中文版 | English
题名

超高速主轴液体静压轴承设计与特性研究

其他题名
DESIGN AND CHARACTERIZATION OF HYDROSTATIC BEARINGS FOR ULTRA-HIGH-SPEED SPINDLES
姓名
姓名拼音
GUO Yong
学号
12132258
学位类型
硕士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
张璧
导师单位
机械与能源工程系
论文答辩日期
2024-05-10
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

难加工材料具有强度高、硬度高和耐腐蚀等特点,在航空航天和医疗等领域应用广泛,其加工问题一直是学术界的研究热点。在已有研究中,超高速加工技术展现出对这类材料的加工优势,但其深入研究和应用受限于机床主轴的性能。超高速主轴中的支撑方式主要有气体静压轴承和液体静压轴承两种。气体静压轴承极限转速高,但刚度低、动态特性差,应用场合有限。液体静压轴承承载特性好,更适合用于难加工材料的超高速加工,但存在发热量大、动压效应明显等问题。本文研究内容将从轴承设计的角度出发,围绕如何削弱温升和动压效应对主轴的影响展开。

确定主轴支承方案和轴承结构。对比分析不同液体静压支承方式的优缺点,采用径向止推联合轴承-轴向预载轴承的形式作为主轴的支承方案,该方案具有更好的热稳定性。在充分研究轴承性能与结构参数的相关性后,以最大轴承刚度和最小润滑油温升为目标,运用NSGA-II算法对支承方案中的轴承进行了多目标优化设计,得到了一个综合性能最优的轴承设计方案。

研究轴承与主轴转子系统的承载特性、温度特性以及动态特性。在上述轴承设计方案的基础上,利用Fluent软件建立液体静压轴承的仿真模型,研究了芯轴偏心对轴承承载特性的影响,并分析了不同转速下油膜温度场的变化以及动压效应对轴承承载特性的影响,获得了不同工况下的轴承刚度参数。此外,基于ANSYS Workbench平台,构建了超高速主轴转子系统的仿真模型,探究了轴端受载位置对主轴轴端径向刚度的影响,并分析了转速和砂轮对芯轴模态频率及振型的影响,研究了芯轴在外部载荷作用下的稳态响应特性。

最后,对超高速主轴的部分性能进行了测试。测试结果显示,在润滑油供给压力为60 bar的条件下,主轴轴向刚度为99.58 N/μm,轴端径向刚度为83.38 N/μm。主轴径向固定敏感方向回转误差为0.16 μm,轴向跳动误差为0.08 μm;润滑油最大温升为20℃;主轴最高转速为45000 rpm

其他摘要

Difficult-to-machine materials, characterized by high strength, hardness, and corrosion resistance, are widely used in aerospace and medical fields. The machining of these materials has always been a hot topic in academia. In existing research, ultra-high-speed machining technology has shown its advantages in processing these materials, but its in-depth research and application are limited by the performance of the machine tool spindle. The support methods in the ultra-high-speed spindle mainly include aerostatic bearing and hydrostatic bearing. Aerostatic bearing have a high limit speed, but low stiffness and poor dynamic characteristics, limiting their applications. Hydrostatic bearing have good load-bearing characteristics and are more suitable for ultra-high-speed machining of difficult-to-machine materials, but they have problems such as large heat generation and significant dynamic pressure effects. This article will start from the perspective of bearing design and focus on how to weaken the impact of temperature rise and dynamic pressure effect on the spindle.

The spindle support scheme and bearing structure are determined. By comparing the advantages and disadvantages of different hydrostatic bearing support methods, the form of radial thrust combined bearing - axial preload bearing is used as the spindle support scheme, which has better thermal stability. After fully studying the correlation between bearing performance and structural parameters, with the maximum bearing stiffness and minimum lubricating oil temperature rise as the goal, the NSGA-II algorithm is used to perform multi-objective optimization design on the bearings in the support scheme, and a comprehensive performance optimal bearing design scheme is obtained.

The load-bearing characteristics and temperature characteristics of the bearing and spindle rotor system are studied. Based on the above bearing design scheme, a simulation model of hydrostatic bearing is established using Fluent software, the influence of eccentricity on the bearing load-bearing characteristics is studied, and the changes in the oil film temperature field under different speeds and the impact of dynamic pressure effect on the bearing load-bearing characteristics are analyzed, and the bearing stiffness parameters under different working conditions are obtained. In addition, based on the ANSYS Workbench platform, a simulation model of the ultra-high-speed spindle rotor system is constructed to explore the influence of the load-bearing position at the spindle end on the radial stiffness of the spindle end, and the influence of speed and grinding wheel on the modal frequency and mode shape of the eccentric shaft is analyzed, and the steady-state response characteristics of the eccentric shaft under external load are studied.

Finally, some performances of the ultra-high-speed spindle are tested. The test results show that under the condition of lubricating oil supply pressure of 60 bar, the axial stiffness of the spindle is 99.58 N/μm, and the radial stiffness of the spindle end is 83.38 N/μm. The rotation error of the spindle radially fixed sensitive direction is 0.16 μm, and the axial runout error is 0.08 μm; the maximum temperature rise of the lubricating oil is 20℃; the highest speed of the spindle is 45000 rpm.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1]卢守相, 郭塞, 张建秋, 等. 高性能难加工材料可磨削性研究进展[J]. 表面技术, 2022, 51(03): 12-42.
[2]FLOM D, KOMANDURI R, LEE M. High-speed machining of metals[J]. Annual Review of Materials Science, 1984, 14(1): 231-278.
[3]郭塞, 江庆红, 刘昊, 等. 难加工材料超高速磨削亚表面损伤研究[J]. 航空制造技术, 2023, 66(14): 59-71.
[4] LI Z, DING W, SHEN L, et al. Comparative investigation on high-speed grinding of TiCp/Ti–6Al–4V particulate reinforced titanium matrix composites with single-layer electroplated and brazed CBN wheels[J]. Chinese Journal of Aeronautics, 2016, 29(5): 1414-1424.
[5]LI Z, DING W, LIU C, SU H. Grinding performance and surface integrity of particulate-reinforced titanium matrix composites in creep-feed grinding[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94: 3917-3928.
[6]吴魁, 吴志璇. 超高速空气静压电主轴的关键技术[J]. 中国高新技术企业, 2016(18): 148-149.
[7]王超. 超精密气体静压轴承自激振动形成机理研究[D]. 电子科技大学, 2022.
[8]LIU X, YANG X, LIU W, et al. A review of hydrostatic bearing: research and analysis[J]. Recent Patents on Engineering, 2022, 16(3)
[9]REYNOLDS O. On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil[J]. Phil Trans Roy Soc, 1885, 1: 157.
[10]ROWE W B. Advances in hydrostatic and hybrid bearing technology[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 1989, 203(4): 225-242.
[11]LU X D, PAONE M P, USMAN I, et al. Rotary-axial spindles for ultra-precision machining[J]. CIRP Annals, 2009, 58(1): 323-326.
[12]LIN S, JIANG S. Rotordynamics of an improved face-grinding spindle: rotational stiffness of thrust bearing increases radial stiffness of spindle[J]. Journal of Manufacturing Science and Engineering, 2022, 144(8)
[13]HUANG H-C, YANG S-H. Thrust-bearing layout design of a large-sized hydrostatic rotary table to withstand eccentric loads for horizontal boring machine applications[J]. Lubricants, 2022, 10(4)
[14]王建磊, 王云龙, 门川皓, 等. 精密磨床转台静压轴承的强健化设计[J]. 中国机械工程, 2020, 31(10): 1155-1161+1168.
[15]LIN S-C, LO Y-H, LIN Y-H, et al. Design and performance analysis of dual membrane restrictor for hydrostatic bearing[J]. Lubricants, 2022, 10(8)
[16]ROWE W B. Conical hydrostatic journal bearings for high speeds[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 235(4): 808-819.
[17]佐晓波. 超精密机床自补偿液体静压轴承设计与特性研究[D]. 国防科学技术大学, 2013.
[18]彭昆. 双锥液体静压主轴的设计与性能测试[D]. 广东工业大学, 2022.
[19]ROWE W, KOSHAL D, STOUT K. Slot-entry bearings for hybrid hydrodynamic and hydrostatic operation[J]. Journal of Mechanical Engineering Science, 1976, 18(2): 73-78.
[20]ROWE W, KOSHAL D, STOUT K. Investigation of recessed hydrostatic and slot-entry journal bearings for hybrid hydrodynamic and hydrostatic operation[J]. Wear, 1977, 43(1): 55-69.
[21]庞志成. 环隙节流静压轴承静动态特性的理论与试验研究及应用[J]. 机床与液压, 1989(05): 35-39.
[22]HALE L C, DONALDSON R R, CASTRO C, et al. Development of a hydrostatic journal bearing with slit-step compensation[R]: Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2006.
[23]REHMAN W U, WANG X, CHENG Y, et al. Model-based design approach to improve performance characteristics of hydrostatic bearing using multivariable optimization[J]. Mathematics, 2021, 9(4)
[24]KODNYANKO V, KURZAKOV A, GRIGORIEVA O, et al. Theoretical disquisition on the static and dynamic characteristics of an adaptive stepped hydrostatic thrust bearing with a displacement compensator[J]. Mathematics, 2021, 9(22)
[25]TRIPKEWITZ F A, FRITZ M, WEIGOLD M. A circular hydrostatic shallow recess thrust bearing integrating a micro-range tilting axis[J]. Tribology International, 2024, 193
[26]MICHALEC M, ONDRA M, SVOBODA M, et al. A novel geometry optimization approach for multi-recess hydrostatic bearing pad operating in static and low-speed conditions using CFD simulation[J]. Tribology Letters, 2023, 71(2)
[27]WASSON K L. Hydrostatic machine tool spindles[D]. Massachusetts Institute of Technology, 1996.
[28]YOSHIMOTO S, OSHIMA S, DANBARA S, SHITARA T. Stability of water-lubricated, hydrostatic, conical bearings with spiral grooves for high-speed spindles[J]. Journal of Tribology-Transactions of the Asme, 2002, 124(2): 398-405.
[29]易宗煜, 丁国龙, 王维, 彭玲. 基于流固耦合的插齿机静压主轴结构优化设计[J]. 机床与液压, 2023, 51(13): 87-94.
[30]SHANG Y, CHENG K, DING H, CHEN S. Design and optimization of the surface texture at the hydrostatic bearing and the spindle for high precision machining[J]. Machines, 2022, 10(9)
[31]SHANG Y, CHENG K, BAI Q, CHEN S. Drag reduction analysis of the hydrostatic bearing with surface micro textures[J]. Applied Sciences, 2022, 12(21)
[32]CHEN D, ZHAO Y, ZHA C, et al. Performance evaluation of different types of micro-textured hydrostatic spindles under the main influencing factors[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235(10): 2169-2183.
[33]GUO M, RONG Y, HUANG Y, et al. Ultrafast laser-chemical modification hybrid fabrication of hydrostatic bearings with a superhydrophobicity solid-liquid interface[J]. Science China Technological Sciences, 2024, 67(3): 696-708.
[34]STANSFIELD F M. The design of hydrostatic journal bearings[M]//TOBIAS S A, KOENIGSBERGER F. Advances in Machine Tool Design and Research 1967. Pergamon. 1968: 419-445.
[35]MONTUSIEWICZ J, OSYCZKA A. Computer aided optimum design of machine tool spindle systems with hydrostatic bearings[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 1997, 211(1): 43-51.
[36]DU J, LIANG G. Dynamic coefficients and stability analysis of a water-lubricated hydrostatic bearing by solving the uncoupled Reynolds equation[J]. Chinese Journal of Aeronautics, 2020, 33(8): 2110-2122.
[37]CHEN W, SUN Y, LIANG Y, et al. Hydrostatic spindle dynamic design system and its verification[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013, 228(1): 149-155.
[38]周浩兵. 液体静压主轴系统承载特性分析及优化设计[D]. 河南科技大学, 2014.
[39]LIANG Y, CHEN W, SUN Y, et al. An expert system for hydro/aero-static spindle design used in ultra precision machine tool[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(2): 107-113.
[40]OPITZ H, BöTTCHER R, EFFENBERGER W. Investigation on the dynamic behaviour of hydrostatic spindle-bearing systems[M]//TOBIAS S A, KOENIGSBERGER F. Advances in Machine Tool Design and Research 1969. Pergamon. 1970: 453-467.
[41]GAO S, SHANG Y, GAO Q, et al. CFD-based investigation on effects of orifice length–diameter ratio for the design of hydrostatic thrust bearings[J]. Applied Sciences, 2021, 11(3)
[42]FEDORYNENKO D, KIRIGAYA R, NAKAO Y. Dynamic characteristics of spindle with water-lubricated hydrostatic bearings for ultra-precision machine tools[J]. Precision Engineering, 2020, 63: 187-196.
[43]CHEN C H, CHU C H, KANG Y, et al. The restrictive effects of orifice compensation on the stability of the Jeffcott rotor‐hybrid bearing system[J]. Industrial Lubrication and Tribology, 2002, 54(6): 255-261.
[44]CHEN C-H, KANG Y, HUANG C-C. The influences of orifice restriction and journal eccentricity on the stability of the rigid rotor-hybrid bearing system[J]. Tribology International, 2004, 37(3): 227-234.
[45]CHARLES S, BONNEAU O, FRE, NE J. Determination of the discharge coefficient of a thin-walled orifice used in hydrostatic bearings[J]. J Trib, 2005, 127(3): 679-684.
[46]KUMAR V, SHARMA S C, JAIN S. On the restrictor design parameter of hybrid journal bearing for optimum rotordynamic coefficients[J]. Tribology International, 2006, 39(4): 356-368.
[47]徐红哲. 小孔节流静压主轴系统的设计分析与仿真[D]. 河南科技大学, 2012.
[48]TRIPKEWITZ F A, LAZáK T, FRITZ M, et al. Experimental and theoretical study on the dynamic stiffness of circular oil hydrostatic shallow recess thrust bearings[J]. Tribology International, 2023, 183
[49]YU X, TANG B, WANG S, et al. High-speed and heavy-load tribological properties of hydrostatic thrust bearing with double rectangular recess[J]. International Journal of Hydrogen Energy, 2022, 47(49): 21273-21286.
[50]AGRAWAL N, SHARMA S C. Effect of the ER lubricant behaviour on the performance of spherical recessed hydrostatic thrust bearing[J]. Tribology International, 2021, 153
[51]苏浩. 液体静压主轴的流体—结构耦合分析及动态性能研究[D]. 哈尔滨工业大学, 2012.
[52]孙久伟, 张飞虎, 付鹏强, 等. 立式液体静压主轴的设计及温度场分析[J]. 润滑与密封, 2013, 38(02): 5-8+13.
[53]赵春明, 马平, 龚乘龙, 牛兴. 基于单向流-固耦合的高精密液体静压主轴应力场和温度场研究[J]. 润滑与密封, 2014, 39(05): 62-68.
[54]SHANG Y, CHENG K, DING H, CHEN S. Design of a hydrostatic spindle and its simulation analysis with the application to a high precision internal grinding machine[J]. Machines, 2022, 10(2)
[55]尹承真. 液体静压主轴热态特性研究与优化[D]. 中国工程物理研究院, 2020.
[56]PHAM V-H, NGUYEN M-T, BUI T-A. Oil pressure and viscosity influence on stiffness of the hydrostatic spindle bearing of a medium-sized circular grinding machine[J]. International Journal of Modern Physics B, 2020, 34(22n24)
[57]CHEN D, FAN J, ZHANG F. Dynamic and static characteristics of a hydrostatic spindle for machine tools[J]. Journal of Manufacturing Systems, 2012, 31(1): 26-33.
[58]YU X, WANG F, ZHOU D, et al. Deformation characteristics of adaptive hydrostatic thrust bearing under extreme working conditions[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(9)
[59]BOUYER J, WODTKE M, FILLON M. Experimental research on a hydrodynamic thrust bearing with hydrostatic lift pockets: Influence of lubrication modes on bearing performance[J]. Tribology International, 2022, 165
[60]YI H, JUNG H, KIM K, RYU K. Static load characteristics of hydrostatic journal bearings: measurements and predictions[J]. Sensors, 2022, 22(19)
[61]ZHANG Y, PAN W, ZHAN S, et al. Investigating the dynamic characteristics of the hydrostatic bearing spindle system with active piezoelectric restrictors[J]. Journal of Tribology, 2022, 144(7)
[62]ZHANG Y, PAN W, CHEN S, et al. Research on trajectory control of rotor systems supported by a combination of rolling and hydrostatic bearings[J]. Precision Engineering, 2024, 88: 475-486.
[63]CHEN D, BONIS M, ZHANG F, DONG S. Thermal error of a hydrostatic spindle[J]. Precision Engineering, 2011, 35(3): 512-520.
[64]熊万里, 侯志泉, 吕浪. 液体静压主轴回转误差的形成机理研究[J]. 机械工程学报, 2014, 50(07): 112-119.
[65]原帅. 可控节流液体静压主轴回转精度精确仿真及其规律研究[D]. 湖南大学, 2021.
[66]ZHANG P, CHEN Y. Analysis of error motions of axial locking-prevention hydrostatic spindle[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 233(1): 3-17.
[67]FEDORYNENKO D, SAPON S, BOYKO S. Accuracy of spindle units with hydrostatic bearings[J]. Acta Mechanica et Automatica, 2016, 10(2): 117-124.
[68]陈东菊, 李源, 查春青, 等. 动态参数影响下液体静压主轴运动精度分析及优化[J]. 西安交通大学学报, 2020, 54(06): 90-98.
[69]MA P, ZHAO C, LU X, et al. Rotation error measurement technology and experimentation research of high-precision hydrostatic spindle[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(9-12): 1313-1320.
[70]浮燕, 李想, 王辉. 液体静压主轴回转精度测试方法的研究[J]. 机床与液压, 2016, 44(03): 158-162.
[71]ROWE W B. Dynamic and static properties of recessed hydrostatic journal bearings by small displacement analysis[J]. Journal of Lubrication Technology, 1980, 102(1): 71-79.
[72]SHAO J-P, LIU G-D, YU X. Simulation and experiment on pressure field characteristics of hydrostatic hydrodynamic hybrid thrust bearings[J]. Industrial Lubrication and Tribology, 2019, 71(1): 102-108.
[73]YU X, GAO W, FENG Y, et al. Research progress of hydrostatic bearing and hydrostatic-hydrodynamic hybrid bearing in high-end computer numerical control machine equipment[J]. International Journal of Precision Engineering and Manufacturing, 2023, 24(6): 1053-1081.
[74]丁振乾. 静压轴承设计计算[J]. 磨床与磨削, 1978(04): 1-85.
[75]丁振乾, 蒋福岩. 动静压轴承油腔结构对性能的影响[J]. 磨床与磨削, 1984(04): 14-21.
[76]NAKAO Y, KIRIGAYA R, FEDORYNENKO D, et al. Thermal characteristics of spindle supported with water-lubricated hydrostatic bearings[J]. International Journal of Automation Technology, 2019, 13(5): 602-609.
[77]CHEN R, WANG X, DU C, et al. Stiffness model and experimental study of hydrostatic spindle system considering rotor swing[J]. Shock and Vibration, 2020, 2020: 1-8.

所在学位评定分委会
力学
国内图书分类号
TH133.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766045
专题南方科技大学
工学院_机械与能源工程系
推荐引用方式
GB/T 7714
郭勇. 超高速主轴液体静压轴承设计与特性研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132258-郭勇-机械与能源工程系(8013KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[郭勇]的文章
百度学术
百度学术中相似的文章
[郭勇]的文章
必应学术
必应学术中相似的文章
[郭勇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。