[1] LIN J Y, JIANG H X. Development of MicroLED [J]. Applied Physics Letters, 2020, 116(10): 100502.
[2] HUANG Y, HSIANG E-L, DENG M-Y, et al. Mini-LED, Micro-LED and OLED Displays: Present Status and Future Perspectives [J]. Light: Science & Applications, 2020, 9(1): 105.
[3] RYU J-E, PARK S, PARK Y, et al. Technological Breakthroughs in Chip Fabrication, Transfer, and Color Conversion for High-Performance Micro-LED Displays [J]. Advanced Materials, 2023, 35(43): 2204947.
[4] CHEN D, CHEN Y-C, ZENG G, et al. Integration Technology of Micro-LED for Next-Generation Display [J]. Research, 2023, 6: 0047.
[5] ANWAR A R, SAJJAD M T, JOHAR M A, et al. Recent Progress in Micro-LED-Based Display Technologies [J]. Laser & Photonics Reviews, 2022, 16(6): 2100427.
[6] FEEZELL D F, SPECK J S, DENBAARS S P, et al. Semipolar (20-2-1) InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting [J]. Journal of Display Technology, 2013, 9(4): 190-198.
[7] ARTEEV D S, SAKHAROV A V, ZAVARIN E E, et al. Investigation of Statistical Broadening in InGaN Alloys [J]. Journal of Physics: Conference Series, 2018, 1135(1): 012050.
[8] HOLONYAK N, JR., BEVACQUA S F. Coherent (Visible) Light Emission from Ga(As1−xPx) Junctions [J]. Applied Physics Letters, 1962, 1(4): 82-83.
[9] MARUSKA H P, TIETJEN J J. The Preparation and Properties of Vapor‐Deposited Single‐Crystal‐Line GaN [J]. Applied Physics Letters, 1969, 15(10): 327-329.
[10] PANKOVE J I, MILLER E A, BERKEYHEISER J E. Electroluminescence in GaN [C]. Luminescence of Crystals, Molecules, and Solutions: Proceedings of the International Conference on Luminescence, Boston, MA: Springer US, 1973: 426-430.
[11] AMANO H, SAWAKI N, AKASAKI I, et al. Metalorganic Vapor Phase Epitaxial Growth of a High Quality GaN Film Using an AlN Buffer Layer [J]. Applied Physics Letters, 1986, 48(5): 353-355.
[12] AMANO H, KITO M, HIRAMATSU K, et al. P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI) [J]. Japanese Journal of Applied Physics, 1989, 28(12A): L2112.
[13] SHUJI NAKAMURA S N. GaN Growth Using GaN Buffer Layer [J]. Japanese Journal of Applied Physics, 1991, 30(10A): L1705.
[14] NAKAMURA S, MUKAI T, MASAYUKI SENOH M S, et al. Thermal Annealing Effects on P-Type Mg-Doped GaN Films [J]. Japanese Journal of Applied Physics, 1992, 31(2B): L139.
[15] NAKAMURA S, IWASA N, MASAYUKI SENOH M S, et al. Hole Compensation Mechanism of P-Type GaN Films [J]. Japanese Journal of Applied Physics, 1992, 31(5R): 1258.
[16] NAKAMURA S, TAKASHI MUKAI T M, MASAYUKI SENOH M S. High-Power GaN P-N Junction Blue-Light-Emitting Diodes [J]. Japanese Journal of Applied Physics, 1991, 30(12A): L1998.
[17] NAKAMURA S, MASAYUKI SENOH M S, TAKASHI MUKAI T M. P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes [J]. Japanese Journal of Applied Physics, 1993, 32(1A): L8.
[18] NAKAMURA S, SENOH M, IWASA N, et al. Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes [J]. Japanese Journal of Applied Physics, 1995, 34(10B): L1332.
[19] LINGLEY A R, ALI M, LIAO Y, et al. A Single-Pixel Wireless Contact Lens Display [J]. Journal of Micromechanics and Microengineering, 2011, 21(12): 125014.
[20] LIU Z J, CHONG W C, WONG K M, et al. A Novel Blu-Free Full-Color LED Projector Using LED on Silicon Micro-Displays [J]. IEEE Photonics Technology Letters, 2013, 25(23): 2267-2270.
[21] JIN S X, LI J, LI J Z, et al. GaN Microdisk Light Emitting Diodes [J]. Applied Physics Letters, 2000, 76(5): 631-633.
[22] JIANG H X, JIN S X, LI J, et al. III-Nitride Blue Microdisplays [J]. Applied Physics Letters, 2001, 78(9): 1303-1305.
[23] LIU Z, LIN C-H, HYUN B-R, et al. Micro-Light-Emitting Diodes with Quantum Dots in Display Technology [J]. Light: Science & Applications, 2020, 9(1): 83.
[24] XU F, TAO T, ZHANG D, et al. Wafer-Scale Monolithic Integration of Blue Micro-Light-Emitting Diodes and Green/Red Quantum Dots for Full-Color Displays [J]. IEEE Electron Device Letters, 2023, 44(8): 1320-1323.
[25] SHEN H-T, WEISBUCH C, SPECK J S, et al. Three-Dimensional Modeling of Minority-Carrier Lateral Diffusion Length Including Random Alloy Fluctuations in (In,Ga)N and (Al,Ga)N Single Quantum Wells [J]. Physical Review Applied, 2021, 16(2): 024054.
[26] LIN C-C, WU Y-R, KUO H-C, et al. The Micro-LED Roadmap: Status Quo and Prospects [J]. Journal of Physics: Photonics, 2023, 5(4): 042502.
[27] WANG L, GE C, WANG M, et al. An Artefact-Resist Optrode with Internal Shielding Structure for Low-Noise Neural Modulation [J]. Journal of Neural Engineering, 2020, 17(4): 046024.
[28] SUH J M, EOM T H, CHO S H, et al. Light-Activated Gas Sensing: A Perspective of Integration with Micro-LEDs and Plasmonic Nanoparticles [J]. Materials Advances, 2021, 2(3): 827-844.
[29] ELFSTRöM D, GUILHABERT B, MCKENDRY J, et al. Mask-Less Ultraviolet Photolithography Based on CMOS-Driven Micro-Pixel Light Emitting Diodes [J]. Optics Express, 2009, 17(26): 23522-23529.
[30] WU T, SHER C-W, LIN Y, et al. Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology [J]. Applied Sciences, 2018, 8(9): 1557
[31] JIANG F, HYUN B-R, ZHANG Y, et al. Role of Intrinsic Surface States in Efficiency Attenuation of GaN-Based Micro-Light-Emitting-Diodes [J]. Physica Status Solidi (RRL) – Rapid Research Letters, 2021, 15(2): 2000487.
[32] CHO J, SCHUBERT E F, KIM J K. Efficiency Droop in Light-Emitting Diodes: Challenges and Countermeasures [J]. Laser & Photonics Reviews, 2013, 7(3): 408-421.
[33] PIPREK J. Efficiency Droop in Nitride-Based Light-Emitting Diodes [J]. Physica Status Solidi (a), 2010, 207(10): 2217-2225.
[34] VERZELLESI G, SAGUATTI D, MENEGHINI M, et al. Efficiency Droop in InGaN/GaN Blue Light-Emitting Diodes: Physical Mechanisms and Remedies [J]. Journal of Applied Physics, 2013, 114(7): 071101.
[35] KONOPLEV S S, BULASHEVICH K A, KARPOV S Y. From Large-Size to Micro-LEDs: Scaling Trends Revealed by Modeling [J]. Physica Status Solidi (a), 2018, 215(10): 1700508.
[36] DAI Q, SHAN Q, WANG J, et al. Carrier Recombination Mechanisms and Efficiency Droop in GaInN/GaN Light-Emitting Diodes [J]. Applied Physics Letters, 2010, 97(13): 133507.
[37] GARDNER N F, MüLLER G O, SHEN Y C, et al. Blue-Emitting InGaN–GaN Double-Heterostructure Light-Emitting Diodes Reaching Maximum Quantum Efficiency above 200 A/cm2 [J]. Applied Physics Letters, 2007, 91(24): 243506.
[38] XIA C S, SIMON LI Z M, LI Z Q, et al. Optimal Number of Quantum Wells for Blue InGaN/GaN Light-Emitting Diodes [J]. Applied Physics Letters, 2012, 100(26): 263504.
[39] LI C K, WU Y R. Study on the Current Spreading Effect and Light Extraction Enhancement of Vertical GaN/InGaN LEDs [J]. IEEE Transactions on Electron Devices, 2012, 59(2): 400-407.
[40] ALBERT S, BENGOECHEA-ENCABO A, KONG X, et al. Monolithic Integration of InGaN Segments Emitting in the Blue, Green, and Red Spectral Range in Single Ordered Nanocolumns [J]. Applied Physics Letters, 2013, 102(18): 181103.
[41] WAAG A, WANG X, FüNDLING S, et al. The Nanorod Approach: GaN NanoLEDs for Solid State Lighting [J]. Physica Status Solidi (c), 2011, 8(7-8): 2296-2301.
[42] CHOI S, KIM H J, KIM S-S, et al. Improvement of Peak Quantum Efficiency and Efficiency Droop in III-Nitride Visible Light-Emitting Diodes with an InAlN Electron-Blocking Layer [J]. Applied Physics Letters, 2010, 96(22): 221105.
[43] CHUNG R B, HAN C, PAN C-C, et al. The Reduction of Efficiency Droop by Al0.82In0.18N/GaN Superlattice Electron Blocking Layer in (0001) Oriented GaN-Based Light Emitting Diodes [J]. Applied Physics Letters, 2012, 101(13): 131113.
[44] SCHUBERT M F, XU J, KIM J K, et al. Polarization-Matched GaInN∕AlGaInN Multi-Quantum-Well Light-Emitting Diodes with Reduced Efficiency Droop [J]. Applied Physics Letters, 2008, 93(4): 041102.
[45] KUO Y-K, CHANG J-Y, TSAI M-C, et al. Advantages of Blue InGaN Multiple-Quantum Well Light-Emitting Diodes with InGaN Barriers [J]. Applied Physics Letters, 2009, 95(1): 011116.
[46] KUO Y-K, WANG T-H, CHANG J-Y, et al. Advantages of InGaN Light-Emitting Diodes with GaN-InGaN-GaN Barriers [J]. Applied Physics Letters, 2011, 99(9): 091107.
[47] KUO Y-K, WANG T-H, CHANG J-Y. Advantages of Blue InGaN Light-Emitting Diodes with InGaN-AlGaN-InGaN Barriers [J]. Applied Physics Letters, 2012, 100(3): 031112.
[48] WANG C H, CHANG S P, KU P H, et al. Hole Transport Improvement in InGaN/GaN Light-Emitting Diodes by Graded-Composition Multiple Quantum Barriers [J]. Applied Physics Letters, 2011, 99(17): 171106.
[49] SHENG XIA C, SIMON LI Z M, LU W, et al. Droop Improvement in Blue InGaN/GaN Multiple Quantum Well Light-Emitting Diodes with Indium Graded Last Barrier [J]. Applied Physics Letters, 2011, 99(23): 233501.
[50] ZHU D, NOEMAUN A N, SCHUBERT M F, et al. Enhanced Electron Capture and Symmetrized Carrier Distribution in GaInN Light-Emitting Diodes Having Tailored Barrier Doping [J]. Applied Physics Letters, 2010, 96(12): 121110.
[51] CHANG S P, WANG C H, CHIU C H, et al. Characteristics of Efficiency Droop in GaN-Based Light Emitting Diodes with an Insertion Layer between the Multiple Quantum Wells and N-GaN Layer [J]. Applied Physics Letters, 2010, 97(25): 251114.
[52] LI Z, LESTRADE M, XIAO Y, et al. Improvement of Performance in P-Side Down InGaN/GaN Light-Emitting Diodes with Graded Electron Blocking Layer [J]. Japanese Journal of Applied Physics, 2011, 50(8R): 080212.
[53] AKYOL F, NATH D N, KRISHNAMOORTHY S, et al. Suppression of Electron Overflow and Efficiency Droop in N-Polar GaN Green Light Emitting Diodes [J]. Applied Physics Letters, 2012, 100(11): 111118.
[54] LI X, NI X, LEE J, et al. Efficiency Retention at High Current Injection Levels in m-Plane InGaN Light Emitting Diodes [J]. Applied Physics Letters, 2009, 95(12): 121107.
[55] NI X, LI X, LEE J, et al. Hot Electron Effects on Efficiency Degradation in InGaN Light Emitting Diodes and Designs to Mitigate Them [J]. Journal of Applied Physics, 2010, 108(3): 033112.
[56] NI X, LI X, LEE J, et al. InGaN Staircase Electron Injector for Reduction of Electron Overflow in InGaN Light Emitting Diodes [J]. Applied Physics Letters, 2010, 97(3): 031110.
[57] KUO Y K, TSAI M C, YEN S H, et al. Effect of P-Type Last Barrier on Efficiency Droop of Blue InGaN Light-Emitting Diodes [J]. IEEE Journal of Quantum Electronics, 2010, 46(8): 1214-1220.
[58] YAN ZHANG Y, AN YIN Y. Performance Enhancement of Blue Light-Emitting Diodes with a Special Designed AlGaN/GaN Superlattice Electron-Blocking Layer [J]. Applied Physics Letters, 2011, 99(22): 221103.
[59] WANG C H, KE C C, LEE C Y, et al. Hole Injection and Efficiency Droop Improvement in InGaN/GaN Light-Emitting Diodes by Band-Engineered Electron Blocking Layer [J]. Applied Physics Letters, 2010, 97(26): 261103.
[60] ZHUANG D, EDGAR J H. Wet Etching of GaN, AlN, and SiC: A Review [J]. Materials Science and Engineering: R: Reports, 2005, 48(1): 1-46.
[61] NEDY J G, YOUNG N G, KELCHNER K M, et al. Low Damage Dry Etch for III-Nitride Light Emitters [J]. Semiconductor Science and Technology, 2015, 30(8): 085019.
[62] DAVID A, YOUNG N G, LUND C, et al. Review—the Physics of Recombinations in III-Nitride Emitters [J]. ECS Journal of Solid State Science and Technology, 2020, 9(1): 016021.
[63] HWANG D, MUGHAL A, PYNN C D, et al. Sustained High External Quantum Efficiency in Ultrasmall Blue III–Nitride Micro-LEDs [J]. Applied Physics Express, 2017, 10(3): 032101.
[64] BULASHEVICH K A, KONOPLEV S S, KARPOV S Y. Effect of Die Shape and Size on Performance of III-Nitride Micro-LEDs: A Modeling Study [J]. Photonics, 2018, 5(4): 41
[65] OLIVIER F, DAAMI A, LICITRA C, et al. Shockley-Read-Hall and Auger Non-Radiative Recombination in GaN Based LEDs: A Size Effect Study [J]. Applied Physics Letters, 2017, 111(2): 022104.
[66] SELBERHERR S. Analysis and Simulation of Semiconductor Devices [M]. Springer Science & Business Media, 2012.
[67] ONUMA T, SAKAI N, IGAKI T, et al. Comparative Study of Surface Recombination in Hexagonal GaN and ZnO Surfaces [J]. Journal of Applied Physics, 2012, 112(6): 063509.
[68] ZHANG S, LI Y, FATHOLOLOUMI S, et al. On the Efficiency Droop of Top-Down Etched InGaN/GaN Nanorod Light Emitting Diodes under Optical Pumping [J]. AIP Advances, 2013, 3(8): 082103.
[69] KITAGAWA H, FUJITA M, SUTO T, et al. Green GaInN Photonic-Crystal Light-Emitting Diodes with Small Surface Recombination Effect [J]. Applied Physics Letters, 2011, 98(18): 181104.
[70] FITZGERALD D J, GROVE A S. Surface Recombination in Semiconductors [J]. Surface Science, 1968, 9(2): 347-369.
[71] PARK J-H, CAI W, CHEONG H, et al. The Effect of Dry Etching Condition on the Performance of Blue Micro Light-Emitting Diodes with Reduced Quantum Confined Stark Effect Epitaxial Layer [J]. Journal of Applied Physics, 2022, 131(15): 153104.
[72] JIN Y-K, CHIANG H-Y, LIN K-H, et al. Luminescence Efficiency Improvement of Small-Size Micro Light-Emitting Diodes by a Digital Etching Technology [J]. Optics Letters, 2022, 47(23): 6277-6280.
[73] MOON J H, KIM B, CHOI M, et al. Electrically Driven Sub-Micrometer Light-Emitting Diode Arrays Using Maskless and Etching-Free Pixelation [J]. Advanced Materials, 2023, 35(13): 2206945.
[74] ZHUANG Z, IIDA D, VELAZQUEZ-RIZO M, et al. Ultra-Small InGaN Green Micro-Light-Emitting Diodes Fabricated by Selective Passivation of P-GaN [J]. Optics Letters, 2021, 46(20): 5092-5095.
[75] WANG X, ZHAO X, TAKAHASHI T, et al. 3.5 × 3.5 µm2 GaN Blue Micro-Light-Emitting Diodes with Negligible Sidewall Surface Nonradiative Recombination [J]. Nature Communications, 2023, 14(1): 7569.
[76] PARK J, CHOI J H, KONG K, et al. Electrically Driven Mid-Submicrometre Pixelation of InGaN Micro-Light-Emitting Diode Displays for Augmented-Reality Glasses [J]. Nature Photonics, 2021, 15(6): 449-455.
[77] SON K R, MURUGADOSS V, KIM K H, et al. Investigation of Sidewall Passivation Mechanism of InGaN-Based Blue Microscale Light-Emitting Diodes [J]. Applied Surface Science, 2022, 584: 152612.
[78] LEE D-H, LEE J-H, PARK J-S, et al. Improving the Leakage Characteristics and Efficiency of GaN-Based Micro-Light-Emitting Diode with Optimized Passivation [J]. ECS Journal of Solid State Science and Technology, 2020, 9(5): 055001.
[79] WONG M S, HWANG D, ALHASSAN A I, et al. High Efficiency of III-Nitride Micro-Light-Emitting Diodes by Sidewall Passivation Using Atomic Layer Deposition [J]. Optics Express, 2018, 26(16): 21324-21331.
[80] KIM K, HUA M, LIU D, et al. Efficiency Enhancement of InGaN/GaN Blue Light-Emitting Diodes with Top Surface Deposition of AlN/Al2O3 [J]. Nano Energy, 2018, 43: 259-269.
[81] GONG J, LU K, KIM J, et al. Influences of ALD Al2O3 on the Surface Band-Bending of C-Plane, Ga-Face GaN [J]. Japanese Journal of Applied Physics, 2021, 61(11): 011003.
[82] WONG M S, HWANG D, ALHASSAN A I, et al. High Efficiency of III-Nitride Micro-Light-Emitting Diodes by Sidewall Passivation Using Atomic Layer Deposition [J]. Optics Express, 2018, 26(16): 21324-21331.
[83] ZHAO H, FENG M, LIU J, et al. Performance Improvement of GaN-Based Microdisk Lasers by Using a Peald-SiO2 Passivation Layer [J]. Optics Express, 2023, 31(12): 20212-20220.
[84] CHEN D, WANG Z, HU F-C, et al. Improved Electro-Optical and Photoelectric Performance of GaN-Based Micro-LEDs with an Atomic Layer Deposited AlN Passivation Layer [J]. Optics Express, 2021, 29(22): 36559-36566.
[85] KIRILENKO P, IIDA D, ZHUANG Z, et al. InGaN-Based Green Micro-LED Efficiency Enhancement by Hydrogen Passivation of the P-GaN Sidewall [J]. Applied Physics Express, 2022, 15(8): 084003.
[86] SHEEN M, KO Y, KIM D-U, et al. Highly Efficient Blue InGaN Nanoscale Light-Emitting Diodes [J]. Nature, 2022, 608: 56-61.
[87] CHOI W H, YOU G, ABRAHAM M, et al. Sidewall Passivation for InGaN/GaN Nanopillar Light Emitting Diodes [J]. Journal of Applied Physics, 2014, 116(1): 013103.
[88] LEY R T, SMITH J M, WONG M S, et al. Revealing the Importance of Light Extraction Efficiency in InGaN/GaN Microleds via Chemical Treatment and Dielectric Passivation [J]. Applied Physics Letters, 2020, 116(25): 251104.
[89] WONG M S, BACK J, HWANG D, et al. Demonstration of High Wall-Plug Efficiency III-Nitride Micro-Light-Emitting Diodes with MOCVD-Grown Tunnel Junction Contacts Using Chemical Treatments [J]. Applied Physics Express, 2021, 14(8): 086502.
[90] ZHONG H, ZHANG C, SONG W, et al. Surface Morphology of Polar, Semipolar and Nonpolar Freestanding GaN after Chemical Etching [J]. Applied Surface Science, 2020, 511: 145524.
[91] WONG M S, LEE C, MYERS D J, et al. Size-Independent Peak Efficiency of III-Nitride Micro-Light-Emitting-Diodes Using Chemical Treatment and Sidewall Passivation [J]. Applied Physics Express, 2019, 12(9): 097004.
[92] BAE S-Y, KONG D-J, LEE J-Y, et al. Size-Controlled InGaN/GaN Nanorod Array Fabrication and Optical Characterization [J]. Optics Express, 2013, 21(14): 16854-16862.
[93] KONG D-J, BAE S-Y, KANG C-M, et al. InGaN/GaN Microcolumn Light-Emitting Diode Arrays with Sidewall Metal Contact [J]. Optics Express, 2013, 21(19): 22320-22326.
[94] BORODITSKY M, GONTIJO I, JACKSON M, et al. Surface Recombination Measurements on Iii–V Candidate Materials for Nanostructure Light-Emitting Diodes [J]. Journal of Applied Physics, 2000, 87(7): 3497-3504.
[95] TAUTZ M, WEIMAR A, GRAßL C, et al. Anisotropy and Mechanistic Elucidation of Wet‐Chemical Gallium Nitride Etching at the Atomic Level [J]. Physica Status Solidi (a), 2020, 217(21): 2000221.
[96] TANG B, MIAO J, LIU Y, et al. Enhanced Light Extraction of Flip-Chip Mini-LEDs with Prism-Structured Sidewall [J]. Nanomaterials, 2019, 9(3): 319.
[97] CORENTIN LE M, DAVID V, FRANçOIS M, et al. Analysis of InGaN Surfaces after Chemical Treatments and Atomic Layer Deposition of Al2O3 for µLED Applications [C]. Gallium Nitride Materials and Devices XV, SPIE. 2020, 11280: 133-145.
[98] PING A T, SCHMITZ A C, ADESIDA I, et al. Characterization of Reactive Ion Etching-Induced Damage to N-GaN Surfaces Using Schottky Diodes [J]. Journal of Electronic Materials, 1997, 26(3): 266-271.
[99] ZHU D, XU J, NOEMAUN A N, et al. The Origin of the High Diode-Ideality Factors in GaInN/GaN Multiple Quantum Well Light-Emitting Diodes [J]. Applied Physics Letters, 2009, 94(8): 081113.
[100] BHARADWAJ S, MILLER J, LEE K, et al. Enhanced Injection Efficiency and Light Output in Bottom Tunnel-Junction Light-Emitting Diodes [J]. Optics Express, 2020, 28(4): 4489-4500.
[101] CHE J, SHAO H, CHU C, et al. Enhanced Performance of an AlGaN-Based Deep Ultraviolet Light-Emitting Diode Using a P-GaN/SiO2/ITO Tunnel Junction [J]. Optics Letters, 2022, 47(4): 798-801.
[102] LI P, LI H, YAO Y, et al. Hybrid Tunnel Junction Enabled Independent Junction Control of Cascaded InGaN Blue/Green Micro-Light-Emitting Diodes [J]. Optics Express, 2023, 31(5): 7572-7578.
[103] LI P, ZHANG H, LI H, et al. Size-Independent Low Voltage of InGaN Micro-Light-Emitting Diodes with Epitaxial Tunnel Junctions Using Selective Area Growth by Metalorganic Chemical Vapor Deposition [J]. Optics Express, 2020, 28(13): 18707-18712.
[104] WU Y, LIU B, XU F, et al. High-Efficiency Green Micro-LEDs with GaN Tunnel Junctions Grown Hybrid by PA-MBE and MOCVD [J]. Photonics Research, 2021, 9(9): 1683-1688.
[105] PARK A H, BAEK S, CHOI G B, et al. Improved Efficiency of Green GaN LEDs Via Exciton-Surface Plasmon Coupling by Au Nanoclusters Embedded in a Micro-Hole Patterned P-GaN Layer [J]. Applied Physics Letters, 2021, 119(18): 181104.
[106] OKAMOTO K, NIKI I, SHVARTSER A, et al. Surface-Plasmon-Enhanced Light Emitters Based on InGaN Quantum Wells [J]. Nature Materials, 2004, 3(9): 601-605.
[107] JIE S, JOO WON C, CHEN C, et al. Application of Porous GaN for MicroLED [C]. Gallium Nitride Materials and Devices XV. SPIE, 2020, 11280: 146-150.
[108] SHIN J, KIM H, SUNDARAM S, et al. Vertical Full-Colour Micro-LEDs Via 2D Materials-Based Layer Transfer [J]. Nature, 2023, 614(7946): 81-87.
[109] FENG F, LIU Y, ZHANG K, et al. AlGaN Multiple Quantum Well Deep‐Ultraviolet Micro‐Light‐Emitting Diodes for High Color Conversion Efficiency Quantum Dots Display [J]. Journal of the Society for Information Display, 2022, 30(7): 556-566.
[110] HAN H-V, LIN H-Y, LIN C-C, et al. Resonant-Enhanced Full-Color Emission of Quantum-Dot-Based Micro LED Display Technology [J]. Optics Express, 2015, 23(25): 32504-32515.
[111] GOU F, HSIANG E-L, TAN G, et al. Angular Color Shift of Micro-LED Displays [J]. Optics Express, 2019, 27(12): A746-A757.
[112] YIN Y, HU Z, ALI M U, et al. Alleviating the Crosstalk Effect Via a Fine-Moulded Light-Blocking Matrix for Colour-Converted Micro-LED Display with a 122% NTSC Gamut [J]. Light: Advanced Manufacturing, 2022, 3(3): 1.
[113] HYUN B R, SHER C W, CHANG Y W, et al. Dual Role of Quantum Dots as Color Conversion Layer and Suppression of Input Light for Full-Color Micro-LED Displays [J]. The Journal of Physical Chemistry Letters, 2021, 12(29): 6946-6954.
[114] FAN X, WU T, LIU B, et al. Recent Developments of Quantum Dot Based Micro-LED Based on Non-Radiative Energy Transfer Mechanism [J]. Opto-Electronic Advances, 2021, 4(4): 210022-1-210022-5.
[115] HUANG CHEN S-W, SHEN C-C, WU T, et al. Full-Color Monolithic Hybrid Quantum Dot Nanoring Micro Light-Emitting Diodes with Improved Efficiency Using Atomic Layer Deposition and Nonradiative Resonant Energy Transfer [J]. Photonics Research, 2019, 7(4): 416-422.
[116] ZHUANG Z, GUO X, LIU B, et al. High Color Rendering Index Hybrid III-Nitride/Nanocrystals White Light-Emitting Diodes [J]. Advanced Functional Materials, 2016, 26(1): 36-43.
[117] KANG J H, LI B, ZHAO T, et al. RGB Arrays for Micro-Light-Emitting Diode Applications Using Nanoporous GaN Embedded with Quantum Dots [J]. ACS Appl Mater Interfaces, 2020, 12(27): 30890-30895.
[118] CHANYAWADEE S, LAGOUDAKIS P G, HARLEY R T, et al. Increased Color-Conversion Efficiency in Hybrid Light-Emitting Diodes Utilizing Non-Radiative Energy Transfer [J]. Advanced Materials, 2010, 22(5): 602-606.
[119] LIN Y, HUANG W, ZHANGHU M, et al. Ultra-Thick Inkjet-Printed Quantum Dots Layer for Full-Color Micro-LED Displays [J]. Optics Express, 2023, 31(20): 31818-31824.
[120] CHEN D, CHEN Y-C, ZENG G, et al. Integration Technology of Micro-LED for Next-Generation Display [J]. Research, 6: 0047.
[121] DUSSAIGNE A, BARBIER F, HAAS H, et al. Native InGaN Red-Green-Blue Micro-LEDs for Full Color Micro-Displays [C]. Light-Emitting Devices, Materials, and Applications XXVII. SPIE, 2023, 12441: 40-48.
[122] HARTENSVELD M. Proposal and Realization of V-Groove Color Tunable µLEDs [J]. Optics Express, 2022, 30(15): 27314-27321.
[123] HONG Y J, LEE C-H, YOON A, et al. Visible-Color-Tunable Light-Emitting Diodes [J]. Advanced Materials, 2011, 23(29): 3284-3288.
[124] QIAN Y, YANG Z, HUANG Y-H, et al. High-Efficiency Nanowire Light-Emitting Diodes for Augmented Reality and virtual Reality Displays [J]. Journal of the Society for Information Display, 2023, 31(5): 211-219.
[125] CHUNG K, SUI J, DEMORY B, et al. Monolithic Integration of Individually Addressable Light-Emitting Diode Color Pixels [J]. Applied Physics Letters, 2017, 110(11): 111103.
[126] HWANGBO S, HU L, HOANG A T, et al. Wafer-Scale Monolithic Integration of Full-Colour Micro-LED Display Using MoS2 Transistor [J]. Nature Nanotechnology, 2022, 17(5): 500-506.
[127] MENG W, XU F, YU Z, et al. Three-Dimensional Monolithic Micro-LED Display Driven by Atomically Thin Transistor Matrix [J]. Nature Nanotechnology, 2021, 16(11): 1231-1236.
[128] CAI Y, HAGGAR J I H, ZHU C, et al. Direct Epitaxial Approach to Achieve a Monolithic on-Chip Integration of a HEMT and a Single Micro-LED with a High-Modulation Bandwidth [J]. ACS Applied Electronic Materials, 2021, 3(1): 445-450.
[129] CAI Y, ZHU C, ZHONG W, et al. Monolithically Integrated μLEDs/HEMTs Microdisplay on a Single Chip by a Direct Epitaxial Approach[J]. Advanced Materials Technologies, 2021, 6(6): 2100214.
[130] LIU Z J, HUANG T, MA J, et al. Monolithic Integration of AlGaN/GaN HEMT on LED by MOCVD[J]. IEEE Electron Device Letters, 2014, 35(3): 330-332.
[131] LIU C, CAI Y, JIANG H, et al. Monolithic Integration of III-nitride Voltage-Controlled Light Emitters with Dual-Wavelength Photodiodes by Selective-Area Epitaxy[J]. Optics Letters, 2018, 43(14): 3401-3404.
[132] LIU Y, LIU Z, LAU K M. Monolithic Integrated All-GaN-Based µLED Display by Selective Area Regrowth[J]. Optics Express, 2023, 31(19): 31300-31307.
[133] YAN J, JIA B, WANG Y. Monolithically Integrated Voltage-Controlled MOSFET-LED Device Based on a GaN-on-Silicon LED Epitaxial Wafer[J]. Optics Letters, 2021, 46(4): 745-748.
[134] SANG Y, ZHANG D, ZHUANG Z, et al. Monolithic Integration of GaN-Based Green Micro-LED and Quasi-Vertical Mosfet Utilizing a Hybrid Tunnel Junction [J]. IEEE Electron Device Letters, 2023, 44(7): 1156-1159.
[135] HSIANG E-L, YANG Z, YANG Q, et al. AR/VR Light Engines: Perspectives and Challenges[J]. Advances in Optics and Photonics, 2022, 14(4): 783-861.
[136] XIONG J, HSIANG E-L, HE Z, et al. Augmented Reality and Virtual Reality Displays: Emerging Technologies and Future Perspectives [J]. Light: Science & Applications, 2021, 10(1): 216.
[137] DING Y, YANG Q, LI Y, et al. Waveguide-Based Augmented Reality Displays: Perspectives and Challenges[J]. eLight, 2023, 3(1): 24.
[138] KARPOV S. ABC-model for Interpretation of Internal Quantum Efficiency and its Droop in III-nitride LEDs: A Review[J]. Optical and Quantum Electronics, 2015, 47(6): 1293-1303.
[139] SHIM J-I, SHIN D-S, OH C-H, et al. Review—Active Efficiency as a Key Parameter for Understanding the Efficiency Droop in InGaN-Based Light-Emitting Diodes [J]. ECS Journal of Solid State Science and Technology, 2019, 9(1): 015013.
[140] YANG Y, CAO X A, YAN C H. Rapid Efficiency Roll-off in High-Quality Green Light-Emitting Diodes on Freestanding GaN Substrates [J]. Applied Physics Letters, 2009, 94(4): 041117.
[141] SMITH J M, LEY R, WONG M S, et al. Comparison of Size-Dependent Characteristics of Blue and Green InGaN MicroLEDs Down to 1 µm in Diameter [J]. Applied Physics Letters, 2020, 116(7): 071102.
[142] KAGANER V M, SABELFELD K K, BRANDT O. Piezoelectric Field, Exciton Lifetime, and Cathodoluminescence Intensity at Threading Dislocations in GaN{0001} [J]. Applied Physics Letters, 2018, 112(12): 122101.
[143] HAFIZ S, ZHANG F, MONAVARIAN M, et al. Determination of Carrier Diffusion Length in GaN [J]. Journal of Applied Physics, 2015, 117(1): 013106.
[144] HWANG D, MUGHAL A, PYNN C D, et al. Sustained High External Quantum Efficiency in Ultrasmall Blue III–Nitride Micro-LEDs [J]. Applied Physics Express, 2017, 10(3): 032101.
[145] ASUBAR J T, YATABE Z, GREGUSOVA D, et al. Controlling Surface/Interface States in GaN-Based Transistors: Surface Model, Insulated Gate, and Surface Passivation [J]. Journal of Applied Physics, 2021, 129(12): 121102.
[146] JIN S X, LI J, LIN J Y, et al. InGaN/GaN Quantum Well Interconnected Microdisk Light Emitting Diodes [J]. Applied Physics Letters, 2000, 77(20): 3236-3238.
[147] DAY J, LI J, LIE D Y C, et al. III-Nitride Full-Scale High-Resolution Microdisplays [J]. Applied Physics Letters, 2011, 99(3): 031116.
[148] JIANG H X, LIN J Y. Nitride Micro-LEDs and Beyond - a Decade Progress Review [J]. Optics Express, 2013, 21(S3): A475-A484.
[149] HERRNSDORF J, MCKENDRY J J D, ZHANG S, et al. Active-Matrix GaN Micro Light-Emitting Diode Display with Unprecedented Brightness [J]. IEEE Transactions on Electron Devices, 2015, 62(6): 1918-1925.
[150] GONG Z, JIN S, CHEN Y, et al. Size-Dependent Light Output, Spectral Shift, and Self-Heating of 400 nm InGaN Light-Emitting Diodes [J]. Journal of Applied Physics, 2010, 107(1): 013103.
[151] LIU Y, XIA T, DU A, et al. Omnidirectional Color Shift Suppression of Full-Color Micro-LED Displays with Enhanced Light Extraction Efficiency [J]. Optics Letters, 2023, 48(7): 1650-1653.
[152] YU L, WANG L, HAO Z, et al. High-Speed Micro-LEDs for Visible Light Communication: Challenges and Progresses [J]. Semiconductor Science and Technology, 2021, 37(2): 023001.
[153] MCKENDRY J J D, GREEN R P, KELLY A E, et al. High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array [J]. IEEE Photonics Technology Letters, 2010, 22(18): 1346-1348.
[154] ROYO P, STANLEY R P, ILEGEMS M, et al. Experimental Determination of the Internal Quantum Efficiency of AlGaInP Microcavity Light-Emitting Diodes [J]. Journal of Applied Physics, 2002, 91(5): 2563-2568.
[155] OH J-T, LEE S-Y, MOON Y-T, et al. Light Output Performance of Red AlGaInP-Based Light Emitting Diodes with Different Chip Geometries and Structures [J]. Optics Express, 2018, 26(9): 11194-11200.
[156] TIAN P F, MCKENDRY J J D, GONG Z, et al. Size-Dependent Efficiency and Efficiency Droop of Blue InGaN Micro-Light Emitting Diodes [J]. Applied Physics Letters, 2012, 101(23): 231110.
[157] OLIVIER F, TIRANO S, DUPRé L, et al. Influence of Size-Reduction on the Performances of GaN-Based Micro-LEDs for Display Application [J]. Journal of Luminescence, 2017, 191: 112-116.
[158] BULASHEVICH K A, KARPOV S Y. Impact of Surface Recombination on Efficiency of III-Nitride Light-Emitting Diodes [J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2016, 10(6): 480-484.
[159] PARK J-H, PRISTOVSEK M, CAI W, et al. Interplay of Sidewall Damage and Light Extraction Efficiency of Micro-LEDs [J]. Optics Letters, 2022, 47(9): 2250-2253.
[160] YU L, LU B, YU P, et al. Ultra-Small Size (1–20 µm) Blue and Green Micro-LEDs Fabricated by Laser Direct Writing Lithography [J]. Applied Physics Letters, 2022, 121(4): 042106.
[161] XU F, TAN Y, XIE Z, et al. Implantation Energy- and Size-Dependent Light Output of Enhanced-Efficiency Micro-LED Arrays Fabricated by Ion Implantation [J]. Optics Express, 2021, 29(5): 7757-7766.
[162] XU F, GAO C, FAN Y, et al. Enhanced Performance of Vertical-Structured InGaN Micro-Pixelated Light-Emitting-Diode Array Fabricated Using an Ion Implantation Process [J]. Optics Letters, 2019, 44(18): 4562-4565.
[163] ZHANG W, TU J, LONG W, et al. Preparation of SiO2 Anti-Reflection Coatings by Sol-Gel Method [J]. Energy Procedia, 2017, 130: 72-76.
[164] DUBEY R S, RAJESH Y B R D, MORE M A. Synthesis and Characterization of SiO2 Nanoparticles Via Sol-Gel Method for Industrial Applications [J]. Materials Today: Proceedings, 2015, 2(4): 3575-3579.
[165] HUANG W, MIAO X, LIU Z. Investigations of Sidewall Passivation Using the Sol-Gel Method on the Optoelectronic Performance for Blue InGaN Micro-LEDs[J]. Micromachines, 2023, 14(3): 566.
[166] ZHU D, XU J, NOEMAUN A N, et al. The Origin of the High Diode-Ideality Factors in GaInN/GaN Multiple Quantum Well Light-Emitting Diodes [J]. Applied Physics Letters, 2009, 94(8): 081113.
[167] SHIN D-S A S, JONG-IN. Understanding Microscopic Properties of Light‐Emitting Diodes from Macroscopic Characterization: Ideality Factor, S‐parameter, and Internal Quantum Efficiency [J]. Physica Status Solidi (a), 2022, 219(9): 2200042.
[168] SHAH J M, LI Y L, GESSMANN T, et al. Experimental Analysis and Theoretical Model for Anomalously High Ideality Factors (n≫2.0) in AlGaN/GaN pn Junction Diodes [J]. Journal of Applied Physics, 2003, 94(4): 2627-2630.
[169] LEE G W, SHIM J-I, SHIN D-S. On the Ideality Factor of the Radiative Recombination Current in Semiconductor Light-Emitting Diodes [J]. Applied Physics Letters, 2016, 109(3): 031104.
[170] AGGARWAL T, UDAI A, BANERJEE D, et al. Investigation of Ultrafast Carrier Dynamics in InGaN/GaN‐Based Nanostructures Using Femtosecond Pump‐Probe Absorption Spectroscopy [J]. Physica Status Solidi (b), 2021, 258(10): 2100223.
[171] TAUTZ M, DíAZ DíAZ D. Wet‐Chemical Etching of GaN: Underlying Mechanism of a Key Step in Blue and White LED Production [J]. ChemistrySelect, 2018, 3(5): 1480-1494.
[172] LIANG K-L, KUO W-H, SHEN H-T, et al. Advances in Color-Converted Micro-LED Arrays [J]. Japanese Journal of Applied Physics, 2021, 60(SA): SA0802.
[173] QI L, ZHANG X, CHONG W C, et al. 848 PPI High-Brightness Active-Matrix Micro-LED Micro-Display Using GaN-on-Si Epi-Wafers Towards Mass Production [J]. Optics Express, 2021, 29(7): 10580-10591.
[174] BEHRMAN K, KYMISSIS I. Micro Light-Emitting Diodes [J]. Nature Electronics, 2022, 5(9): 564-573.
[175] SHIN J, KIM H, SUNDARAM S, et al. Vertical Full-Colour Micro-LEDs Via 2D Materials-Based Layer Transfer [J]. Nature, 2023, 614(7946): 81-87.
[176] WU T, SHER C-W, LIN Y, et al. Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology [J]. Applied Sciences, 2018, 8(9): 1557.
[177] ZHOU X, TIAN P, SHER C-W, et al. Growth, Transfer Printing and Colour Conversion Techniques Towards Full-Colour Micro-LED Display [J]. Progress in Quantum Electronics, 2020, 71: 100263.
[178] SHIRASAKI Y, SUPRAN G J, BAWENDI M G, et al. Emergence of Colloidal Quantum-Dot Light-Emitting Technologies [J]. Nature Photonics, 2012, 7(1): 13-23.
[179] CHEN J, ZHAO Q, YU B, et al. A Review on Quantum Dot‐Based Color Conversion Layers for Mini/Micro‐LED Displays: Packaging, Light Management, and Pixelation [J]. Advanced Optical Materials, 2024, 12(2): 2300873.
[180] LIN C-C, LIANG K-L, CHAO H-Y, et al. Fabricating Quantum Dot Color Conversion Layers for Micro-LED-Based Augmented Reality Displays [J]. ACS Applied Optical Materials Article ASAP, 2023.
[181] FENG F, ZHANG K, LIU Y, et al. AlGaN-Based Deep-UV Micro-LED Array for Quantum Dots Converted Display with Ultra-Wide Color Gamut [J]. IEEE Electron Device Letters, 2022, 43(1): 60-63.
[182] QI L, ZHANG X, CHONG W C, et al. Monolithically Integrated High-Resolution Full-Color GaN-on-Si Micro-LED Microdisplay [J]. Photonics Research, 2023, 11(1): 109-120.
[183] LIN H-Y, SHER C-W, HSIEH D-H, et al. Optical Cross-Talk Reduction in a Quantum-Dot-Based Full-Color Micro-Light-Emitting-Diode Display by a Lithographic-Fabricated Photoresist Mold [J]. Photonics Research, 2017, 5(5): 411-416.
[184] GOU F, HSIANG E-L, TAN G, et al. Tripling the Optical Efficiency of Color-Converted Micro-LED Displays with Funnel-Tube Array [J]. Crystals, 2019, 9(1): 39.
[185] ZHANG X, CHEN A, YANG T, et al. Tripling Light Conversion Efficiency of Μled Displays by Light Recycling Black Matrix [J]. IEEE Photonics Journal, 2022, 14(2): 1-7.
[186] HYUN B-R, SHER C-W, CHANG Y-W, et al. Dual Role of Quantum Dots as Color Conversion Layer and Suppression of Input Light for Full-Color Micro-LED Displays [J]. The Journal of Physical Chemistry Letters, 2021, 12(29): 6946-6954.
[187] WANG Y-T, LIU C-W, CHEN P-Y, et al. Color Conversion Efficiency Enhancement of Colloidal Quantum Dot through its Linkage with Synthesized Metal Nanoparticle on a Blue Light-Emitting Diode [J]. Optics Letters, 2019, 44(23): 5691-5694.
[188] KANG J-H, LI B, ZHAO T, et al. Rgb Arrays for Micro-Light-Emitting Diode Applications Using Nanoporous GaN Embedded with Quantum Dots [J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30890-30895.
[189] KIM B H, ONSES M S, LIM J B, et al. High-Resolution Patterns of Quantum Dots Formed by Electrohydrodynamic Jet Printing for Light-Emitting Diodes [J]. Nano Letters, 2015, 15(2): 969-973.
[190] KIM H M, RYU M, CHA J H J, et al. Ten Micrometer Pixel, Quantum Dots Color Conversion Layer for High Resolution and Full Color Active Matrix Micro-LED Display [J]. Journal of the Society for Information Display, 2019, 27(6): 347-353.
[191] CHEN S-W H, HUANG Y-M, SINGH K J, et al. Full-Color Micro-LED Display with High Color Stability Using Semipolar (20-21) InGaN LEDs and Quantum-Dot Photoresist [J]. Photonics Research, 2020, 8(5): 630-636.
[192] XU L, MING C C, LI Y, et al. Uniform Illumination Realized by Large Viewing Angle of Gallium Nitride-Based Mini-LED Chip with Translucent Sublayer Pairs [J]. IEEE Access, 2021, 9: 74713-74718.
[193] SHI L, ZHAO X, DU P, et al. Enhanced Performance of GaN-Based Visible Flip-Chip Mini-LEDs with Highly Reflective Full-Angle Distributed Bragg Reflectors [J]. Optics Express, 2021, 29(25): 42276.
[194] ZHUANG Z, DAI J, LIU B, et al. Improvement of Color Conversion and Efficiency Droop in Hybrid Light-Emitting Diodes Utilizing an Efficient Non-Radiative Resonant Energy Transfer [J]. Applied Physics Letters, 2016, 109(14): 141105.
[195] HUANG Y M, CHEN J H, LIOU Y H, et al. High-Uniform and High-Efficient Color Conversion Nanoporous GaN-Based Micro-LED Display with Embedded Quantum Dots [J]. Nanomaterials, 2021, 11(10) : 2696.
[196] ZHANG Z-H, LIU W, TAN S T, et al. A Hole Accelerator for InGaN/GaN Light-Emitting Diodes [J]. Applied Physics Letters, 2014, 105(15): 153503.
[197] LEE G-Y, WENG S-Y, HO W-H, et al. Photonic Characterization and Modeling of Highly Efficient Color Conversion Layers with External Reflectors [J]. IEEE Photonics Journal, 2023, 15(4): 1-10.
修改评论