitting Diodes with Reduced Quantum Confined Stark Effect Epitaxial Layer [J]. Journal of Applied Physics, 2022, 131(15): 153104.
[72] JIN Y-K, CHIANG H-Y, LIN K-H, et al. Luminescence Efficiency Improvement of Small-Size Micro Light-Emitting Diodes by a Digital Etching Technology [J]. Optics Letters, 2022, 47(23): 6277-6280.
[73] MOON J H, KIM B, CHOI M, et al. Electrically Driven Sub-Micrometer Light-Emitting Diode Arrays Using Maskless and Etching-Free Pixelation [J]. Advanced Materials, 2023, 35(13): 2206945.
[74] ZHUANG Z, IIDA D, VELAZQUEZ-RIZO M, et al. Ultra-Small InGaN Green Micro-Light-Emitting Diodes Fabricated by Selective Passivation of P-GaN [J]. Optics Letters, 2021, 46(20): 5092-5095.
[75] WANG X, ZHAO X, TAKAHASHI T, et al. 3.5 × 3.5 µm2 GaN Blue Micro-Light-Emitting Diodes with Negligible Sidewall Surface Nonradiative Recombination [J]. Nature Communications, 2023, 14(1): 7569.
[76] PARK J, CHOI J H, KONG K, et al. Electrically Driven Mid-Submicrometre Pixelation of InGaN Micro-Light-Emitting Diode Displays for Augmented-Reality Glasses [J]. Nature Photonics, 2021, 15(6): 449-455.
[77] SON K R, MURUGADOSS V, KIM K H, et al. Investigation of Sidewall Passivation Mechanism of InGaN-Based Blue Microscale Light-Emitting Diodes [J]. Applied Surface Science, 2022, 584: 152612.
[78] LEE D-H, LEE J-H, PARK J-S, et al. Improving the Leakage Characteristics and Efficiency of GaN-Based Micro-Light-Emitting Diode with Optimized Passivation [J]. ECS Journal of Solid State Science and Technology, 2020, 9(5): 055001.
[79] WONG M S, HWANG D, ALHASSAN A I, et al. High Efficiency of III-Nitride Micro-Light-Emitting Diodes by Sidewall Passivation Using Atomic Layer Deposition [J]. Optics Express, 2018, 26(16): 21324-21331.
[80] KIM K, HUA M, LIU D, et al. Efficiency Enhancement of InGaN/GaN Blue Light-Emitting Diodes with Top Surface Deposition of AlN/Al2O3 [J]. Nano Energy, 2018, 43: 259-269.
[81] GONG J, LU K, KIM J, et al. Influences of ALD Al2O3 on the Surface Band-Bending of C-Plane, Ga-Face GaN [J]. Japanese Journal of Applied Physics, 2021, 61(11): 011003.
[82] WONG M S, HWANG D, ALHASSAN A I, et al. High Efficiency of III-Nitride Micro-Light-Emitting Diodes by Sidewall Passivation Using Atomic Layer Deposition [J]. Optics Express, 2018, 26(16): 21324-21331.
[83] ZHAO H, FENG M, LIU J, et al. Performance Improvement of GaN-Based Microdisk Lasers by Using a Peald-SiO2 Passivation Layer [J]. Optics Express, 2023, 31(12): 20212-20220.
[84] CHEN D, WANG Z, HU F-C, et al. Improved Electro-Optical and Photoelectric Performance of GaN-Based Micro-LEDs with an Atomic Layer Deposited AlN Passivation Layer [J]. Optics Express, 2021, 29(22): 36559-36566.
[85] KIRILENKO P, IIDA D, ZHUANG Z, et al. InGaN-Based Green Micro-LED Efficiency Enhancement by Hydrogen Passivation of the P-GaN Sidewall [J]. Applied Physics Express, 2022, 15(8): 084003.
[86] SHEEN M, KO Y, KIM D-U, et al. Highly Efficient Blue InGaN Nanoscale Light-Emitting Diodes [J]. Nature, 2022, 608: 56-61.
[87] CHOI W H, YOU G, ABRAHAM M, et al. Sidewall Passivation for InGaN/GaN Nanopillar Light Emitting Diodes [J]. Journal of Applied Physics, 2014, 116(1): 013103.
[88] LEY R T, SMITH J M, WONG M S, et al. Revealing the Importance of Light Extraction Efficiency in InGaN/GaN Microleds via Chemical Treatment and Dielectric Passivation [J]. Applied Physics Letters, 2020, 116(25): 251104.
[89] WONG M S, BACK J, HWANG D, et al. Demonstration of High Wall-Plug Efficiency III-Nitride Micro-Light-Emitting Diodes with MOCVD-Grown Tunnel Junction Contacts Using Chemical Treatments [J]. Applied Physics Express, 2021, 14(8): 086502.
[90] ZHONG H, ZHANG C, SONG W, et al. Surface Morphology of Polar, Semipolar and Nonpolar Freestanding GaN after Chemical Etching [J]. Applied Surface Science, 2020, 511: 145524.
[91] WONG M S, LEE C, MYERS D J, et al. Size-Independent Peak Efficiency of III-Nitride Micro-Light-Emitting-Diodes Using Chemical Treatment and Sidewall Passivation [J]. Applied Physics Express, 2019, 12(9): 097004.
[92] BAE S-Y, KONG D-J, LEE J-Y, et al. Size-Controlled InGaN/GaN Nanorod Array Fabrication and Optical Characterization [J]. Optics Express, 2013, 21(14): 16854-16862.
[93] KONG D-J, BAE S-Y, KANG C-M, et al. InGaN/GaN Microcolumn Light-Emitting Diode Arrays with Sidewall Metal Contact [J]. Optics Express, 2013, 21(19): 22320-22326.
[94] BORODITSKY M, GONTIJO I, JACKSON M, et al. Surface Recombination Measurements on Iii–V Candidate Materials for Nanostructure Light-Emitting Diodes [J]. Journal of Applied Physics, 2000, 87(7): 3497-3504.
[95] TAUTZ M, WEIMAR A, GRAßL C, et al. Anisotropy and Mechanistic Elucidation of Wet‐Chemical Gallium Nitride Etching at the Atomic Level [J]. Physica Status Solidi (a), 2020, 217(21): 2000221.
[96] TANG B, MIAO J, LIU Y, et al. Enhanced Light Extraction of Flip-Chip Mini-LEDs with Prism-Structured Sidewall [J]. Nanomaterials, 2019, 9(3): 319.
[97] CORENTIN LE M, DAVID V, FRANçOIS M, et al. Analysis of InGaN Surfaces after Chemical Treatments and Atomic Layer Deposition of Al2O3 for µLED Applications [C]. Gallium Nitride Materials and Devices XV, SPIE. 2020, 11280: 133-145.
[98] PING A T, SCHMITZ A C, ADESIDA I, et al. Characterization of Reactive Ion Etching-Induced Damage to N-GaN Surfaces Using Schottky Diodes [J]. Journal of Electronic Materials, 1997, 26(3): 266-271.
[99] ZHU D, XU J, NOEMAUN A N, et al. The Origin of the High Diode-Ideality Factors in GaInN/GaN Multiple Quantum Well Light-Emitting Diodes [J]. Applied Physics Letters, 2009, 94(8): 081113.
[100] BHARADWAJ S, MILLER J, LEE K, et al. Enhanced Injection Efficiency and Light Output in Bottom Tunnel-Junction Light-Emitting Diodes [J]. Optics Express, 2020, 28(4): 4489-4500.
[101] CHE J, SHAO H, CHU C, et al. Enhanced Performance of an AlGaN-Based Deep Ultraviolet Light-Emitting Diode Using a P-GaN/SiO2/ITO Tunnel Junction [J]. Optics Letters, 2022, 47(4): 798-801.
[102] LI P, LI H, YAO Y, et al. Hybrid Tunnel Junction Enabled Independent Junction Control of Cascaded InGaN Blue/Green Micro-Light-Emitting Diodes [J]. Optics Express, 2023, 31(5): 7572-7578.
[103] LI P, ZHANG H, LI H, et al. Size-Independent Low Voltage of InGaN Micro-Light-Emitting Diodes with Epitaxial Tunnel Junctions Using Selective Area Growth by Metalorganic Chemical Vapor Deposition [J]. Optics Express, 2020, 28(13): 18707-18712.
[104] WU Y, LIU B, XU F, et al. High-Efficiency Green Micro-LEDs with GaN Tunnel Junctions Grown Hybrid by PA-MBE and MOCVD [J]. Photonics Research, 2021, 9(9): 1683-1688.
[105] PARK A H, BAEK S, CHOI G B, et al. Improved Efficiency of Green GaN LEDs Via Exciton-Surface Plasmon Coupling by Au Nanoclusters Embedded in a Micro-Hole Patterned P-GaN Layer [J]. Applied Physics Letters, 2021, 119(18): 181104.
[106] OKAMOTO K, NIKI I, SHVARTSER A, et al. Surface-Plasmon-Enhanced Light Emitters Based on InGaN Quantum Wells [J]. Nature Materials, 2004, 3(9): 601-605.
[107] JIE S, JOO WON C, CHEN C, et al. Application of Porous GaN for MicroLED [C]. Gallium Nitride Materials and Devices XV. SPIE, 2020, 11280: 146-150.
[108] SHIN J, KIM H, SUNDARAM S, et al. Vertical Full-Colour Micro-LEDs Via 2D Materials-Based Layer Transfer [J]. Nature, 2023, 614(7946): 81-87.
[109] FENG F, LIU Y, ZHANG K, et al. AlGaN Multiple Quantum Well Deep‐Ultraviolet Micro‐Light‐Emitting Diodes for High Color Conversion Efficiency Quantum Dots Display [J]. Journal of the Society for Information Display, 2022, 30(7): 556-566.
[110] HAN H-V, LIN H-Y, LIN C-C, et al. Resonant-Enhanced Full-Color Emission of Quantum-Dot-Based Micro LED Display Technology [J]. Optics Express, 2015, 23(25): 32504-32515.
[111] GOU F, HSIANG E-L, TAN G, et al. Angular Color Shift of Micro-LED Displays [J]. Optics Express, 2019, 27(12): A746-A757.
[112] YIN Y, HU Z, ALI M U, et al. Alleviating the Crosstalk Effect Via a Fine-Moulded Light-Blocking Matrix for Colour-Converted Micro-LED Display with a 122% NTSC Gamut [J]. Light: Advanced Manufacturing, 2022, 3(3): 1.
[113] HYUN B R, SHER C W, CHANG Y W, et al. Dual Role of Quantum Dots as Color Conversion Layer and Suppression of Input Light for Full-Color Micro-LED Displays [J]. The Journal of Physical Chemistry Letters, 2021, 12(29): 6946-6954.
[114] FAN X, WU T, LIU B, et al. Recent Developments of Quantum Dot Based Micro-LED Based on Non-Radiative Energy Transfer Mechanism [J]. Opto-Electronic Advances, 2021, 4(4): 210022-1-210022-5.
[115] HUANG CHEN S-W, SHEN C-C, WU T, et al. Full-Color Monolithic Hybrid Quantum Dot Nanoring Micro Light-Emitting Diodes with Improved Efficiency Using Atomic Layer Deposition and Nonradiative Resonant Energy Transfer [J]. Photonics Research, 2019, 7(4): 416-422.
[116] ZHUANG Z, GUO X, LIU B, et al. High Color Rendering Index Hybrid III-Nitride/Nanocrystals White Light-Emitting Diodes [J]. Advanced Functional Materials, 2016, 26(1): 36-43.
[117] KANG J H, LI B, ZHAO T, et al. RGB Arrays for Micro-Light-Emitting Diode Applications Using Nanoporous GaN Embedded with Quantum Dots [J]. ACS Appl Mater Interfaces, 2020, 12(27): 30890-30895.
[118] CHANYAWADEE S, LAGOUDAKIS P G, HARLEY R T, et al. Increased Color-Conversion Efficiency in Hybrid Light-Emitting Diodes Utilizing Non-Radiative Energy Transfer [J]. Advanced Materials, 2010, 22(5): 602-606.
[119] LIN Y, HUANG W, ZHANGHU M, et al. Ultra-Thick Inkjet-Printed Quantum Dots Layer for Full-Color Micro-LED Displays [J]. Optics Express, 2023, 31(20): 31818-31824.
[120] CHEN D, CHEN Y-C, ZENG G, et al. Integration Technology of Micro-LED for Next-Generation Display [J]. Research, 6: 0047.
[121] DUSSAIGNE A, BARBIER F, HAAS H, et al. Native InGaN Red-Green-Blue Micro-LEDs for Full Color Micro-Displays [C]. Light-Emitting Devices, Materials, and Applications XXVII. SPIE, 2023, 12441: 40-48.
[122] HARTENSVELD M. Proposal and Realization of V-Groove Color Tunable µLEDs [J]. Optics Express, 2022, 30(15): 27314-27321.
[123] HONG Y J, LEE C-H, YOON A, et al. Visible-Color-Tunable Light-Emitting Diodes [J]. Advanced Materials, 2011, 23(29): 3284-3288.
[124] QIAN Y, YANG Z, HUANG Y-H, et al. High-Efficiency Nanowire Light-Emitting Diodes for Augmented Reality and virtual Reality Displays [J]. Journal of the Society for Information Display, 2023, 31(5): 211-219.
[125] CHUNG K, SUI J, DEMORY B, et al. Monolithic Integration of Individually Addressable Light-Emitting Diode Color Pixels [J]. Applied Physics Letters, 2017, 110(11): 111103.
[126] HWANGBO S, HU L, HOANG A T, et al. Wafer-Scale Monolithic Integration of Full-Colour Micro-LED Display Using MoS2 Transistor [J]. Nature Nanotechnology, 2022, 17(5): 500-506.
[127] MENG W, XU F, YU Z, et al. Three-Dimensional Monolithic Micro-LED Display Driven by Atomically Thin Transistor Matrix [J]. Nature Nanotechnology, 2021, 16(11): 1231-1236.
[128] CAI Y, HAGGAR J I H, ZHU C, et al. Direct Epitaxial Approach to Achieve a Monolithic on-Chip Integration of a HEMT and a Single Micro-LED with a High-Modulation Bandwidth [J]. ACS Applied Electronic Materials, 2021, 3(1): 445-450.
[129] CAI Y, ZHU C, ZHONG W, et al. Monolithically Integrated μLEDs/HEMTs Microdisplay on a Single Chip by a Direct Epitaxial Approach[J]. Advanced Materials Technologies, 2021, 6(6): 2100214.
[130] LIU Z J, HUANG T, MA J, et al. Monolithic Integration of AlGaN/GaN HEMT on LED by MOCVD[J]. IEEE Electron Device Letters, 2014, 35(3): 330-332.
[131] LIU C, CAI Y, JIANG H, et al. Monolithic Integration of III-nitride Voltage-Controlled Light Emitters with Dual-Wavelength Photodiodes by Selective-Area Epitaxy[J]. Optics Letters, 2018, 43(14): 3401-3404.
[132] LIU Y, LIU Z, LAU K M. Monolithic Integrated All-GaN-Based µLED Display by Selective Area Regrowth[J]. Optics Express, 2023, 31(19): 31300-31307.
[133] YAN J, JIA B, WANG Y. Monolithically Integrated Voltage-Controlled MOSFET-LED Device Based on a GaN-on-Silicon LED Epitaxial Wafer[J]. Optics Letters, 2021, 46(4): 745-748.
[134] SANG Y, ZHANG D, ZHUANG Z, et al. Monolithic Integration of GaN-Based Green Micro-LED and Quasi-Vertical Mosfet Utilizing a Hybrid Tunnel Junction [J]. IEEE Electron Device Letters, 2023, 44(7): 1156-1159.
[135] HSIANG E-L, YANG Z, YANG Q, et al. AR/VR Light Engines: Perspectives and Challenges[J]. Advances in Optics and Photonics, 2022, 14(4): 783-861.
[136] XIONG J, HSIANG E-L, HE Z, et al. Augmented Reality and Virtual Reality Displays: Emerging Technologies and Future Perspectives [J]. Light: Science & Applications, 2021, 10(1): 216.
[137] DING Y, YANG Q, LI Y, et al. Waveguide-Based Augmented Reality Displays: Perspectives and Challenges[J]. eLight, 2023, 3(1): 24.
[138] KARPOV S. ABC-model for Interpretation of Internal Quantum Efficiency and its Droop in III-nitride LEDs: A Review[J]. Optical and Quantum Electronics, 2015, 47(6): 1293-1303.
[139] SHIM J-I, SHIN D-S, OH C-H, et al. Review—Active Efficiency as a Key Parameter for Understanding the Efficiency Droop in InGaN-Based Light-Emitting Diodes [J]. ECS Journal of Solid State Science and Technology, 2019, 9(1): 015013.
[140] YANG Y, CAO X A, YAN C H. Rapid Efficiency Roll-off in High-Quality Green Light-Emitting Diodes on Freestanding GaN Substrates [J]. Applied Physics Letters, 2009, 94(4): 041117.
[141] SMITH J M, LEY R, WONG M S, et al. Comparison of Size-Dependent Characteristics of Blue and Green InGaN MicroLEDs Down to 1 µm in Diameter [J]. Applied Physics Letters, 2020, 116(7): 071102.
[142] KAGANER V M, SABELFELD K K, BRANDT O. Piezoelectric Field, Exciton Lifetime, and Cathodoluminescence Intensity at Threading Dislocations in GaN{0001} [J]. Applied Physics Letters, 2018, 112(12): 122101.
[143] HAFIZ S, ZHANG F, MONAVARIAN M, et al. Determination of Carrier Diffusion Length in GaN [J]. Journal of Applied Physics, 2015, 117(1): 013106.
[144] HWANG D, MUGHAL A, PYNN C D, et al. Sustained High External Quantum Efficiency in Ultrasmall Blue III–Nitride Micro-LEDs [J]. Applied Physics Express, 2017, 10(3): 032101.
[145] ASUBAR J T, YATABE Z, GREGUSOVA D, et al. Controlling Surface/Interface States in GaN-Based Transistors: Surface Model, Insulated Gate, and Surface Passivation [J]. Journal of Applied Physics, 2021, 129(12): 121102.
[146] JIN S X, LI J, LIN J Y, et al. InGaN/GaN Quantum Well Interconnected Microdisk Light Emitting Diodes [J]. Applied Physics Letters, 2000, 77(20): 3236-3238.
[147] DAY J, LI J, LIE D Y C, et al. III-Nitride Full-Scale High-Resolution Microdisplays [J]. Applied Physics Letters, 2011, 99(3): 031116.
[148] JIANG H X, LIN J Y. Nitride Micro-LEDs and Beyond - a Decade Progress Review [J]. Optics Express, 2013, 21(S3): A475-A484.
[149] HERRNSDORF J, MCKENDRY J J D, ZHANG S, et al. Active-Matrix GaN Micro Light-Emitting Diode Display with Unprecedented Brightness [J]. IEEE Transactions on Electron Devices, 2015, 62(6): 1918-1925.
[150] GONG Z, JIN S, CHEN Y, et al. Size-Dependent Light Output, Spectral Shift, and Self-Heating of 400 nm InGaN Light-Emitting Diodes [J]. Journal of Applied Physics, 2010, 107(1): 013103.
[151] LIU Y, XIA T, DU A, et al. Omnidirectional Color Shift Suppression of Full-Color Micro-LED Displays with Enhanced Light Extraction Efficiency [J]. Optics Letters, 2023, 48(7): 1650-1653.
[152] YU L, WANG L, HAO Z, et al. High-Speed Micro-LEDs for Visible Light Communication: Challenges and Progresses [J]. Semiconductor Science and Technology, 2021, 37(2): 023001.
[153] MCKENDRY J J D, GREEN R P, KELLY A E, et al. High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array [J]. IEEE Photonics Technology Letters, 2010, 22(18): 1346-1348.
[154] ROYO P, STANLEY R P, ILEGEMS M, et al. Experimental Determination of the Internal Quantum Efficiency of AlGaInP Microcavity Light-Emitting Diodes [J]. Journal of Applied Physics, 2002, 91(5): 2563-2568.
[155] OH J-T, LEE S-Y, MOON Y-T, et al. Light Output Performance of Red AlGaInP-Based Light Emitting Diodes with Different Chip Geometries and Structures [J]. Optics Express, 2018, 26(9): 11194-11200.
[156] TIAN P F, MCKENDRY J J D, GONG Z, et al. Size-Dependent Efficiency and Efficiency Droop of Blue InGaN Micro-Light Emitting Diodes [J]. Applied Physics Letters, 2012, 101(23): 231110.
[157] OLIVIER F, TIRANO S, DUPRé L, et al. Influence of Size-Reduction on the Performances of GaN-Based Micro-LEDs for Display Application [J]. Journal of Luminescence, 2017, 191: 112-116.
[158] BULASHEVICH K A, KARPOV S Y. Impact of Surface Recombination on Efficiency of III-Nitride Light-Emitting Diodes [J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2016, 10(6): 480-484.
[159] PARK J-H, PRISTOVSEK M, CAI W, et al. Interplay of Sidewall Damage and Light Extraction Efficiency of Micro-LEDs [J]. Optics Letters, 2022, 47(9): 2250-2253.
[160] YU L, LU B, YU P, et al. Ultra-Small Size (1–20 µm) Blue and Green Micro-LEDs Fabricated by Laser Direct Writing Lithography [J]. Applied Physics Letters, 2022, 121(4): 042106.
[161] XU F, TAN Y, XIE Z, et al. Implantation Energy- and Size-Dependent Light Output of Enhanced-Efficiency Micro-LED Arrays Fabricated by Ion Implantation [J]. Optics Express, 2021, 29(5): 7757-7766.
[162] XU F, GAO C, FAN Y, et al. Enhanced Performance of Vertical-Structured InGaN Micro-Pixelated Light-Emitting-Diode Array Fabricated Using an Ion Implantation Process [J]. Optics Letters, 2019, 44(18): 4562-4565.
[163] ZHANG W, TU J, LONG W, et al. Preparation of SiO2 Anti-Reflection Coatings by Sol-Gel Method [J]. Energy Procedia, 2017, 130: 72-76.
[164] DUBEY R S, RAJESH Y B R D, MORE M A. Synthesis and Characterization of SiO2 Nanoparticles Via Sol-Gel Method for Industrial Applications [J]. Materials Today: Proceedings, 2015, 2(4): 3575-3579.
[165] HUANG W, MIAO X, LIU Z. Investigations of Sidewall Passivation Using the Sol-Gel Method on the Optoelectronic Performance for Blue InGaN Micro-LEDs[J]. Micromachines, 2023, 14(3): 566.
[166] ZHU D, XU J, NOEMAUN A N, et al. The Origin of the High Diode-Ideality Factors in GaInN/GaN Multiple Quantum Well Light-Emitting Diodes [J]. Applied Physics Letters, 2009, 94(8): 081113.
[167] SHIN D-S A S, JONG-IN. Understanding Microscopic Properties of Light‐Emitting Diodes from Macroscopic Characterization: Ideality Factor, S‐parameter, and Internal Quantum Efficiency [J]. Physica Status Solidi (a), 2022, 219(9): 2200042.
[168] SHAH J M, LI Y L, GESSMANN T, et al. Experimental Analysis and Theoretical Model for Anomalously High Ideality Factors (n≫2.0) in AlGaN/GaN pn Junction Diodes [J]. Journal of Applied Physics, 2003, 94(4): 2627-2630.
[169] LEE G W, SHIM J-I, SHIN D-S. On the Ideality Factor of the Radiative Recombination Current in Semiconductor Light-Emitting Diodes [J]. Applied Physics Letters, 2016, 109(3): 031104.
[170] AGGARWAL T, UDAI A, BANERJEE D, et al. Investigation of Ultrafast Carrier Dynamics in InGaN/GaN‐Based Nanostructures Using Femtosecond Pump‐Probe Absorption Spectroscopy [J]. Physica Status Solidi (b), 2021, 258(10): 2100223.
[171] TAUTZ M, DíAZ DíAZ D. Wet‐Chemical Etching of GaN: Underlying Mechanism of a Key Step in Blue and White LED Production [J]. ChemistrySelect, 2018, 3(5): 1480-1494.
[172] LIANG K-L, KUO W-H, SHEN H-T, et al. Advances in Color-Converted Micro-LED Arrays [J]. Japanese Journal of Applied Physics, 2021, 60(SA): SA0802.
[173] QI L, ZHANG X, CHONG W C, et al. 848 PPI High-Brightness Active-Matrix Micro-LED Micro-Display Using GaN-on-Si Epi-Wafers Towards Mass Production [J]. Optics Express, 2021, 29(7): 10580-10591.
[174] BEHRMAN K, KYMISSIS I. Micro Light-Emitting Diodes [J]. Nature Electronics, 2022, 5(9): 564-573.
[175] SHIN J, KIM H, SUNDARAM S, et al. Vertical Full-Colour Micro-LEDs Via 2D Materials-Based Layer Transfer [J]. Nature, 2023, 614(7946): 81-87.
[176] WU T, SHER C-W, LIN Y, et al. Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology [J]. Applied Sciences, 2018, 8(9): 1557.
[177] ZHOU X, TIAN P, SHER C-W, et al. Growth, Transfer Printing and Colour Conversion Techniques Towards Full-Colour Micro-LED Display [J]. Progress in Quantum Electronics, 2020, 71: 100263.
[178] SHIRASAKI Y, SUPRAN G J, BAWENDI M G, et al. Emergence of Colloidal Quantum-Dot Light-Emitting Technologies [J]. Nature Photonics, 2012, 7(1): 13-23.
[179] CHEN J, ZHAO Q, YU B, et al. A Review on Quantum Dot‐Based Color Conversion Layers for Mini/Micro‐LED Displays: Packaging, Light Management, and Pixelation [J]. Advanced Optical Materials, 2024, 12(2): 2300873.
[180] LIN C-C, LIANG K-L, CHAO H-Y, et al. Fabricating Quantum Dot Color Conversion Layers for Micro-LED-Based Augmented Reality Displays [J]. ACS Applied Optical Materials Article ASAP, 2023.
[181] FENG F, ZHANG K, LIU Y, et al. AlGaN-Based Deep-UV Micro-LED Array for Quantum Dots Converted Display with Ultra-Wide Color Gamut [J]. IEEE Electron Device Letters, 2022, 43(1): 60-63.
[182] QI L, ZHANG X, CHONG W C, et al. Monolithically Integrated High-Resolution Full-Color GaN-on-Si Micro-LED Microdisplay [J]. Photonics Research, 2023, 11(1): 109-120.
[183] LIN H-Y, SHER C-W, HSIEH D-H, et al. Optical Cross-Talk Reduction in a Quantum-Dot-Based Full-Color Micro-Light-Emitting-Diode Display by a Lithographic-Fabricated Photoresist Mold [J]. Photonics Research, 2017, 5(5): 411-416.
[184] GOU F, HSIANG E-L, TAN G, et al. Tripling the Optical Efficiency of Color-Converted Micro-LED Displays with Funnel-Tube Array [J]. Crystals, 2019, 9(1): 39.
[185] ZHANG X, CHEN A, YANG T, et al. Tripling Light Conversion Efficiency of Μled Displays by Light Recycling Black Matrix [J]. IEEE Photonics Journal, 2022, 14(2): 1-7.
[186] HYUN B-R, SHER C-W, CHANG Y-W, et al. Dual Role of Quantum Dots as Color Conversion Layer and Suppression of Input Light for Full-Color Micro-LED Displays [J]. The Journal of Physical Chemistry Letters, 2021, 12(29): 6946-6954.
[187] WANG Y-T, LIU C-W, CHEN P-Y, et al. Color Conversion Efficiency Enhancement of Colloidal Quantum Dot through its Linkage with Synthesized Metal Nanoparticle on a Blue Light-Emitting Diode [J]. Optics Letters, 2019, 44(23): 5691-5694.
[188] KANG J-H, LI B, ZHAO T, et al. Rgb Arrays for Micro-Light-Emitting Diode Applications Using Nanoporous GaN Embedded with Quantum Dots [J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30890-30895.
[189] KIM B H, ONSES M S, LIM J B, et al. High-Resolution Patterns of Quantum Dots Formed by Electrohydrodynamic Jet Printing for Light-Emitting Diodes [J]. Nano Letters, 2015, 15(2): 969-973.
[190] KIM H M, RYU M, CHA J H J, et al. Ten Micrometer Pixel, Quantum Dots Color Conversion Layer for High Resolution and Full Color Active Matrix Micro-LED Display [J]. Journal of the Society for Information Display, 2019, 27(6): 347-353.
[191] CHEN S-W H, HUANG Y-M, SINGH K J, et al. Full-Color Micro-LED Display with High Color Stability Using Semipolar (20-21) InGaN LEDs and Quantum-Dot Photoresist [J]. Photonics Research, 2020, 8(5): 630-636.
[192] XU L, MING C C, LI Y, et al. Uniform Illumination Realized by Large Viewing Angle of Gallium Nitride-Based Mini-LED Chip with Translucent Sublayer Pairs [J]. IEEE Access, 2021, 9: 74713-74718.
[193] SHI L, ZHAO X, DU P, et al. Enhanced Performance of GaN-Based Visible Flip-Chip Mini-LEDs with Highly Reflective Full-Angle Distributed Bragg Reflectors [J]. Optics Express, 2021, 29(25): 42276.
[194] ZHUANG Z, DAI J, LIU B, et al. Improvement of Color Conversion and Efficiency Droop in Hybrid Light-Emitting Diodes Utilizing an Efficient Non-Radiative Resonant Energy Transfer [J]. Applied Physics Letters, 2016, 109(14): 141105.
[195] HUANG Y M, CHEN J H, LIOU Y H, et al. High-Uniform and High-Efficient Color Conversion Nanoporous GaN-Based Micro-LED Display with Embedded Quantum Dots [J]. Nanomaterials, 2021, 11(10) : 2696.
[196] ZHANG Z-H, LIU W, TAN S T, et al. A Hole Accelerator for InGaN/GaN Light-Emitting Diodes [J]. Applied Physics Letters, 2014, 105(15): 153503.
[197] LEE G-Y, WENG S-Y, HO W-H, et al. Photonic Characterization and Modeling of Highly Efficient Color Conversion Layers with External Reflectors [J]. IEEE Photonics Journal, 2023, 15(4): 1-10.

所在学位评定分委会
物理学
国内图书分类号
O59
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766044
专题南方科技大学
工学院_电子与电气工程系
推荐引用方式
GB/T 7714
黄文俊. 基于显示的GaN Micro-LED器件效率优化与色转换技术研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031316-黄文俊-电子与电气工程(11385KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄文俊]的文章
百度学术
百度学术中相似的文章
[黄文俊]的文章
必应学术
必应学术中相似的文章
[黄文俊]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。